Give Definitions Conservative BSc Notes

Give Definitions Conservative BSc Notes

Give Definitions Conservative BSc Notes:-

विस्तृत उत्तरीय प्रश्न

परीक्षा प्रश्न-पत्र में इस खण्ड में चार इकाइयाँ दी जाएँगी। प्रत्येक इकाई में दो प्रश्न होंगे। प्रत्येक इकाई से एक प्रश्न चुनते हुए, कोई चार प्रश्न हल कीजिए।

प्रश्न 1. संरक्षी असंरक्षी बलों की परिभाषा दीजिए तथा उदाहरण से समझाइए। 

Give definitions of conservative and non-conservative forces and explain them with examples. 

उत्तर : संरक्षी बलकिसी कण पर लगने वाला बल संरक्षी है यदि कण एक चक्र-पथ (round trip) पूर्ण करने पर अपनी प्रारम्भिक स्थिति में उतनी ही गतिज ऊर्जा से लौटता है जितनी उसकी प्रारम्भ में थी।

उदाहरण-(i) जब हम एक गेंद को गुरुत्व बल के विरुद्ध ऊपर की ओर फेंकते हैं तो गेंद एक निश्चित ऊँचाई तक पहुँचती है, जहाँ वह कुछ क्षण विरामावस्था में आती है जिससे इसकी गतिज ऊर्जा शून्य हो जाती है। फिर वह गुरुत्व बल के अन्तर्गत उसी गतिज ऊर्जा से लौट आती है जिससे फेंकी गई थी। (यह मानकर कि वायु-प्रतिरोध शून्य है)। इस प्रकार गुरुत्व-बल संरक्षी है।

(ii) जब एक गुटके को ‘घर्षणरहित’ क्षैतिज तल पर स्थिति P से एक आदर्श स्प्रिंग की ओर वेग ५ से चलाया जाता है तो स्प्रिंग संपीडित (compress) होने लगती है [चित्र-(2a)] स्प्रिंग के प्रत्यास्थ (अथवा प्रत्यानयन) बल के कारण गुटका विरामावस्था में आ जाता है तथा इसकी गतिज ऊर्जा शून्य हो जाती है [चित्र-(2b)]। अब संपीडित स्प्रिंग के खुलने के कारण गुटका प्रत्यास्थ P में बल के अन्तर्गत विपरीत दिशा में चलने लगता है और धीरे-धीरे उसकी गतिज ऊर्जा बढ़ती जाती है। जब गुटका अपनी पूर्व स्थिति P में लौट आता है तो इसकी गतिज ऊर्जा प्रारम्भिक गतिज ऊर्जा के बराबर हो जाती है। इस प्रकार, आदर्श स्प्रिंग द्वारा आरोपित प्रत्यास्थ बल (elastic force) संरक्षी है।

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

असंरक्षी बल यदि कण एक चक्र-पथ (round trip) पूर्ण करने पर अपनी प्रारम्भिक स्थिति में बदली हुई गतिज ऊर्जा से लौटता है, तब कण पर लगने वाला बल असंरक्षी होता है।

उदाहरण (i) में वायु-प्रतिरोध को तथा उदाहरण (ii) में तल व गुटके के बीच घर्षण बल को नगण्य मान लिया है। जबकि वास्तव में इस प्रकार के बल सदैव उपस्थित रहते हैं। ये बल सदव गात का विरोध करते हैं, चाहे गति किसी भी दिशा में हो। इस प्रकार गतिज ऊजा का एक भाग इन बलों के विरुद्ध कार्य करने में व्यय हो जाता है। अतः पूवात्मा गुटके की गतिज ऊर्जा कम हो जाती है। इस प्रकार, ये बल (घर्षण अथवा श्यान) जो गतिज ऊर्जा के ह्रास के लिए उत्तरदायी हैं ‘असंरक्षी’ होते है।

कभी कभी कण के ऊपर लगने वाले बल कण द्वारा एक चक्र-पथ पूर्ण करने पर कण का गतिज ऊर्जा में वद्धि भी कर देते हैं। उदाहरण के लिए, बीटाट्रान मला वाला प्ररण बल (force of induction) प्रत्येक चक्र-पथ में इलेक्ट्रॉन की गतिज ऊजा म वृद्धि कर देता है। अतः यह भी ‘असंरक्षी’ है।

प्रश्न 2. संरक्षी बल क्या होते हैं? सिद्धकीजिए कि एक केन्द्रीय बल संरक्षी होता है। यह भी सिद्ध कीजिए कि एक संरक्षी बल द्वारा एक बन्द पथ के अनुदिश कृत काय शून्य होता है। 

What are conservative forces ? Show that a central force is conservative. Hence prove that the work done by a conservative round a closed path is zero.

उत्तर : संरक्षी बल एक बिन्दु से दूसरे बिन्दु तक गति करने वाले कण पर किसी बल द्वारा किया गया कार्य, कण के द्वारा चले गए पथ पर नहीं बल्कि उनकी स्थितियों पर निर्भर करता है तो बल, संरक्षी बल कहलाता है। गुरुत्वीय बल, प्रत्यास्थ बल, स्थिरवैद्युत बल आदि संरक्षी बल हैं।

केन्द्रीय बल संरक्षी होता है— यदि किसी कण पर लगने वाला बल सदैव एक बिन्दु की ओर अथवा बिन्दु से दूर दिष्ट होता है तथा इसका परिमाण केवल कण की उस बिन्दु से दूरी पर निर्भर करता है तब यह  केन्द्रीय बल कहलाता है। गुरुत्वाकर्षण, प्रत्यास्थ तथा पथ 1 स्थिरवैद्युत बल केन्द्रीय बल के उदाहरण हैं। चित्र-3 में, बिन्दुओं P व Q को दो स्वेच्छ पथों-1 व 2 से सम्बद्ध किया गया है।माना एक कण बिन्दु 0 से दूर की ओर दिष्ट dr ‘केन्द्रीय बल’ के अन्तर्गत P से Q की ओर किसी एक पथ के अनुदिश चलता है। अब 0 को केन्द्र मानकर, त्रिज्याओं r तथा r+dr के दो वृत्त-चाप खींचते हैं। माना पथ 1 तथा 2 पर लिए गए बिन्दुओं A तथा B पर, कण पर कार्यरत केन्द्रीय बल क्रमश: F1 तथा F2 हैं। माना पथ 1 तथा 2 के अनुदिश चापों के मध्य

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

कण के विस्थापन क्रमश: dr1 तथा d r2 हैं। यदि F1dr1 तथा F2, व d r2 के बीच कोण क्रमश: 01 तथा 02 हैं, तब अदिश गुणनफल के गुण के अनुसार—

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

प्रश्न 3. एक गतिमान पिण्ड 1 तथा एक अन्य पिण्ड 2, जो विरामावस्था में हैं, के बीच एकविमीय प्रत्यास्थी संघट्ट पर विचार कीजिए।आप पिण्ड1 के द्रव्यमान की तुलना में पिण 2 का द्रव्यमान कितना रखना चाहेंगे ताकि संघट्ट के पश्चात् पिण्ड 2(a) अधिकतम चाल से (b) अधिकतम संवेग से, (c) अधिकतम गतिज ऊर्जा से प्रतिक्षिप्त हो?

Consider a one-dimensional elastic collision between a given incoming body 1 and a body 2 initially at rest. How would you choose the mass of 2, in comparison to the mass of 1, in order that 2 should recoil with (a) greatest speed, (b) greatest momentum and (c) greatest kinetic energy?

उत्तर : (a) माना कि पिण्डों 1 वे 2 के द्रव्यमान क्रमश: m व ma हैं, पिण्ड 1 का प्रारम्भिक वेग 11 है तथा पिण्ड 1 व 2 के अन्तिम वेग क्रमश: 1 व 2 हैं। संवेग-संरक्षण के नियम से

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

प्रश्न 4. निम्नलिखित निकायों की स्थितिज ऊर्जा की गणना कीजिए 

(1) पृथ्वी से ऊँचाई पर उठाई गई वस्तु, (2) खिंचा स्प्रिंग, (3) किसी कोण से विस्थापित सरल लोलका प्रदर्शित कीजिए कि लोलक का गोलक उस ऊँचाई से अधिक नहीं उठ सकता जहाँ से इसे प्रारम्भ में छोड़ा गया था। 

Calculate the potential energy of the following systems : (1) a body raised to a height from the earth, (2) a spring stretched through a distance, (3) a simple pendulum displaced through a certain angle. Show that the bob of the pendulum cannot rise higher than its initial release point. 

उत्तर : (1) पृथ्वी से ऊँचाई पर उठाई गई वस्तु की गुरुत्वीय स्थितिज ऊर्जामाना द्रव्यमान m की एक वस्तु पृथ्वी से ) ऊँचाई तक उठाई जाती है। वस्तु पर कार्यरत बल F, संरक्षी गुरुत्वीय प्रत्यानयन बल mg है, अर्थात् .

F =  – mg 

ऋण चिह्न व्यक्त करता है कि कार्यरत बल प्रत्यानयन बल है जो विस्थापन y के विपरीत कार्यरत है। अतः वस्तु को पृथ्वा स ऊपर उठाने के लिए हमें वस्तु पर एक ऊपर की ओर अनुदिश बल Fapp (= – F = mg) लगाना होगा (चित्र-4)।

यदि पृथ्वी पर (y = 0) वस्तु की स्थितिज ऊर्जा U(0) हो तथा ऊँचाई y पर U(y) हो, तब

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

यह पृथ्वी से y ऊँचाई पर किसी वस्तु की गुरुत्वीय स्थितिज ऊर्जा है।

अब माना वस्तु बिन्दु A से (ऊँचाई y1 पर) बिन्दु B तक (ऊँचाई y2 पर) उठती है। जहाँ इसके वेग क्रमशः v1 v2 व हैं। यान्त्रिक ऊर्जा के संरक्षण नियम से, वस्तु की बिन्दु A पर यान्त्रिक (गतिज + स्थितिज) ऊर्जा वही है जो बिन्दु B पर है, अर्थात्

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

जहाँ E, निकाय (वस्तु + पृथ्वी) की यान्त्रिक ऊर्जा है जो वस्तु की गति के दौरान संरक्षित रहती है।

(2) खिंची हुई स्प्रिंग की प्रत्यास्थ स्थितिज ऊर्जामाना द्रव्यमान m का एक गुटका क्षैतिज घर्षणरहित तल पर रखा है (चित्र-5)। आदर्श स्प्रिंग का भी एक सिरा गुटके से जुड़ा है तथा दूसरा सिरा स्थिर रखा गया है। माना जब स्प्रिंग खिंचा हुआ नहीं है तब गुटके न की स्थिति x = 0 है। अब माना गुटके पर बल Fapp आरोपित करके, स्प्रिंग को x दूरी तक खींचा जाता है। स्प्रिंग, अपनी प्रत्यास्थता के कारण गुटके पर एक प्रत्यानयन बल F आरोपित करता है। हुक के नियमानुसार, F= -kr जहाँ स्प्रिंग का बल-नियतांक है। माना सामान्य (बिना खिंची) स्प्रिंग (x = 0 पर) की। र प्रत्यास्थ स्थितिज ऊर्जा U(0) है तथा x दूरी पर खिंचे स्प्रिंग की U(x) है, तब

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

यह दूरी x दूरी पर खिंचे स्प्रिंग की प्रत्यास्थ स्थितिज ऊर्जा है।

यदि हम स्प्रिंग को कुछ दूरी पर खींचकर छोड़ देते हैं तो इससे सम्बद्ध गुटका अपनी साम्य स्थिति x = 0 के दोनों ओर दोलनी गति करने लगता है। साम्य स्थिति में निकाय (गुटका + स्प्रिंग) की ऊर्जा पूर्णतया गतिज होती है, जबकि दोनों अन्तिम स्थितियों में ऊर्जा पूर्णतया स्थितिज होती है। बीच की स्थितियों में, निकाय में गतिज व स्थितिज दोनों ऊर्जाएँ होती हैं, परन्तु इनका योग प्रत्येक स्थिति में समान होता है। यदि स्थितियों x1 व x2 में गुटके के वेग क्रमशः v1 व v2 हों, तब

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

जहाँ E निकाय की यान्त्रिक ऊर्जा है।।

(3) कोण से विस्थापित सरल लोलक की. Y स्थितिज ऊर्जा-माना एक सरल लोलक की लम्बाई j है तथा इसके गोलक का द्रव्यमान m है (चित्र-6) मान लेते हैं कि गोलक की साम्य स्थिति, X-Y निर्देशांकों के मूलबिन्दु 0 पर हैं। माना X-Y तल में गोलक को एक क्षैतिज बल F द्वारा स्थिति 0 से स्थिति A तक विस्थापित किया जाता है, जिसका कोणीय विस्थापन 00 है तथा ऊर्ध्व विस्थापन र है। इस विस्थापन में बल F द्वारा किया गया कार्य होगा ।

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

गोलक को A स्थिति में छोड़ देने पर यह साम्य स्थिति 0 के इधर-उधर दोलन करने लगता है। माना दोलन करते गोलक का किसी क्षण कोणीय विस्थापन में है। इस क्षण गोलक पर कार्यरत बल हैं-गोलक का भार mg, ऊर्ध्वाधर नीचे की ओर क्षैतिज बल F तथा लोलक के धागे में तनाव T  तनाव T को क्षैतिज घटक T sine 0 तथा ऊर्ध्व घटक T cose 0 में वियोजित करने पर,

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

यह कार्य लोलक में स्थितिज ऊर्जा के रूप में संचित होता है। अत: यदि लोलक की साम्य स्थिति में स्थितिज ऊर्जा को शून्य मान लिया जाए तो X-Y तल में, गोलक को h ऊँचाई तक विस्थापित करने पर लोलक की स्थितिज ऊर्जा

U(x,y) = U (x, h) = mgh

अन्तिम स्थिति A में, लोलक की गतिज ऊर्जा शून्य है, अत: लोलक की कुल यान्त्रिक ऊर्जा E स्थितिज ऊर्जा mgh ही है,

E= mgh 

गोलक को A स्थिति से छोड़ देने पर यह गुरुत्वीय अथवा प्रत्यानयन बल के अन्तर्गत पुनः साम्य स्थिति की ओर लौटने लगता है तथा इसकी स्थितिज ऊर्जा गतिज ऊर्जा में बदलने लगती है। इसके पथ में किसी भी बिन्दु पर दोनों ऊर्जाओं का योग इसकी यान्त्रिक ऊर्जा के बराबर रहता है। यदि पथ के किसी बिन्दु पर गोलक का वेग । हो तथा ऊर्ध्व विस्थापन y हो तब यान्त्रिक ऊर्जा के संरक्षण नियम से,

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

Give Definitions Conservative BSc Notes
Give Definitions Conservative BSc Notes

 

दूसरे शब्दों में, गोलक h ऊँचाई से अधिक ऊँचा नहीं उठ सकता।


Internal Structure Of Sargassum Thallus BSc Botany Notes

Follow me at social plate Form

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top