NP-3573(CV-III)

B.Sc. (Computer Science)

Examination, Dec.-2021

APPLIED MATHEMATICS - I

(BCS-102)

Time: 1½ Hours | [Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions.

Section-A

(Very Short Answer Questions)

Note: Attempt any **two** questions. Each question carries 7.5 marks. $2 \times 7.5 = 15$

- Find the differential coefficient of e^{2x} sin³x.
- 2. Find the Jacobian J(u, v) for

P.T.O.

https://www.ccsustudy.com

 $u=e^x \sin y$, $v=x \log \sin y$.

Find the inverse of the matrix by elementary transformation.

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

Find $\iint_{\mathbb{R}} f(x, y) dA$ for $f(x,y)=1-6x^2y$ and R.I. $0 \le x \le 2$, $-1 \le y \le 1$.

Find the magnitude of the gradient of the function $f=xyz^3$ at (1,0,2).

Section-B

(Short Answer Questions)

Note: Attempt any **one** question. Each question carries 15 marks. 1×15=15

6.
$$u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$$
 show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$

Prove that x⁵-5x⁴+5x³-10 has a maximum for x=1, a minimum for x=3 and for x=0, it has neither a maximum

NP-3573(CV-III)/2

https://www.ccsustudy.com

nor a minimum.

Reduce the matrix A to canonical form

and find its rank:

$$A = \begin{bmatrix} 2 & -1 & 3 & 3 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 4 \\ 2 & 5 & 11 & 5 \end{bmatrix}$$

Section-C

(Detailed Answer Questions)

Note: Attempt any two questions. Each question carries 22.5 marks.

- (a) Find Taylor's Series expansion of $f(xy)=x^3+xy^2$ about point (2, 1).
 - (b) Expand log (1+x) in powers of x.
- Use the method of Lagrange's multipliers to find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
NP-3573(CV-III)/3

P.T.O.

https://www.ccsustudy.com

State Cayley-Hamiltan theorem. Find the eigen. Values and eigen vectors of the

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

- $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ 12. (a) By changing the order of integration Evaluate $\int_{1}^{1} \int_{x_{1}}^{2-x} xy \,dy \,dx$
 - (b) Define Beta and Gamma function. Establish the relation between Beta and Gamma function $\beta(m,n) = \frac{m n}{(m+n)}$
- 绐. (a) Define curl of a vector. Prove the following vector identify: $\operatorname{div}(\vec{u} \times \vec{v}) = \vec{v} \cdot \operatorname{curl} \vec{u} - \vec{u} \cdot \operatorname{curl} \vec{v}$

()

(b) State Gauss divergence theorem. Use Gauss divergence theorem in Cartesian form to evaluate $\iint x \, dy \, dz + y \, dz \, dx + z dx \, dy$. where the surface S is the sphere $x^2+v^2+z^2=a^2$.

NP-3573(CV-III)/4

https://www.ccsustudy.com