B. Sc. (C.S.)-III Sem.

## NP-3602

## B. Sc. (Computer Science) Examination, Dec. 2013

### DISCRETE STRUCTURES

(BCS-301)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from each Section as per instructions.

#### Section-A

## (Very Short Answer Questions)

Attempt all the *five* questions of this Section. Each question carries 3 marks. Very short answer is required.

3×5=15

Show that the set of all bit strings is countable, 3

Prove that the set {0, 1, 2, 3, 4} is a finite abelian group of order 5 under addition models 5

as composition.

https://www.ccsustudy.com

Let  $f: R \to R$  and  $g: R \to R$  be defined by f(x) = x - 1 and  $g(x) \approx x^2 + 1$ , find:

(i)  $(f \circ g) (2)$ 

(ii) (gog) (2).

· 3

When is a simple graph G bipartite? Given an example.

Show that the proposition  $p \to q$  and  $\exists p \lor q$  are logically equivalent.  $\blacktriangleleft$ 

# Section-B (Short Answer Questions)

This Section contains three questions, attempt any two questions. Each question carries 71/2 marks.

∠J7½×2=15

Show that  $\forall x (P(x) \lor Q(x)) \Rightarrow (\forall x P(x)) \lor (\forall x Q(x))$ by indirect method of proof.

7. Prove that √2 is irrational by giving a proof using contradiction.

7½

8. Solve the recurrence relation:

$$a_{n+1} - a_n = 3n^2 - n, n \ge 0, a_0 = 3.$$
Section-C

## (Detailed Answer Questions)

This Section contains five questions, attempt any three questions. Each question carries 15 marks.

NP-3602

9. (a) Use mathematical induction to show that: 7  $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}; n \ge 2.$ 

- (b) State the pigeonhole principle. If any 51 integers are chosen from the set {1, 2, 3, ...., 100} then show that among the choosen integers there exist two integers such that one is multiple of the other. 8
- 10. (a) Let,  $(S, \bullet)$  be a semigroup. Then prove that there exists a homomorphism  $g: S \to S^S$ , where  $(S^S, 0)$  is a semigroup of functions from S to S under the operation of (left) composition.
  - (b) Prove that every finite group of order n is isomorphic to a permutation group of order n.
- 11. (a) Prove that DeMorgan's laws hold good for a complemented distributive lattice  $(L \wedge \vee)$ ,  $\operatorname{viz}(a \vee b)' = a' \wedge b'$  and  $(a \wedge b)' = a' \vee b'$ .
  - (b) In any boolean algebra, show that: 8 (a+b) (b+c) (c+a) = ab+bc+ca.

12. (a) Prove that the maximum number of edges in a simple disconnected graph G with n vertices and k components is:

$$\frac{(n-k)(n-k+1)}{2}$$

- (b) Prove that a graph is bipartite iff all its circuits are of even length. 7
- 13. Define with example any five of the following: 3×5

(a) Complete graph

(b) Abelian group

(c) Lattice

- (d) Platonic graph
- (e) Petersen graph

Biconditional statement

(g) Isomorphism between two algebraic systems.

https://www.ccsustudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से