Exercise

In each of the questions 1 to 49, four options are given, out of which only one is correct. Choose the correct one.

1. The sides of a triangle have lengths (in cm) $10,6.5$ and a, where a is a whole number. The minimum value that a can take is
(a) 6
(b) 5
(c) 3
(d) 4

Solution:

Given: The sides of a triangle have lengths (in cm) 10, 6.5 and a.
As we know that sum of lengths of any two sides of a triangle is greater than length of third side.
So, $a+6.5>10$
a $>10-6.5$
a > 3.5
According to the question, a is whole number.
So, the minimum value a can take is 4 .
Hence, the correct option is (d).
2. Triangle DEF of Fig. 6.6 is a right triangle with $\angle E=90^{\circ}$. What type of angles are $\angle \mathrm{D}$ and $\angle \mathrm{F}$?
(a) They are equal angles
(b) They form a pair of adjacent angles
(c) They are complementary angles
(d) They are supplementary angles

Fig. 6.6

Solution:

$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$ [Angle sum property of a triangle]
$\angle \mathrm{D}+\angle \mathrm{F}=180^{\circ}-90^{\circ}\left[\angle \mathrm{E}=90^{\circ}\right.$ (given) $]$

$$
=90^{\circ}
$$

So, $\angle \mathrm{D}$ and $\angle \mathrm{F}$ are complementary angles.
Hence, the correct option is (c).
3. In Fig. 6.7, $P Q=P S$. The value of x is
(a) 35°
(b) 45°
(c) 55°
(d) 70°

Fig. 6.7

Solution:

See the above figure, in triangle PQS, $\angle 2+\angle 3=110^{\circ} \ldots$ (i) [Exterior angle property of a triangle]
$\angle 2+\angle 3+\angle 4=180^{\circ}$
$\angle 4=180^{\circ}=110^{\circ}$
[Angle sum property of a triangle]
So, $\angle 4=70^{\circ}$
Now, $\mathrm{PQ}=\mathrm{PS}$
[Using equation (i)]
[Given]
$\angle 2=\angle 4=70^{\circ}$
Now, in \triangle PRS:
$\angle 2=x+25^{\circ}$
$\mathrm{x}=70^{\circ}-25^{\circ}$
$x=45^{\circ}$
[Exterior angle property of a triangle]
[Using equation (ii)]
Hence, the correct option is (b).

4. In a right-angled triangle, the angles other than the right angle are

(a) obtuse
(b) right
(c) acute
(d) straight

Solution:
As we know that the sum of angles other than right angle in a right-angled triangle is 90° So, both angles other than the right angle must be acute.

Hence, the correct option is (c).
5. In an isosceles triangle, one angle is 70°. The other two angles are of $\begin{array}{lll}\text { (i) } 55^{\circ} \text { and } 55^{\circ} & \text { (ii) } 70^{\circ} \text { and } 40^{\circ} & \text { (iii) any measure }\end{array}$

In the given option(s) which of the above statement(s) are true?
(a) (i) only
(b) (ii) only
(c) (iii) only
(d) (i) and (ii)

Solution:

Case I: Let $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$ and vertex angle is 70°.
$\angle 1=\angle 2$

Now, $\angle 1+\angle 2+\angle \mathrm{A}=180^{\circ}$ [Angle sum property]
$2(\angle 1)=180^{\circ}-70^{\circ}$
$2(\angle 1)=110^{\circ}$
$\angle 1=\frac{110^{\circ}}{2}$
$\angle 1=55^{\circ}$
So, $\angle 1=\angle 2=55^{\circ}$
Therefore, (i) is true.
Case II: Let $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$ and base angle is 70°.

$$
\angle 2=70^{\circ}[\mathrm{AB}=\mathrm{AC}]
$$

Now, $\angle 1+\angle 2+\angle \mathrm{C}=180^{\circ}$
$\angle 1=180^{\circ}-\angle 2-\angle C$
$\angle 1=180^{\circ}-70^{\circ}-70^{\circ}$
$\angle 1=40^{\circ}$
So, $\angle 1=40^{\circ}$ and $\angle 2=70^{\circ}$
Therefore, (ii) is also true.
Hence, the correct option is (d).
6. In a triangle, one angle is of 90°. Then
(i) The other two angles are of 45° each
(ii) In remaining two angles, one angle is 90° and other is 45°
(iii) Remaining two angles are complementary

In the given option(s) which is true?
(a) (i) only
(b) (ii) only
(c) (iii) only
(d) (i) and (ii)

Solution:

As we know that in a triangle, if one angle is of 90°, the remaining two angles are complementary.

Hence, the correct option is (c).
7. Lengths of sides of a triangle are $\mathbf{3 c m}, 4 \mathrm{~cm}$ and 5 cm . The triangle is
(a) Obtuse angled triangle
(b) Acute-angled triangle
(c) Right-angled triangle
(d) An Isosceles right triangle

Solution:

Given: Lengths of sides of a triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm .
Now, $3^{2}+4^{2}=9+16=25=5^{2}$
As we know that sum of squares of two sides is equal to square of third side. Therefore, triangle is right angled triangle.
Hence, the correct option is (c).
8. In Fig. 6.8, $P B=P D$. The value of x is
(a) 85°
(b) 90°
(c) 25°
(d) 35°

Fig. 6.8

Solution:

See the given figure in the question,
$\angle \mathrm{PBE}=\angle \mathrm{PDB}+\angle \mathrm{BPD}$
$120^{\circ}=\angle \mathrm{PDB}+\theta$

Now, in triangle PBD,
$\angle \mathrm{PBD}+\angle \mathrm{BPD}+\angle \mathrm{PDB}=180^{\circ}$
[Angle sum property]
$\angle \mathrm{PBD}+\theta+\angle \mathrm{PDB}=180^{\circ}$
$\angle \mathrm{PBD}=180^{\circ}-120^{\circ}=60^{\circ}$
[Using equation (i)]
And $\mathrm{PB}=\mathrm{PD}$ [Given]
So, $\angle \mathrm{PDB}=\angle \mathrm{PBD}=60^{\circ}$

Now, in $\triangle \mathrm{PDC}$,
$\angle \mathrm{PDB}=\angle \mathrm{DCP}+\angle \mathrm{DPC}$
[Exterior angle property]
$60^{\circ}=x+35^{\circ}$
[Using equation (ii)] [Given: $\angle \mathrm{DCP}=\mathrm{x}, \angle \mathrm{DPC}=35^{\circ}$]
$\mathrm{x}=60^{\circ}-35^{\circ}$
$\mathrm{x}=25^{\circ}$
Hence, the correct option is (c).
9. In $\triangle P Q R$,
(a) $P Q-Q R>P R$
(b) PQ + QR $<\mathbf{P R}$
(c) $\mathbf{P Q}-\mathbf{Q R}<\mathbf{P R}$
(d) $P Q+$ $\mathbf{P R}<\mathbf{Q R}$

Solution:

In a triangle POR,
$\mathrm{PQ}+\mathrm{OR}>\mathrm{PR}: \mathrm{QR}+\mathrm{PR}>\mathrm{PO} ; \mathrm{PR}+\mathrm{PQ}>\mathrm{QR}$ [Sum of any two sides of a triangle is greater than the third side]

And: $\mathrm{PQ}-\mathrm{QR}<\mathrm{PR} ; \mathrm{QR}-\mathrm{PR}<\mathrm{PQ}$
$\mathrm{PR}-\mathrm{PQ}<\mathrm{QR}$ [Difference of any two sides of a triangle is less than the third side].
Hence, the correct option is (c).
10. In $\triangle \mathrm{ABC}$,
(a) $\mathrm{AB}+\mathrm{BC}>\mathrm{AC}$
(b) $\mathbf{A B}+\mathbf{B C}<\mathbf{A C}$
(c) $\mathbf{A B}+\mathrm{AC}<\mathbf{B C}$
(d) AC $+\mathbf{B C}<\mathrm{AB}$

Solution:

In a $\triangle A B C$,
$A B+B C>A C: B C+A C>A B ; A C+A B>B C[\because$ Sum of two sides is greater than third side in a triangle]
Hence, the correct option is (a).
11. The top of a broken tree touches the ground at a distance of $\mathbf{1 2} \mathbf{~ m}$ from its base. If the tree is broken at a height of 5 m from the ground then the actual height of the tree is
(a) 25 m
(b) $\mathbf{1 3} \mathrm{m}$
(c) 18 m
(d) $\mathbf{1 7} \mathbf{~ m}$

Solution:

According to the question, let BC is the broken part of tree and AB is the unbroken part of tree.

c is right angled triangle. So,
$(\mathrm{BC})^{2}=(\mathrm{AB})^{2}+(\mathrm{AC})^{2}$
$(\mathrm{BC})^{2}=(5)^{2}+(12)^{2}$
$(\mathrm{BC})^{2}=25+144=169$
$(\mathrm{BC})^{2}=13^{2}$
$\mathrm{BC}=13 \mathrm{~m}$

So, actual height of tree is $A B+B C=(5+13) m=18 m$
Hence, the correct option is (c).
12. The triangle $A B C$ formed by $A B=5 \mathrm{~cm}, B C=8 \mathrm{~cm}, A C=4 \mathrm{~cm}$ is
(a) an isosceles triangle only
(b) a scalene triangle only
(c) an isosceles right triangle
(d) scalene as well as a right triangle

Solution:

Let in $\triangle \mathrm{ABC}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$
Now, $5^{2}+4^{2}=25+16=41 \neq 8^{2}$
And all sides of triangle are unequal.
So, $\triangle \mathrm{ABC}$ is a scalene triangle only.
Hence, the correct option is (b).
13. Two trees 7 m and 4 m high stand upright on a ground. If their bases (roots) are 4 m apart, then the distance between their tops is
(a) 3 m
(b) 5 m
(c) 4 m
(d) 11 m

Solution:

Suppose AB and CD are the given trees of height 7 m and 4 m respectively.
So, $\mathrm{AC}=\mathrm{DE}=4 \mathrm{~m}$
$\mathrm{BE}=\mathrm{AB}-\mathrm{AE}=(7-4) \mathrm{m}=3 \mathrm{~m}$

$$
[\mathrm{AE}=\mathrm{CD}=4 \mathrm{~m}]
$$

Now, $\triangle \mathrm{BED}$ is a right angled triangle
$(\mathrm{BD})^{2}=(\mathrm{BE})^{2}+(\mathrm{DE})^{2}$
$(\mathrm{BD})^{2}=(3)^{2}+(4)^{2}=9+16$
$(\mathrm{BD})^{2}=25$
$(\mathrm{BD})^{2}=5^{2}$
$\mathrm{BD}=5 \mathrm{~m}$
Therefore, the distance between the tops of trees is 5 m .
Hence, the correct option is (b).
14. If in an isosceles triangle, each of the base angles is 40°, then the triangle is
(a) Right-angled triangle
(b) Acute angled triangle
(c) Obtuse angled triangle
(d) Isosceles right-angled triangle

Solution:
Suppose triangle ABC be the given isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$ and each base angle is 40°.

Now, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Angle sum property]
$\angle \mathrm{A}=180^{\circ}-\angle \mathrm{B}-\angle \mathrm{C}$
$\angle \mathrm{A}=180^{\circ}-40^{\circ}-40^{\circ}\left[\angle \mathrm{B}=\angle \mathrm{C}=40^{\circ}\right]$
$\angle \mathrm{A}=100^{\circ}$
Therefore, triangle ABC is an obtuse angled triangle.
Hence, the correct option is (c).
15. If two angles of a triangle are 60° each, then the triangle is
(a) Isosceles but not equilateral
(b) Scalene
(c) Equilateral
(d)
Right-angled

Solution:
Suppose triangle ABC be the given triangle in which two angles are of 60° each.

Now, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Angle sum property]
$\angle \mathrm{A}=180^{\circ}-60^{\circ}-60^{\circ}$
So, $\angle \mathrm{A}=60^{\circ}$
Thus, all angles are of 60°
Therefore, triangle ABC is an 60° equilateral triangle
Hence, the correct option is (c).
16. The perimeter of the rectangle whose length is 60 cm and a diagonal is 61 cm is
(a) 120 cm
(b) $\mathbf{1 2 2} \mathbf{~ c m}$
(c) 71 cm
(d) $\mathbf{1 4 2} \mathbf{~ c m}$

Solution:

Suppose $A B C D$ be the given rectangle such that $A B=C D=60 \mathrm{~cm}$ and $A C=61 \mathrm{~cm}$.

Now, in triangle ABC ,
$(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
$(61)^{2}=(60)^{2}+(B C)^{2}$
$(\mathrm{BC})^{2}=3721-3600$
$(\mathrm{BC})^{2}=121$
$(\mathrm{BC})^{2}=11^{2}$
$\mathrm{BC}=11 \mathrm{~cm}$
So, perimeter of rectangle $A B C D=2(A B+B C)$

$$
\begin{aligned}
& =2(60+11) \\
& =2(71) \\
& =142 \mathrm{~cm}
\end{aligned}
$$

Hence, the correct option is (d).
17. In $\triangle P Q R$, if $P Q=Q R$ and $\angle Q=100^{\circ}$, then $\angle R$ is equal to
(a) 40°
(b) 80°
(c) 120°
(d) $\mathbf{5 0}^{\circ}$

Solution:

According to the question:

Let $\angle \mathrm{R}=\mathrm{x}$
$\mathrm{PQ}=\mathrm{QR}$ [given]
$\mathrm{SO}, \angle \mathrm{R}=\angle \mathrm{P}=\mathrm{x}$
Now, in triangle POR

```
\[
\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}
\]
\[
\mathrm{x}+100^{\circ}+\mathrm{x}=180^{\circ}
\]
\[
2 \mathrm{x}=180^{\circ}-100^{\circ}
\]
\[
2 \mathrm{x}=80^{\circ}
\]
\[
x=\frac{80^{\circ}}{2}
\]
\[
x=40^{\circ}
\]
```

Thus, $\angle \mathrm{R}=40^{\circ}$

Hence, the correct option is (a).
18. Which of the following statements is not correct?
(a) The sum of any two sides of a triangle is greater than the third side
(b) A triangle can have all its angles acute
(c) A right-angled triangle cannot be equilateral
(d) Difference of any two sides of a triangle is greater than the third side

Solution:

As we know that the difference of any two sides of a triangle is less than the third side. Hence, the correct option is (d).
19. In Fig. 6.9, $B C=C A$ and $\angle A=40$. Then, $\angle A C D$ is equal to
(a) 40°
(b) 80°
(c) 120°
(d) 60°

Fig. 6.9

Solution:

$\mathrm{BC}=\mathrm{CA}$ [given]
$\angle \mathrm{A}=\angle \mathrm{B}=40^{\circ}$ [Angles opposite to equal sides are equal]
Now, $\angle \mathrm{ACD}=\angle \mathrm{A}+\angle \mathrm{B}$ [Exterior angle property]
$\angle A C D=40^{\circ}+40^{\circ}$
$\angle \mathrm{ACD}=80^{\circ}$
Hence, the correct option is (b).
20. The length of two sides of a triangle are 7 cm and 9 cm . The length of the third side may lie between
(a) 1 cm and 10 cm
(b) 2 cm and 8 cm
(c) $\mathbf{3 ~ c m}$ and 16 cm
(d) 1 cm and 16 cm

Solution:

Given: Length of two sides of a triangle are 7 cm and 9 cm .
Suppose the length of third side be xcm .
As we know that sum of two sides is greater than third side in a triangle.
So, $7+9>x, 7+x>9,9+x>7$
$16>x, x>2, x>-2$
Since, side length cannot be negative.

So, $2<\mathrm{x}<16$
Therefore, the third side may lie between 2 cm and 16 cm .
Hence, the correct option is (c).

21. From Fig. 6.10, the value of x is

(a) 75°
(b) 90°
$\begin{array}{ll}\text { (c) } 120^{\circ} & \text { (d) } 60^{\circ}\end{array}$

Fig. 6.10

Solution:

In $\triangle \mathrm{ABC}$,
$\angle \mathrm{ACD}=\angle \mathrm{CAB}+\angle \mathrm{ABC}$ [Exterior angle property]
$\angle \mathrm{ACD}=25^{\circ}+35^{\circ}$
$\angle \mathrm{ACD}=60^{\circ}$
Now, $x=\angle \mathrm{D}+\angle \mathrm{ACD}$, [Exterior angle property]
$x=60^{\circ}+60^{\circ}$ [Using equation (i)] .
$\mathrm{x}=120^{\circ}$
Hence, the correct option is (c).
22. In Fig. 6.11, the value of $\angle A+\angle B+\angle C+\angle D+\angle E+\angle F$ is
(a) 190°
(b) 540°
(c) 360°
(d) 180°

Fig. 6.11

Solution:

See the given figure in the question, in $\triangle \mathrm{ABC}$:
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
...(i) [Angle sum property]
In $\triangle \mathrm{DEF}$:
$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$
...(ii) [Angle sum property]

Adding equation (i) and (ii), get:
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}+180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=360^{\circ}$
Hence, the correct option is (c).
23. In Fig. 6.12, $P Q=P R, R S=R Q$ and $S T \| Q R$. If the exterior angle $R P U$ is 140°, then the measure of angle TSR is
(a) 55°
(b) 40°
(c) 50°
(d) 45°

Fig. 6.12

Solution:

Given: $P Q=P R$
So, $\angle \mathrm{PRQ}=\angle \mathrm{PQR}$

See the given figure in the question, in $\triangle P Q R$:
$\angle \mathrm{RPU}=\angle \mathrm{PRQ}+\angle \mathrm{PQR}$ [Exterior angle property]
$140^{\circ}=2 \angle \mathrm{POR}[\angle \mathrm{PRQ}=\angle \mathrm{PQR}]$
$\angle P O R=\frac{140^{\circ}}{2}$
$\angle P O R=70^{\circ}$

ST \| QR and QS is a transversal.
So, $\angle \mathrm{PST}=\angle \mathrm{PQR}=70^{\circ}$
Now, in $\triangle \mathrm{QSR} R \mathrm{RS}=\mathrm{RQ}$ (given) .
So, $\angle \mathrm{SQR}-\angle \mathrm{RSQ}=70^{\circ}$

Now, PQ is a straight line.
So, $\angle \mathrm{PST}+\angle \mathrm{TSR}+\angle \mathrm{RSQ}=180^{\circ}$
$70^{\circ}+\angle \mathrm{TSR}+70^{\circ}=180^{\circ}$
$\angle \mathrm{TSR}=180^{\circ}-70^{\circ}-70^{\circ}$
$\angle \mathrm{TSR}=180^{\circ}-140^{\circ}$
$\angle \mathrm{TSR}=40^{\circ}$
Hence, the correct option is (b).
[Using (ii) and (iii)]
... (ii) [Corresponding angles]
24. In Fig. 6.13, $\angle \mathrm{BAC}=90^{\circ}, \mathrm{AD} \perp \mathrm{BC}$ and $\angle \mathrm{BAD}=50^{\circ}$, then $\angle A C D$ is
(a) 50°
(b) 40°
(c) 70°
(d) 60°

Fig. 6.13

Solution:

Given: $\angle \mathrm{BAC}=90^{\circ}$ and $\angle \mathrm{BAD}=50^{\circ}$
So, $\angle \mathrm{DAC}=\angle \mathrm{BAC}-\angle \mathrm{BAD}$
$\angle \mathrm{DAC}=90^{\circ}-50^{\circ}$
$\angle \mathrm{DAC}=40^{\circ}$

Now, in triangle ADC:
$\angle \mathrm{ADB}=\angle \mathrm{DAC}+\angle \mathrm{ACD}$ [Exterior angle property]
$90^{\circ}=40^{\circ}+\angle \mathrm{ACD}[\mathrm{AD} \perp \mathrm{BC}]$
$\angle \mathrm{ACD}=90^{\circ}-40^{\circ}$
$\angle \mathrm{ACD}=50^{\circ}$

Hence, the correct option is (a).
25. If one angle of a triangle is equal to the sum of the other two angles, the triangle is
(a) obtuse
(b) acute
(c) right
(d) equilateral

Solution:

Suppose angles of a triangle be $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
such that $x=y+z$
Now, $\mathrm{x}+\mathrm{y}+\mathrm{z}=180^{\circ}$
[Angle sum property]
$\mathrm{x}+\mathrm{x}=180^{\circ}$
[Using equation (i)]
$2 \mathrm{x}=180^{\circ}$
$x=\frac{180^{\circ}}{2}$
$x=90^{\circ}$
Thus, triangle is right angled.
Hence, the correct option is (c).
26. If the exterior angle of a triangle is 130° and its interior opposite angles are equal, then measure of each interior opposite angle is
(a) 55°
(b) 65°
(c) 50°
(d) 60°

Solution:

Let interior opposite angles are x and x .
So, $130^{\circ}=\mathrm{x}+\mathrm{x}$ [Exterior angle property]
$2 \mathrm{x}=130^{\circ}$
$x=\frac{130^{\circ}}{2}$
$x=65^{\circ}$
Therefore, each interior opposite angle is of 65°
Hence, the correct option is (b).
27. If one of the angles of a triangle is 110°, then the angle between the bisectors of the other two angles is
(a) 70°
(b) $110{ }^{\circ}$
(c) 35°
(d) 145°

Solution:
Suppose triangle ABC be the given triangle such that $\angle \mathrm{A}=110^{\circ}$ and OB, OC are the angle bisectors of $\angle \mathrm{B}, \mathrm{C}$ respectively.

In triangle ABC ,
$\angle A+\angle B+\angle c=180^{\circ} \quad$ [Angle sum property]
$\angle B+\angle C=180^{\circ}-110^{\circ}$
$\angle B+\angle C=70^{\circ}$
$\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{70^{\circ}}{2}$
[Divided by 2 in the above equation]
$\frac{1}{2} \angle B+\frac{1}{2} \angle C=35^{\circ}$

Now, in triangle BOC:
$\angle B O C+\angle O B C+\angle O C B=180^{\circ} \quad$ [Angle sum property of a triangle]
$\angle B O C+\frac{1}{2}(\angle B+\angle C)=180^{\circ}$
As given, OB and OC are the bisector of $\angle B$ and $\angle C$, so, $\angle O B C=\frac{1}{2} \angle B$ and
$\angle O C B=\frac{1}{2} \angle C$
Then,
$\angle B O C+35^{\circ}=180^{\circ}$
$\angle B O C=180^{\circ}-35^{\circ}$
$\angle B O C=145^{\circ}$
Hence, the correct option is (d).
28. In $\triangle A B C, A D$ is the bisector of $\angle A$ meeting $B C$ at $D, C F \perp A B$ and E is the mid-point of $A C$. Then median of the triangle is
(a) AD
(b) BE
(c) FC
(d) DE

Solution:
As we know that median of a triangle bisects the opposite sides.

So, the median is BE as $\mathrm{AE}=\mathrm{EC}$.
Hence, the correct option is (b).
29. In $\triangle P Q R$, if $\angle P=60^{\circ}$, and $\angle Q=40^{\circ}$, then the exterior angle formed by producing $Q R$ is equal to
(a) 60°
(b) 120°
(c) 100°
(d) 80°

Solution:

As we know that the measure of exterior angle is equal to the sum of opposite two interior angles.

In triangle PQR ,
$\angle x$ is the exterior angle.
So, $\angle x=\angle p+\angle Q$
$\angle x=60^{\circ}+40^{\circ}$
$\angle x=100^{\circ}$
Hence, the correct option is (c).
30. Which of the following triplets cannot be the angles of a triangle?
(a) $67^{\circ}, 51^{\circ}, 62^{\circ}$
(b) $\mathbf{7 0}^{\circ}, \mathbf{8 3}^{\circ}, \mathbf{2 7}^{\circ}$
(c) $\mathbf{9 0}^{\circ}, \mathbf{7 0}^{\circ}, \mathbf{2 0}^{\circ}$
(d) $\mathbf{4 0}^{\circ}, \mathbf{1 3 2}^{\circ}$, 18°

Solution:

As we know that, the sum of the interior angles of a triangle is 180°.
So, verifying the given triplets as:
(a) $67^{\circ}+51^{\circ}+62^{\circ}=180^{\circ}$
(b) $70^{\circ}+83^{\circ}+27^{\circ}=180^{\circ}$
(c) $90^{\circ}+70^{\circ}+20^{\circ}=180^{\circ}$
(d) $40^{\circ}+132^{\circ}+18^{\circ}=190^{\circ}$

Clearly, triplets in option (d) cannot be the angles of a triangle.
Hence, the correct option is (d).
31. Which of the following can be the length of the third side of a triangle whose two sides measure 18 cm and 14 cm ?
(a) 4 cm
(b) 3 cm
(c) 5 cm
(d) 32 cm

Solution:

Suppose third side of the triangle be xcm .
As we know that, sum of any two sides of a triangle is always greater than the third side.
So, $18+x>14,14+x>18,18+14>x$
$x>-4, x>4,32>x$
Since, length can't be negative.
Thus, $4<x<32$
Therefore, third side of triangle can be 5 cm .
Hence, the correct option is (c).
32. How many altitudes does a triangle have?
(a) 1
(b) 3
(c) 6
(d) 9

Solution:

A triangle has 3 altitudes.
Hence, the correct option is (b).
33. If we join a vertex to a point on opposite side which divides that side in the ratio $1: 1$, then what is the special name of that line segment?
(a) Median
(b) Angle bisector
(c) Altitude
(d) Hypotenuse

Solution:

As, median is a line segment which divides the opposite side in the ratio $1: 1$.

Hence, the correct option is (a).
34. The measures of $\angle x$ and $\angle y$ in Fig. 6.14 are respectively
(a) $30^{\circ}, 60^{\circ}$
(b) $\mathbf{4 0}, \mathbf{4 0}^{\circ}$
(c) $70^{\circ}, 70^{\circ}$
(d) $\mathbf{7 0}{ }^{\circ}, \mathbf{6 0}{ }^{\circ}$

Fig. 6.14

Solution:

Given figure is,

In $\triangle \mathrm{PQR}$,
$\angle \mathrm{PRS}=\angle \mathrm{RPQ}+\angle \mathrm{POR}$ [Exterior angle property]
$120^{\circ}=\mathrm{x}+50^{\circ}$
$\mathrm{x}=120^{\circ}-50^{\circ}=70^{\circ}$
Now, $x+y+50^{\circ}=180^{\circ}$ [Angle sum property]
$70^{\circ}+y+50^{\circ}=180^{\circ}$
$y=180^{\circ}-70^{\circ}-50^{\circ}$
$y=180^{\circ}-120^{\circ}$
$y=60^{\circ}$
Therefore, $\mathrm{x}=70^{\circ}, \mathrm{y}=60^{\circ}$
Hence, the correct option is (d).
35. If length of two sides of a triangle are 6 cm and 10 cm , then the length of the third side can be
(a) 3 cm
(b) 4 cm
(c) 2 cm
(d) 6 cm

Solution:

Suppose third side of the triangle be xcm .
As we know that, sum of any two side of a triangle is greater than third side.
So, $6+x>10 ; 10+x>6 ; 10+6>x$
$x>4 ; x>-4 ; x<16$

Since, the length can't be negative.
Thus, $4<x<16$
Therefore, third side can be 6 cm .
Hence, the correct option is (d).
36. In a right-angled triangle ABC , if angle $\mathrm{B}=90^{\circ}, \mathrm{BC}=3 \mathrm{~cm}$ and $\mathrm{AC}=5$ cm , then the length of side $A B$ is
(a) 3 cm
(b) 4 cm
(c) 5 cm
(d) 6 cm

Solution:

In the right angled triangle ABC ,

$(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
$5^{2}=(\mathrm{AB})^{2}+3^{2}$
$(\mathrm{AB})^{2}=25-9=16=4^{2}$
$\mathrm{AB}=4 \mathrm{~cm}$
Hence, the correct option is (b).
37. In a right-angled triangle $A B C$, if angle $B=90^{\circ}$, then which of the following is true?
(a) $\mathrm{AB}^{\wedge} 2=\mathrm{BC}^{\wedge} 2+\mathrm{AC}^{\wedge} 2$
(b) $\mathrm{AC}^{\wedge} \mathbf{2}=\mathrm{AB}^{\wedge} \mathbf{2}+\mathrm{BC}^{\wedge} 2$
(c) $\mathbf{A B}=\mathbf{B C}+$
$A C \quad$ (d) $A C=A B+B C$
Solution:
According to Pythagoras theorem,
$(\text { Hypotenuse })^{2}=(\text { Perpendicular })^{2}+(\text { Base })^{2}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

Hence, the correct option is (b).
38. Which of the following figures will have it's altitude outside the triangle?

Fig. 6.15

Solution:

As we know, the perpendicular line segment from a vertex of a triangle to its opposite side is called an altitude of the triangle.

Hence, the correct option is (d).

39. In Fig. 6.16, if $\mathrm{AB}|\mid \mathrm{CD}$, then

Fig. 6.16
(a) $\angle 2=\angle 3$
(b) $\angle 1=\angle 4$
(c) $\angle 4=\angle 1+\angle 2$
(d) $\angle 1+\angle 2=\angle 3$
$+\angle 4$

Solution:

Given, AB || CD
So, $\angle 2=\angle 4 \ldots$..(i) (Corresponding angles)
And $\angle 1=\angle 3 \ldots$ (ii) [Alternate interior angles]
Adding equation (i) and (ii), get
$\angle 1+\angle 2=\angle 3+\angle 4$
Hence, the correct option is (d).
40. In $\triangle A B C, \angle A=100^{\circ}, A D$ bisects $\angle A$ and $A D \perp B C$. Then, $\angle B$ is equal to
(a) 80°
(b) 20°
(c) 40°
(d) 30°

Solution:

Given: AD bisects, $\angle \mathrm{A}$.
$\angle B A D=\angle D A C=\frac{1}{2} \angle B A C$
$\angle B A D=\frac{110^{\circ}}{2}$
$\angle B A D=50^{\circ}$

Now, AD \perp BC
So, $\angle \mathrm{ADC}=90^{\circ}$
Now, in $\triangle \mathrm{ABD}$,
$\angle \mathrm{ADC}=\angle \mathrm{ABD}+\angle \mathrm{BAD}$ [Exterior angle property]
$90^{\circ}=\angle \mathrm{ABD}+50^{\circ}$
$\angle \mathrm{ABD}=90^{\circ}-50^{\circ}=40^{\circ}$
Therefore, $\angle \mathrm{B}=40^{\circ}$
Hence, the correct option is (c).
41. In $\triangle A B C, \angle A=50^{\circ}, \angle B=70^{\circ}$ and bisector of $\angle C$ meets $A B$ in D (Fig. 6.17). Measure of $\angle A D C$ is.

Fig. 6.17
(a) $\mathbf{5 0}^{\circ}$
(b) 100°
(c) 30°
(d) 70°

Solution:

In $\triangle \mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Angle sum property]
$\angle \mathrm{C}=180^{\circ}-70^{\circ}-50^{\circ}$
$\angle \mathrm{C}=60^{\circ}$
Since, $C D$ bisects $\angle C$.
So, $\angle D C B=\angle A C D=\frac{1}{2} \angle C=\frac{60^{\circ}}{2}=30^{\circ}$
Now, in $\triangle \mathrm{BDC}, \angle \mathrm{ADC}=\angle \mathrm{DBC}+\angle \mathrm{DCB}$ [Exterior angle property]
$\angle \mathrm{ADC}=70^{\circ}+30=100^{\circ}$
Hence, the correct option is (b).
42. If for $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, the correspondence $\mathrm{CAB} \leftrightarrow$ EDF gives a congruence, then which of the following is not true?
(a) $\mathrm{AC}=\mathrm{DE}$
(b) $\mathbf{A B}=\mathbf{E F}$
(c) $\angle \mathrm{A}=\angle \mathrm{D}$
(d) $\angle \mathrm{C}=\angle \mathrm{E}$

Solution:

Given: $\Delta \mathrm{CAB} \cong \triangle \mathrm{EDF}$
So, $\mathrm{AC}=\mathrm{DE}, \mathrm{AB}=\mathrm{DF}, \mathrm{BC}=\mathrm{FE}, \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{C}=\angle \mathrm{E}, \angle \mathrm{B}=\angle \mathrm{F}$
Hence, the correct option is (b).
43. In Fig. 6.18, M is the mid-point of both $A C$ and $B D$. Then
(a) $\angle 1=\angle 2$
(b) $\angle 1=\angle 4$
(c) $\angle 2=\angle 4$
(d) $\angle 1=\angle 3$

Fig. 6.18

Solution:

In $\triangle \mathrm{AMB}$ and $\triangle \mathrm{CMD}$,
$\mathrm{AM}=\mathrm{CM} \quad[\mathrm{M}$ is mid-point of AC$]$
$\mathrm{BM}=\mathrm{DM} \quad[\mathrm{M}$ is mid-point of BD$]$
$\angle \mathrm{AMB}=\angle \mathrm{CMD} \quad$ [Vertically opposite angles]
So, $\angle \mathrm{AMB} \cong \angle \mathrm{CMD}$ [SAS criterion]
So, $\angle 1=\angle 4 \quad$ [By C.P.C.T]
Hence, the correct option is (b).
44. If D is the mid-point of the side $B C$ in $\triangle A B C$ where $A B=A C$, then $\angle A D C$ is
(a) 60°
(b) 45°
(c) $\mathbf{1 2 0} \mathrm{s}^{\circ}$
(d) 90°

Solution:

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,

$\mathrm{AD}=\mathrm{AD}$	[common]
$\mathrm{AB}=\mathrm{AC}$	[given]
$\mathrm{BD}=\mathrm{CD}$.	$[\mathrm{D}$ is mid-point of BC$]$

So, $\triangle \mathrm{ABD}=\triangle \mathrm{ACD} \quad[\mathrm{SSS}$ criterion]
As, $\angle \mathrm{ADB}=\angle \mathrm{ADC} \quad[$ By C.P.C.T]...(i)
But $\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$ [BC is a straight line]
$\angle \mathrm{ADC}+\angle \mathrm{ADC}=180^{\circ}$ [By using equation (i)]
$2 \angle \mathrm{ADC}=180^{\circ}$
$\angle \mathrm{ADC}=90^{\circ}$
Hence, the correct option is (d).
45. Two triangles are congruent, if two angles and the side included between them in one of the triangles are equal to the two angles and the side included between them of the other triangle. This is known as the
(a) RHS congruence criterion
(b) ASA congruence criterion
(c) SAS congruence criterion
(d) AAA congruence criterion

Solution:

As we know, under ASA congruence criterion, two triangles are congruent, if two angles and the side included between them in one of the triangles are equal to the two angles and the side included between them of the other triangle.
Hence, the correct option is (b).
46. By which congruency criterion, the two triangles in Fig. 6.19 are congruent?
(a) RHS
(b) ASA
(c) SSS
(d) SAS

Fig. 6.19

Solution:

In $\triangle \mathrm{PRQ}$ and $\triangle \mathrm{PSQ}$,
$\mathrm{PQ}=\mathrm{PQ}$ [common]
$\mathrm{PR}=\mathrm{PS}=\mathrm{a} \mathrm{cm}$ [given]
$\mathrm{QR}=\mathrm{QS}=\mathrm{b}=\mathrm{cm}$ [given]
So, $\Delta \mathrm{PRQ}=\Delta \mathrm{PSQ}[\mathrm{SSS}$ criterion $]$
Hence the correct option is (c).
47. By which of the following criterion two triangles cannot be proved congruent?
(a) $\mathbf{A A A}$
(b) SSS
(c) SAS
(d) ASA

Solution:

As, by AAA criterion two triangles cannot be proved congruent.
Hence, the correct option is (a).
48. If $\triangle \mathrm{PQR}$ is congruent to $\Delta \mathrm{STU}$ (Fig. 6.20), then what is the length of TU?

Fig. 6.20

Solution:

Given that
$\triangle \mathrm{POR} \cong \Delta \mathrm{STU}$
$\mathrm{So}, \mathrm{TU}=\mathrm{OR}=6 \mathrm{~cm}$
Hence, the correct option is (b).
49. If $\triangle A B C$ and $\triangle D B C$ are on the same base $B C, A B=D C$ and $A C=D B$
(Fig. 6.21), then which of the following gives a congruence relationship?
(a) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DBC}$
(b) $\Delta \mathrm{ABC} \cong \triangle \mathrm{CBD}$
(c) $\Delta \mathrm{ABC} \cong \Delta \mathrm{DCB}$
(d)
$\triangle \mathrm{ABC} \cong \triangle \mathrm{BCD}$

Fig. 6.21
Solution:
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DCB}$,
$\mathrm{AB}=\mathrm{DC}$ (given)
$\mathrm{AC}=\mathrm{DB}$ (given)
$\mathrm{BC}=\mathrm{CB}$ (common)
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$ (SSS criterion)
Hence, the correct option is (c).

In questions 50 to 69, fill in the blanks to make the statements true.

50. The \qquad triangle always has altitude outside itself.

Solution:

The obtuse-angled triangle always has altitude outside itself.
51. The sum of an exterior angle of a triangle and its adjacent angle is always ------------.

Solution:

The sum of an exterior angle of a triangle and its adjacent angle is always $\underline{180^{\circ}}$.
52. The longest side of a right angled triangle is called its \qquad .

Solution:
The longest side of a right angled triangle is called its hypotenuse.
53. Median is also called ----------- in an equilateral triangle.

Solution:

Median is also called altitude in an equilateral triangle.
54. Measures of each of the angles of an equilateral triangle is \qquad .

Solution:

Measures of each of the angles of an equilateral triangle is 60°.
55. In an isosceles triangle, two angles are always \qquad .

Solution:

In an isosceles triangle, two angles are always equal.
56. In an isosceles triangle, angles opposite to equal sides are \qquad .

Solution:

In an isosceles triangle, angles opposite to equal sides are equal.

57. If one angle of a triangle is equal to the sum of other two, then the measure of that angle is
 \qquad .

Solution:

Suppose angles of triangle be x, y and z .
Given that $\mathrm{x}=\mathrm{y}+\mathrm{z} \ldots$ (i)
Now, $x+y+z-180^{\circ}$ [Angle sum property]
$\mathrm{x}+\mathrm{x}=180^{\circ}$ [Using equation (i)]
$2 \mathrm{x}=180^{\circ}$
$x=90^{\circ}$
Hence, if one angle of a triangle is equal to the sum of other two, then the measure of that angle is 90°.

58. Every triangle has at least

\qquad acute angle (s).

Solution:

Every triangle has at least two acute angle(s).
59. Two line segments are congruent, if they are of \qquad lengths.

Solution:

Two line segments are congruent, if they are of equal lengths.
60. Two angles are said to be \qquad , if they have equal measures.

Solution:
Two angles are said to be congruent, if they have equal measures.
61. Two rectangles are congruent, if they have same \qquad and
\qquad -

Solution:
Two rectangles are congruent, if they have same length and breadth.
62. Two squares are congruent, if they have same \qquad -.

Solution:

Two squares are congruent, if they have same side.
63. If $\triangle P Q R$ and $\triangle X Y Z$ are congruent under the correspondence $Q P R \leftrightarrow$ XYZ, then
(i) $\angle \mathbf{R}=$ \qquad
(ii) $\mathrm{QR}=$
(iii) $\angle \mathbf{P}=$
\qquad
(iv) $\mathbf{Q P}=$
(v) $\angle \mathbf{Q}=$ \qquad
(vi) $R P=$ \qquad
Solution:
Given: $\Delta \mathrm{QPR}=\Delta \mathrm{XYZ}$
(i) $\angle \mathrm{R}=\underline{\mathrm{Z}}$
(ii) $\mathrm{QR}=\underline{\mathrm{XZ}}$
(iii) $\angle P=\angle Y$
(iv) $\mathrm{OP}=\underline{\mathrm{XY}}$
(v) $\angle Q=\angle X$
(vi) $\mathrm{RP}=\underline{\mathrm{ZY}}$
64. In Fig. 6.22, $\Delta \mathrm{PQR} \cong \Delta$ \qquad

Fig. 6.22

Solution:

XZY: In $\triangle P Q R$ and $\triangle X Z Y$,
$\mathrm{PQ}=\mathrm{XZ}=3.5 \mathrm{~cm}$
$\angle \mathrm{PQR}=\angle \mathrm{XZY}=45^{\circ}$
$\mathrm{QR}=\mathrm{ZY}=5 \mathrm{~cm}$
So, $\triangle \mathrm{PQR} \cong \underline{\triangle \mathrm{XZY}}$ [SAS criterion]
65. In Fig. 6.23, $\Delta \mathrm{PQR} \cong \Delta$ \qquad

Fig. 6.23

Solution:

RSP: In $\triangle P Q R$ and $\triangle R S P$,
$\mathrm{QR}=\mathrm{SP}=4.1 \mathrm{~cm}$
$\angle \mathrm{PRQ}=\angle \mathrm{RPS}=45^{\circ}$
$\mathrm{PR}=\mathrm{RP}$ [common]
So, $\triangle \mathrm{PQR} \cong \triangle \mathrm{RSP}$ [SAS criterion]

Fig. 6.24

Solution:

DRQ: In $\triangle P Q R$ and $\triangle D R Q$,
$\angle \mathrm{PRQ}=\angle \mathrm{DQR}=40^{\circ}$
$\angle \mathrm{PQR}=\angle \mathrm{DRQ}=30^{\circ}+40^{\circ}=70^{\circ}$
$\mathrm{QR}=\mathrm{RQ}$ [common]
So, $\triangle \mathrm{PQR} \cong \triangle \mathrm{DRO}$ [ASA criterion]
67. In Fig. 6.25, Δ ARO $\cong \Delta$ \qquad

Fig. 6.25

Solution:
PQO: In $\triangle \mathrm{ARO}$ and $\triangle \mathrm{PQO}$,
$\angle \mathrm{ARO}=\angle \mathrm{PQO}=55^{\circ}$
$\angle \mathrm{AOR}=\angle \mathrm{POQ}$ [Vertically opposite angles]
So, $\angle \mathrm{RAQ}=\angle \mathrm{QPO}$ [If two angles of a triangle are equal to two angles of another triangle then third angle is also equal]
$\mathrm{AO}=\mathrm{PO}=2.5 \mathrm{~cm}$
So,$\triangle \mathrm{ARO} \cong \triangle \mathrm{PQO}$ [ASA criterion]
68. In Fig. 6.26, $\mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{BAC}=\angle \mathrm{DAC}$. Then
(i) $\Delta \ldots$ ․ $\cong \Delta$.
(ii) $\mathrm{BC}=$ \qquad .
(iii) $\angle \mathrm{BCA}=$ \qquad
(iv) Line segment AC bisects \qquad and \qquad -

Fig. 6.26

Solution:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$,
$\mathrm{AC}=\mathrm{AC}$ [common]
$\angle \mathrm{BAC}=\angle \mathrm{DAC}$ [given]
$\mathrm{AB}=\mathrm{AD}$ [given]
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$ [SAS criterion]
So, $\mathrm{BC}=\mathrm{DC}$ [By C.P.C.T.]
and $\angle \mathrm{BCA}=\angle \mathrm{DCA}$ [By C.P.C.T.]
(i) $\triangle \underline{\mathrm{ADC}} \cong \triangle \mathrm{ABC}$
(ii) $\mathrm{BC}=\underline{\mathrm{DC}}$
(iii) $\angle \mathrm{BCA}=\angle \mathrm{DCA}$
(iv) Line segment AC bisects $\angle \mathrm{BAD}$ and $\angle \mathrm{BCD}$.
69. In Fig. 6.27,
(i) $\angle \mathrm{TPQ}=\angle \ldots+\angle$
(ii) $\angle \mathrm{UQR}=\angle \ldots+\angle$
(iii) $\angle \mathrm{PRS}=\angle$ \qquad $+\angle$ \qquad

Fig. 6.27

Solution:

(i) $\mathrm{PQR}, \mathrm{PRQ}: \angle \mathrm{TPQ}=\angle \mathrm{PQR}+\angle \mathrm{PRQ}$ [Exterior angle property]
(ii) $\mathrm{QPR}, \mathrm{QRP}: \angle \mathrm{UQR}=\angle \mathrm{QPR}+\angle \mathrm{QRP}$ [Exterior angle property]
(iii) RPQ , ROP: $\angle \mathrm{PRS}=\angle \mathrm{RPQ}+\angle \mathrm{ROP}$ [Exterior angle property]

In questions 70 to 106 state whether the statements are True or False.
70. In a triangle, sum of squares of two sides is equal to the square of the third side.

Solution:

As we know, in a right-angled triangle, sum of squares of two sides is equal to the square of the third side.
Hence, the given statement is false.

71. Sum of two sides of a triangle is greater than or equal to the third side.

Solution:

As we know that sum of two sides of a triangle is greater than the third side.
Hence, the given statement is false.

72. The difference between the lengths of any two sides of a triangle is smaller than the length of third side.

Solution:

As we know, the difference between the lengths of any two sides of a triangle is smaller than the length of third side.
Hence, the given statement is true.
73. In $\triangle \mathrm{ABC}, \mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and in $\triangle \mathrm{PQR}, \mathrm{PR}=3.5$
$\mathrm{~cm}, \mathrm{PQ}=5 \mathrm{~cm}, \mathrm{RQ}=6 \mathrm{~cm}$. Then $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$.

Solution:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{POR}$,
$\mathrm{AB}=\mathrm{PR}=3.5 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{PQ}=5 \mathrm{~cm}$
$\mathrm{BC}=\mathrm{RO}=6 \mathrm{~cm}$
So, $\triangle \mathrm{ABC} \leftrightarrow \Delta \mathrm{PRQ}$ [SSS congruency]
Hence, the given statement is false.

74. Sum of any two angles of a triangle is always greater than the third angle.

Solution:

As we know. sum of any two angles of a triangle is may or may not be greater than the third angle.
Hence, the given statement is false.
75. The sum of the measures of three angles of a triangle is greater than 180°.

Solution:

As we know that, the sum of the measures of three angles of a triangle is equal to 180°. Hence, the given statement is false.

76. It is possible to have a right-angled equilateral triangle.

Solution:

As we know, an equilateral triangle cannot be a right-angled triangle.
Hence, the given statement is false.

77. If M is the mid-point of a line segment $A B$, then we can say that $A M$ and $M B$ are congruent.

Solution:

Given: M is mid-point of $A B$.

So, $A M=M B$
$\mathrm{AM}=\mathrm{MB}$
Hence, the given statement is true.

78. It is possible to have a triangle in which two of the angles are right angles.

Solution:

Suppose two angle of a triangle be 90° and third angle be x .
Now, $90^{\circ}+90^{\circ}+x=180^{\circ}$ [Angle sum property]
$\mathrm{x}=180^{\circ}-180^{\circ}=0^{\circ}$
which is not possible.
Hence, the given statement is false.

79. It is possible to have a triangle in which two of the angles are obtuse.

Solution:

Suppose two angles x and y of a triangle are obtuse.
Then $\mathrm{x}>90^{\circ} \ldots$ (i)
and $y>90^{\circ} \ldots$ (ii)
From equation (i) and (ii):
$x+y>180^{\circ}$
But in a triangle sum of all angles can't be greater than 180°.
So, triangle is not possible.
Hence, the given statement is false.

80. It is possible to have a triangle in which two angles are acute.

Solution:
In a triangle, at least two angles must be acute angle.
Hence, the given statement is true.
81. It is possible to have a triangle in which each angle is less than 60°.

Solution:

The sum of all angles in a triangle is equal to 180°. So, all three angles can never be less than 60°.
So, triangle is not possible.
Hence, the given statement is false.

82. It is possible to have a triangle in which each angle is greater than 60°.

Solution:

If all angles of a triangle are greater than 60°, then their sum will be greater than 180°. But in a triangle sum of all angles is 180°
So, triangle is not possible.
Hence, the given statement is false.

83. It is possible to have a triangle in which each angle is equal to 60°.

Solution:

As we know, in equilateral triangle each angle is equal to 60°.
Hence, the given statement is true.

84. A right-angled triangle may have all sides equal.

Solution:

As we know, a right-angled triangle may have two sides equal.
Hence, the given statement is false.

85. If two angles of a triangle are equal, the third angle is also equal to each of the other two angles.

Solution:

As we know that, in an isosceles triangle, always two angles are equal and not the third one. Hence, the given statement is false.
86. In Fig. 6.28, two triangles are congruent by RHS.

Fig. 6.28

Solution:

As we know that, given triangles are congruent by SAS.
Hence, the given statement is false.
87. The congruent figures super impose each other completely.

Solution:

As, congruent figures have same shape and same size.
Hence, the given statement is true.
88. A one rupee coin is congruent to a five rupee coin.

Solution:

As, they don't have same shape and same size.
Hence, the given statement is false.

89. The top and bottom faces of a kaleidoscope are congruent.

Solution:

As, they superimpose to each other.

Hence, the given statement is true.

90. Two acute angles are congruent.

Solution:

As, the measure of two acute angles may be different.
Hence, the given statement is false.

91. Two right angles are congruent.

Solution:

As, the measure of right angles is always same.
Hence, the given statement is true.

92. Two figures are congruent, if they have the same shape.

Solution:

Two figures are congruent, if they have the same shape and same size.
Hence, the given statement is false.

93. If the areas of two squares is same, they are congruent.

Solution:

As, two squares will have same areas only if their sides are equal and squares with same sides will superimpose to each other.
Hence, the given statement is true.
94. If the areas of two rectangles are same, they are congruent.

Solution:

As, rectangles with the different length and breadth may have equal areas. But, they will not superimpose to each other.
Hence, the given statement is false.

95. If the areas of two circles are the same, they are congruent.

Solution:

As, areas of two circles will be equal only if their radii are equal and circle with same radii will superimpose to each other.
Hence, the given statement is true.

96. Two squares having same perimeter are congruent.

Solution:

If two squares have same perimeter, then their sides will be equal. Therefore, the squares will superimpose to each other.

Hence, the given statement is true.

97. Two circles having same circumference are congruent.

Solution:

If two circles have same circumference, then their radii will be equal. Therefore, the circles will superimpose to each other.
Hence, the given statement is true.

98. If three angles of two triangles are equal, triangles are congruent.

Solution:

As, there is no congruency criterion of three angles.
Hence, the given statement is false.

99. If two legs of a right triangle are equal to two legs of another right triangle, then the right triangles are congruent.

Solution:

If two legs of a right angled triangle are equal to two legs of another right angled triangle, then their third leg will also be equal. Therefore, they will have same shape and same size. Hence, the given statement is true.
100. If two sides and one angle of a triangle are equal to the two sides and angle of another triangle, then the two triangles are congruent.

Solution:

Two triangles are congruent if two sides and included angle of one triangle are equal to the two sides and included angle of another triangle.
Hence, the given statement is false.
101. If two triangles are congruent, then the corresponding angles are equal.

Solution:

If two triangles are congruent, then their sides and angles are equal.
Hence, the given statement is true.
102. If two angles and a side of a triangle are equal to two angles and a side of another triangle, then the triangles are congruent.

Solution:

If two angles and a side of a triangle are equal to two corresponding angles and the included side of the another triangle, then the triangles are congruent.
Hence, the given statement is false.
103. If the hypotenuse of one right triangle is equal to the hypotenuse of another right triangle, then the triangles are congruent.

Solution:

Two right triangles are congruent, if hypotenuse and one side of a triangle are equal to hypotenuse and one side of another triangle.
Hence, the given statement is false.
104. If hypotenuse and an acute angle of one right triangle are equal to the hypotenuse and an acute angle of another right triangle, then the triangles are congruent.

Solution:

In triangle $A B C$ and $P Q R$,
$\angle B=\angle Q=90^{\circ}$
$\angle C=\angle R$
$\angle A=\angle P$
Also, in triangle ABC and PQR ,
$\angle A=\angle P$
$\mathrm{AC}=\mathrm{PR}$
$\angle C=\angle R$
By ASA congruence criterion, $\triangle A B C \cong \triangle P Q R$.
Hence, the given statement is true.
105. AAS congruence criterion is same as ASA congruence criterion.

Solution:

In ASA congruence criterion, the side ' S ' included between the two angles of the triangle. In AAS congruence criterion, side ' S ' is not included between two angles.
Hence, the given statement is false.

106. In Fig. 6.29, $\mathrm{AD} \perp \mathrm{BC}$ and AD is the bisector of angle BAC . Then, $\Delta \mathrm{ABD} \cong \Delta \mathrm{ACD}$ by RHS.

Fig. 6.29

Solution:

In triangle ABD and ACD ,
$\mathrm{AD}=\mathrm{AD} \quad$ [Common side]
$\angle B A D=\angle C A D \quad[\mathrm{AD}$ is the bisector of $\angle B A C]$
By ASA congruence criterion, $\triangle A B C \cong \triangle A C D$
Hence, the given statement is false.
107. The measure of three angles of a triangle are in the ratio $5: 3: 1$. Find the measures of these angles.

Solution:

Let the angle of triangle be $5 \mathrm{x}, 3 \mathrm{x}$ and x .
As we know, sum of all the triangles in a triangle $=180^{\circ}$
So,
$5 x+3 x+x=180^{\circ}$
$9 x=180^{\circ}$
$x=20^{\circ}$
So, the angles are $5 \mathrm{x}=5 \times 20^{\circ}=100^{\circ}, 3 \mathrm{x}=3 \times 20^{\circ}=60^{\circ}$ and $x=20^{\circ}$ that is $100^{\circ}, 60^{\circ}$ and 20°.
108. In Fig. 6.30, find the value of x.

Fig. 6.30

Solution:

As we know that, the sum of all three angles in a triangle is equal to 180°.
So,

$$
\begin{aligned}
& x+55^{\circ}+90^{\circ}=180^{\circ} \\
& x+145^{\circ}=180^{\circ} \\
& x=180^{\circ}-145^{\circ} \\
& x=35^{\circ}
\end{aligned}
$$

Hence, the value of x is 35°.

109. In Fig. 6.31(i) and (ii), find the values of a, b and c.

Fig. 6.31

Solution:
(i) In $\triangle \mathrm{ADC}, \angle \mathrm{ADB}=\angle \mathrm{DAC}+\angle \mathrm{ACD}$ [Exterior angle property] $\mathrm{b}=60^{\circ}+70^{\circ}=130^{\circ} \ldots$ (i)

Now, in $\triangle \mathrm{ABD}, \angle \mathrm{ABD}+\angle \mathrm{ADB}+\angle \mathrm{BAD}=180^{\circ}$ [Angle sum property]
$\mathrm{a}+\mathrm{b}+30^{\circ}=180^{\circ}$
$\mathrm{a}=180^{\circ}-30^{\circ}-130^{\circ}$ [using equation (I)]
$\mathrm{a}=20^{\circ} \ldots$ (II)
Also, $\angle \mathrm{ADC}=\angle \mathrm{BAD}+\angle \mathrm{ABD}$ [Exterior angle property]
$\mathrm{c}=30^{\circ}+\mathrm{a}$
$\mathrm{c}=30^{\circ}+20^{\circ}=50^{\circ}$ [using equation (II)]
Thus, $\mathrm{a}=20^{\circ}, \mathrm{b}=130^{\circ}, \mathrm{c}=50^{\circ}$
(ii) In $\triangle \mathrm{POS}, \angle \mathrm{PSR}=\angle \mathrm{SPQ}+\angle \mathrm{PQS}$ [Exterior angle property]

$\mathrm{b}=55^{\circ}+60^{\circ}$
$\mathrm{b}=115^{\circ} \ldots$ (I)
Now, in $\triangle \mathrm{PRS}, \angle \mathrm{PSR}+\angle \mathrm{PRS}+\angle \mathrm{SPR}=180^{\circ}$ [Angle sum property]
$\mathrm{b}+40^{\circ}+\mathrm{c}=180^{\circ}$
$\mathrm{c}=180^{\circ}-40^{\circ}-115^{\circ}$ [using equation (I)]

```
c}=2\mp@subsup{5}{}{\circ}\ldots\mathrm{ (II)
Also, }\angle\textrm{PSQ}=\angle\textrm{SPR}+\angle\textrm{SRP}[\mathrm{ [Exterior angle property]
a = c + 40 
a}=2\mp@subsup{5}{}{\circ}+4\mp@subsup{0}{}{\circ}=6\mp@subsup{5}{}{\circ}[\mathrm{ [using equation (II)]
Hence, a = 65 , b= 115 , c = 25 %
```

110. In triangle $X Y Z$, the measure of angle X is 30° greater than the measure of angle Y and angle Z is a right angle. Find the measure of $\angle Y$.

Solution:

```
\angleX= }\angle\textrm{Y}+4\mp@subsup{0}{}{\circ
\(\angle \mathrm{Z}=90^{\circ}\)
In \(\triangle \mathrm{XYZ}\)
\(\angle \mathrm{X}+\angle \mathrm{Y}+\angle \mathrm{Z}=180^{\circ} \quad\) [Angle sum property]
\(\angle \mathrm{Y}+30^{\circ}+\angle \mathrm{Y}+90^{\circ}=180^{\circ} \quad[\) Using equation (i) and (ii)]
\(2 \angle \mathrm{Y}=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}\)
\(\angle Y=\frac{60^{\circ}}{2}\)
\(\angle Y=30^{\circ}\)
```

111. In a triangle ABC , the measure of angle A is 40° less than the measure of angle B and 50° less than that of angle C. Find the measure of $\angle A$.

Solution:

Given: $\angle \mathrm{A}=\angle \mathrm{B}-40^{\circ} \ldots$ (i)
and $\angle \mathrm{A}=\angle \mathrm{C}-50^{\circ} \ldots$ (ii)
Now, in $\triangle \mathrm{ABC}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad$ [Angle sum property]
$\angle \mathrm{A}+\angle \mathrm{A}+40^{\circ}+\angle \mathrm{A}+50^{\circ}=180^{\circ} \quad$ [Using equation (i) and (ii)]
$3 \angle \mathrm{~A}+90^{\circ}=180^{\circ}$
$3 \angle \mathrm{~A}=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle A=\frac{90^{\circ}}{3}$
$\angle A=30^{\circ}$

112. I have three sides. One of my angle measures 15°. Another has a measure of 60°. What kind of a polygon am I? If I am a triangle, then what kind of triangle am I?

Solution:

As we know, a polygon having three sides is a triangle.
Given: the two angles are of measure 15° and 60°
Suppose third angle of triangle be x.
So, $15^{\circ}+60^{\circ}+\mathrm{x}=180^{\circ}$ [Angle sum property of a triangle]
$\mathrm{x}=180^{\circ}-60^{\circ}-15^{\circ}$
$\mathrm{x}=105^{\circ}$
Hence, one angle of triangle is obtuse angle. So, triangle is obtuse-angled triangle.

113. Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?

Solution:

Suppose A be the starting point and B be the ending point of Jiya.

As, $\triangle \mathrm{ABC}$ is right angled.
So, $(\mathrm{AB})^{2}=(\mathrm{AC})^{2}+(\mathrm{BC})^{2}$
$(\mathrm{AB})^{2}=6^{2}+8^{2}=36+64=100$
$\mathrm{AB}=10$
Hence, Jiya is 10 km away from her starting place.
114. Jayanti takes shortest route to her home by walking diagonally across a rectangular park. The park measures 60 metres $\times 80$ metres. How much shorter is the route across the park than the route around its edges?

Solution:

Suppose ABCD be the given rectangular park.

As, $\triangle \mathrm{ABC}$ is right angled.
So, $(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
$(A C)^{2}=(80)^{2}+(60)^{2}=6400+3600=10000$
$\mathrm{AC}=100$
So, length of route across the park $=100 \mathrm{~m}$ and length of route around the edges $=(80+60)$ $\mathrm{m}=140 \mathrm{~m}$
Hence, the route across the park is shorter than the route around edges of park by $140 \mathrm{~m}-100 \mathrm{~m}=40 \mathrm{~m}$.
115. In $\triangle P Q R$ of Fig. $6.32, P Q=P R$. Find the measures of $\angle Q$ and $\angle R$.

Fig. 6.32

Solution:

Given: PQ = PR
So, $\angle \mathrm{PRQ}=\angle \mathrm{PQR} \ldots(\mathrm{I})$
Now, in \triangle POR
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{QPR}=180^{\circ}$ [Angle sum property]
$2 \angle \mathrm{POR}+30^{\circ}=180^{\circ}$ [using equation (II)]
$2 \angle \mathrm{PQR}=180^{\circ}-30^{\circ}=150^{\circ}$
$\angle P Q R=\frac{150^{\circ}}{2}$
$\angle P Q R=75^{\circ}$
Hence, $\angle \mathrm{Q}=\angle \mathrm{R}=75^{\circ}$

116. In Fig. 6.33, find the measures of $\angle x$ and $\angle y$.

Fig. 6.23

Solution:

In $\triangle \mathrm{ABC}$,
$\angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ}$ [Angle sum property]
$45^{\circ}+60^{\circ}+\mathrm{x}=180^{\circ}$
$\mathrm{x}=180^{\circ}-45^{\circ}-60^{\circ}=75^{\circ} \ldots$ (I)
Now, $\angle \mathrm{BAD}=\angle \mathrm{ABC}+\angle \mathrm{ACB}$ [Exterior angle property]
$y=60^{\circ}+x$
$y=60^{\circ}+75^{\circ}=135^{\circ}$ [using equation (I)]
Hence, $x=75^{\circ}$ and $y=135^{\circ}$

117. In Fig. 6.34, find the measures of $\angle P O N$ and $\angle N P O$.

Fig. 6.34

Solution:

In $\triangle \mathrm{LOM}$,
$\angle \mathrm{LOM}+\angle \mathrm{OLM}+\angle \mathrm{OML}=180^{\circ}$ [Angle sum property]
$\angle \mathrm{LOM}+70^{\circ}+20^{\circ}=180^{\circ}$
$\angle \mathrm{LOM}=180^{\circ}-70^{\circ}-20^{\circ}=90^{\circ}$
$\angle \mathrm{LOM}=\angle \mathrm{PON}$ [Vertically opposite angles]
So, $\angle \mathrm{PON}=90^{\circ}$
Now, in $\triangle \mathrm{PON}$,
$\angle \mathrm{PON}+\angle \mathrm{ONP}+\angle \mathrm{NPO}=180^{\circ}$ [Angle sum property]
$90^{\circ}+70^{\circ}+\angle \mathrm{NPO}=180^{\circ}$
$\angle \mathrm{NPO}=180^{\circ}-90^{\circ}-70^{\circ}=20^{\circ}$
Hence, $\angle \mathrm{PON}=90^{\circ}$ and $\angle \mathrm{NPO}=20^{\circ}$
118. In Fig. 6.35, QP || RT. Find the values of x and y.

Fig. 6.35

Solution:

Given: QP $\|$ RT and PR is a transversal.
So, $\angle \mathrm{QPR}=\angle \mathrm{PRT}$ [Alternate interior angles]
$\mathrm{x}=70^{\circ}$
Now, QP \|RT and QR is a transversal.

```
So, }\angle\textrm{PQR}+\angle\textrm{QRT}=18\mp@subsup{0}{}{\circ}[\mathrm{ [Co-interior angles]
30}+\textrm{y}+7\mp@subsup{0}{}{\circ}=18\mp@subsup{0}{}{\circ
y = 180 - 30 - 70 % 80 
Hence, }\textrm{a}=7\mp@subsup{0}{}{\circ}\mathrm{ and }\textrm{y}=8\mp@subsup{0}{}{\circ}\mathrm{ ,
```

119. Find the measure of $\angle \mathrm{A}$ in Fig. 6.36.

Fig. 6.36

Solution:

$\angle \mathrm{ACD}=\angle \mathrm{ABC}+\angle \mathrm{CAB}$ [Exterior angle property]
$115^{\circ}=65^{\circ}+\angle \mathrm{CAB}$
$\angle \mathrm{CAB}=115^{\circ}-65^{\circ}=50^{\circ}$
Hence, $\angle \mathrm{A}=50^{\circ}$
120. In a right-angled triangle if an angle measures 35°, then find the measure of the third angle.

Solution:

Suppose $\triangle \mathrm{ABC}$ be the given triangle such that $\angle \mathrm{B}=90^{\circ}$ and $\angle \mathrm{C}=35^{\circ}$

Now, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Angle sum property]
$\Rightarrow \angle \mathrm{A}=180^{\circ}-90^{\circ}-35^{\circ}$
$\Rightarrow \angle \mathrm{A}=55^{\circ}$
Hence, third angle of triangle is 55°.
121. Each of the two equal angles of an isosceles triangle is four times the third angle. Find the angles of the triangle.

Solution:

Suppose $\triangle A B C$ be the given isosceles triangle, such that $A B=A C$ and $\angle B=\angle C=x$.

Now, $\angle \mathrm{B}=\angle \mathrm{C}=4 \angle \mathrm{~A} \ldots$ (I) [given]
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Angle sum property]
$\angle \mathrm{A}+4 \angle \mathrm{~A}+4 \angle \mathrm{~A}=180^{\circ}$ [Using equation (I)]
$9 \angle \mathrm{~A}=180^{\circ}$
$\angle A=\frac{180^{\circ}}{9}$
$\angle A=80^{\circ}$
So, $\angle \mathrm{B}=\angle \mathrm{C}=4 \times 20^{\circ}=80^{\circ}$
Hence, 80, 809 and 20° are the angles of the triangle.

122. The angles of a triangle are in the ratio $2: 3: 5$. Find the angles.

Solution:

Suppose the angles of the triangle be $2 \mathrm{x}, 3 \mathrm{x}$ and 5 x .
So, $2 \mathrm{x}+3 \mathrm{x}+5 \mathrm{x}=180^{\circ}$ [Angle sum property of a triangle]
$10 \mathrm{x}=180^{\circ}$
$x=\frac{180^{\circ}}{10}$
$x=18^{\circ}$
So, $2 \mathrm{x}=2 \times 18^{\circ}=36^{\circ}, 3 \mathrm{x}=3 \times 18^{\circ}=54,5 \mathrm{x}=5 \times 18^{\circ}=90^{\circ}$
Hence, $36^{\circ}, 54^{\circ}$ and 90° are the angles of the triangle.

123. If the sides of a triangle are produced in an order, show that the sum of the exterior angles so formed is 360°.

Solution:
Suppose triangle ABC be the given triangle and $\mathrm{BD}, \mathrm{CE}, \mathrm{AF}$ are the produced side in order.

$$
\begin{aligned}
& \angle \mathrm{ACD}=\angle \mathrm{CAB}+\angle \mathrm{CBA} \\
& \angle \mathrm{BAE}=\angle \mathrm{ABC}+\angle \mathrm{ACB} \\
& \angle \mathrm{CBF}=\angle \mathrm{BAC}+\angle \mathrm{BCA}
\end{aligned}
$$

...(i) [Exterior angle property]
...(ii) [Exterior angle property]

Adding equation (i), (ii) and (iii), get

$$
\begin{aligned}
\angle \mathrm{ACD}+\angle \mathrm{BAE}+\angle \mathrm{CBF} & =\angle \mathrm{CAB}+\angle \mathrm{CBA}+\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}+\angle \mathrm{BCA} \\
\angle \mathrm{ACD}+\angle \mathrm{BAE}+\angle \mathrm{CBF} & =2[\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}] \\
& =2\left(180^{\circ}\right)[\text { Angle sum property }] \\
& =360^{\circ}
\end{aligned}
$$

124. In $\triangle A B C$, if $\angle A=\angle C$, and exterior angle $A B X=140^{\circ}$, then find the angles of the triangle.

Solution:

$\angle \mathrm{ABX}=\angle \mathrm{BAC}+\angle \mathrm{BCA}$ [Exterior angle property]
$140^{\circ}=2 \angle \mathrm{BAC}[\because \angle \mathrm{A}=\angle \mathrm{C}]$
$\angle B A C=\frac{140^{\circ}}{2}$
$\angle B A C=70^{\circ}$

So, $\mathrm{BAC}=\angle \mathrm{BCA}=70^{\circ} \ldots$ (I)
Now, in $\triangle A B C$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Angle sum property]
$\angle \mathrm{B}=180^{\circ}-70^{\circ}-70$ [using equation (I)]
$\angle B=40^{\circ}$
Hence, $\angle \mathrm{A}=70^{\circ}, \angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{C}=70^{\circ}$ are the angles of triangle.

125. Find the values of x and y in Fig. 6.37.

Fig. 6.37

Solution:

In $\triangle \mathrm{QRS}, \angle \mathrm{QST}=\angle \mathrm{QRS}+\angle \mathrm{SOR}$ [Exterior angle property]
$x=30^{\circ}+50^{\circ}=80^{\circ}$

Also, in $\triangle \mathrm{QRT}, \angle \mathrm{PQT}=\angle \mathrm{QRT}+\angle \mathrm{QTR}$ [Exterior angle property]
$y=30^{\circ}+45^{\circ}=75^{\circ}$
Hence, $x=80^{\circ}$ and $y=75^{\circ}$

126. Find the value of x in Fig. 6.38.

Fig. 6.38

Solution:

In $\triangle \mathrm{ABC}, \angle \mathrm{ACD}=\angle \mathrm{CAB}+\angle \mathrm{CBA}$ [Exterior angle property]
$x+90^{\circ}=80^{\circ}+30^{\circ}$
$x=110^{\circ}-90^{\circ}=20^{\circ}$
Hence, the value of x is 20°.

127. The angles of a triangle are arranged in descending order of their

 magnitudes. If the difference between two consecutive angles is $\mathbf{1 0}^{\circ}$, find the three angles.
Solution:

Suppose $\triangle \mathrm{ABC}$ be the given triangle and descending order of angles of the triangle is $\angle \mathrm{A}$, $\angle B, \angle C$
Now, $\angle \mathrm{A}-\angle \mathrm{B}=10^{\circ}$
$\angle \mathrm{B}-\angle \mathrm{C}=10^{\circ} \ldots$ (II)
Also, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Angle sum property]
$\angle \mathrm{B}+10^{\circ}+\angle \mathrm{B}+\angle \mathrm{B}-10^{\circ}=180^{\circ}$ [Using equation (I) and (II)]
$3 \angle B=180^{\circ}$
$\angle B=\frac{180^{\circ}}{3}$
$\angle B=60^{\circ}$
So, $\angle \mathrm{A}=\angle \mathrm{B}+10^{\circ}=60^{\circ}+10^{\circ}=70^{\circ}$
and $\angle \mathrm{C}=\angle \mathrm{B}-10^{\circ}=60^{\circ}-10^{\circ}=50^{\circ}$
Hence, $70^{\circ}, 60^{\circ}$ and 50° are the angles of the triangle.
128. In $\Delta \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ (Fig. 6.39). Find the values of x, y and z.

Fig. 6.39

Solution:

$\mathrm{DE} \| \mathrm{BC}$ and AB is a transversal.
So, $\angle \mathrm{ADE}=\angle \mathrm{DBC}$ [Corresponding angles]
$\mathrm{x}=30^{\circ}$
Now, $\mathrm{DE} \| \mathrm{BC}$ and AC is a transversal.
So, $\angle \mathrm{AED}=\angle \mathrm{ECB}$ [Corresponding angles]
$y=40^{\circ}$
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Angle sum property]
$\mathrm{z}+30^{\circ}+40^{\circ}=180^{\circ}$
$\mathrm{z}=180^{\circ}-40^{\circ}-30^{\circ}=110^{\circ}$
Hence, $x=30^{\circ}, y=40^{\circ}$ and $z=110^{\circ}$.
129. In Fig. 6.40, find the values of x, y and z.

Fig. 6.40

Solution:

In $\triangle \mathrm{ABD}$,
$\angle \mathrm{BAD}+\angle \mathrm{BDA}+\angle \mathrm{ABD}=180^{\circ}$ [Angle sum property]

$60^{\circ}+x+60^{\circ}=180^{\circ}$
$x=180^{\circ}-120^{\circ}=60^{\circ}$
Now, $\angle \mathrm{ADC}=\angle \mathrm{BAD}+\angle \mathrm{ABD}$ [Exterior angle property]
$y=60^{\circ}+60^{\circ}=120^{\circ}$
Also, in $\triangle \mathrm{ADC}$,
$\angle \mathrm{ADB}-\angle \mathrm{DAC}+\angle \mathrm{DCA}$ [Exterior angle property]
$\mathrm{x}=30^{\circ}+\mathrm{z}$
$z=60^{\circ}-30^{\circ}=30^{\circ}\left[x=60^{\circ}\right]$
Hence, $x=60^{\circ}, y=120^{\circ}$ and $z=30^{\circ}$
130. If one angle of a triangle is 60° and the other two angles are in the ratio $1: 2$, find the angles.

Solution:

Suppose $\triangle \mathrm{ABC}$ be the given triangle such that $\angle \mathrm{A}=60^{\circ}$ and let angle B and C are x and 2 x respectively.

$60^{\circ}+x+2 x=180^{\circ}$
$3 \mathrm{x}=180^{\circ}-60^{\circ}=120^{\circ}$
$x=\frac{120^{\circ}}{3}$
$x=40^{\circ}$
Hence, $\angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{C}=2 \times 40^{\circ}=80^{\circ}$
131. In $\triangle P Q R$, if $3 \angle P=4 \angle Q=6 \angle R$, calculate the angles of the triangle.

Solution:
In \triangle POR,
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$ [Angle sum property]
$\frac{6}{3} \angle R+\frac{6}{4} \angle R+\angle R=180^{\circ} \quad[3 \angle P=4 \angle Q=6 \angle R]$
$2 \angle R+\frac{3}{2} \angle R+\angle R=180^{\circ}$
$\frac{(4+3+2)}{2} \angle R=180^{\circ}$
$\frac{9}{2} \angle R=180^{\circ}$
$\angle R=\frac{180^{\circ} \times 2}{9}$
$\angle R=40^{\circ}$
So,
$\angle P=\frac{6}{3} \times 40^{\circ}=80^{\circ}$
And $\angle Q=\frac{6}{4} \times 40^{\circ}=60^{\circ}$
Hence, $\angle \mathrm{P}=80^{\circ}, \angle \mathrm{Q}=60^{\circ}$ and $\angle \mathrm{R}=40^{\circ}$
132. In $\triangle \mathrm{DEF}, \angle \mathrm{D}=60^{\circ}, \angle \mathrm{E}=70^{\circ}$ and the bisectors of $\angle \mathrm{E}$ and $\angle \mathrm{F}$ meet at O. Find (i) $\angle \mathrm{F}$ (ii) $\angle \mathrm{EOF}$.

Solution:
(i) In $\triangle \mathrm{DEF}$,

$$
\begin{aligned}
& \angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ} \text { [Angle sum property] } \\
& 60^{\circ}+70^{\circ}+\angle \mathrm{F}=180^{\circ} \\
& \angle \mathrm{F}=180^{\circ}-60^{\circ}-70^{\circ}=50^{\circ}
\end{aligned}
$$

(ii) Given: EO and FO are the bisectors of $\angle \mathrm{E}$ and $\angle \mathrm{F}$ respectively.
$\angle O E F=\angle O E D=\frac{70^{\circ}}{2}=35^{\circ}$

And $\angle O F E=\angle O F D=\frac{50^{\circ}}{2}=25^{\circ}$
Now, in $\triangle \mathrm{OEF}$,
$\angle \mathrm{OEF}+\angle \mathrm{OFE}+\angle \mathrm{EOF}=180^{\circ}$ [Angle sum property]
$35^{\circ}+25^{\circ}+\angle \mathrm{EOF}=180^{\circ}$
$\angle E O F=180^{\circ}-35^{\circ}-25^{\circ}=120^{\circ}$
133. In Fig. 6.41, $\triangle P Q R$ is right-angled at P. U and T are the points on line QRF. If QP || ST and US || RP, find $\angle S$.

Solution:

QP || ST and QT is a transversal.
So, $\angle \mathrm{PQT}=\angle \mathrm{STO}$ [Alternate interior angles]
US \|PR and UR is a transversal.
So, $\angle \mathrm{PRU}=\angle \mathrm{SUR}$ [Alternate interior angles]
Two angles of $\triangle \mathrm{PQR}$ equal to two angles of $\triangle \mathrm{STU}$. Therefore, third angle also will be equal. So, $\angle \mathrm{QPR}=\angle \mathrm{TSU}$

Now, given that $\angle \mathrm{P}=90^{\circ}$
Hence, $\angle \mathrm{S}=90^{\circ}$.
134. In each of the given pairs of triangles of Fig. 6.42, applying only ASA congruence criterion, determine which triangles are congruent. Also, write the congruent triangles in symbolic form.
(a)

(b)

(c)

(d)

(e)

Fig. 6.42

Solution:

(a) In the given figure, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{POR}$ are not congruent.
(b) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDB}$,
$\mathrm{BD}=\mathrm{DB}$
$\angle \mathrm{ABD}=\angle \mathrm{CDB}=30^{\circ}$
(common)
(given)

```
\angleADB = \angleCBD = 40 
So, }\triangle\textrm{ABD}\cong\triangle\textrm{CDB
(ASA criterion)
(c) In }\triangleXYZ and \triangleLMN
XY=LM = 4.8
\angleYXZ = \angleMLN - 100' (given)
\angleXYZ = LMN = 50' (given)
So, }\triangle\textrm{XYZ}\cong\Delta\textrm{LMN}\quad\mathrm{ (ASA criterion)
(given)
(d) In \(\triangle \mathrm{ABC}\) and \(\triangle \mathrm{DFE}\),
\(\angle \mathrm{A}=\angle \mathrm{D} \quad\) (given)
\angleB=\angleF (given)
So, }\angle\textrm{C}=\angle\textrm{E}\quad\mathrm{ (since two angles are equal)
BC}=\textrm{FE}\quad\mathrm{ (given)
So, }\triangle\textrm{ABC}\cong\triangle\textrm{DFE}\quad\mathrm{ (ASA criterion)
(e) In \(\triangle \mathrm{PON}\) and \(\triangle \mathrm{MNO}\),
\begin{tabular}{ll}
\(\mathrm{NO}=\mathrm{ON}\) & (common) \\
\(\angle \mathrm{NOP}=\angle \mathrm{ONM}=50^{\circ}+40=90^{\circ}\) & (given) \\
\(\angle \mathrm{ONP}=\angle \mathrm{NOM}=50^{\circ}\) & (given) \\
So, \(\triangle \mathrm{PON} \cong \triangle \mathrm{MNO}\) & (ASA criterion)
\end{tabular}
```

(f) In $\triangle \mathrm{AOD}$ and $\triangle \mathrm{BOC}$,
$\angle A O D=\angle B O C$
$\mathrm{OD}=\mathrm{OC}$
$\angle \mathrm{ADO}=\angle \mathrm{BCO}$

So, $\triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$
(Vertically opposite angles)
(given)
(given)
(ASA criterion)
135. In each of the given pairs of triangles of Fig. 6.43, using only RHS congruence criterion, determine which pairs of triangles are congruent. In case of congruence, write the result in symbolic form:
(a)

(d)

(b)

(e)

(f)

Fig. 6.43

Solution:

(a) In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,
$\mathrm{AD}=\mathrm{AD}$
(common)
$\angle \mathrm{ADB}=\angle \mathrm{ADC}$
(Each 90 ${ }^{\circ}$)
$\mathrm{AB}=\mathrm{AC}$
So, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
(given hypotenuse)
, (RHS criterion)
(b) In $\triangle X Y Z$ and $\Delta U Z Y$,
$\angle Y=\angle Z$
(Each 90°)
$X Z=U Y$
(given hypotenuse)
$\mathrm{YZ}=\mathrm{ZY}$
(common)
So, $\triangle X Y Z \cong \Delta U Z Y$
(RHS criterion)
(c) In $\triangle \mathrm{ACE}$ and $\triangle \mathrm{BDE}$,
$\angle \mathrm{ACE}=\angle \mathrm{BDE} \quad(\mathrm{AC} \| \mathrm{BD}$, alternate interior angles)
$\mathrm{CE}=\mathrm{DE}$
$\angle \mathrm{AEC}=\angle \mathrm{BED}$
So, $\triangle \mathrm{ACE} \cong \triangle \mathrm{BDE}$
(given)
(Vertically opposite angles)
So, triangles are congruent but not by RHS congruence criterion
(d) In $\triangle A B C$, by Pythagoras theorem
$(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
$=6^{2}+8^{2}=36+64=100=10^{2}$
So, $\mathrm{AC}-10 \mathrm{~cm}$
In $\triangle E D C$,
$\mathrm{DC}=\mathrm{BD}-\mathrm{BC}=(14-8) \mathrm{cm}=6 \mathrm{~cm}, \mathrm{CE}=10 \mathrm{~cm}$
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDE}$,
$\angle \mathrm{B}=\angle \mathrm{D} \quad\left(\right.$ each $\left.90^{\circ}\right)$
$\mathrm{AB}=\mathrm{CD}=6 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{CE}=10 \mathrm{~cm} \quad$ (hypotenuse)
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDE}$ (RHS criterion)
(e) In the given figure, $\Delta \mathrm{XYZ}$ and $\triangle \mathrm{YXU}$ are not congruent by any criterion.
(f) In $\triangle \mathrm{LMO}$ and $\Delta \mathrm{LNO}$,
$\mathrm{LO}=\mathrm{LO} \quad$ (common)
$\mathrm{LM}=\mathrm{LN}=8 \mathrm{~cm} \quad$ (hypotenuse)
$\angle \mathrm{LOM}=\angle \mathrm{LON} \quad\left(\right.$ each $\left.90^{\circ}\right)$
So, $\Delta \mathrm{LOM} \cong \Delta \mathrm{LON}$ (RHS criterion)

136. In Fig. 6.44, if $R P=R Q$, find the value of x.

Fig. 6.44

Solution:

$R P=R Q$
So, $\angle \mathrm{RQP}=\angle \mathrm{RPQ}=\mathrm{x}$ [angles opposite to equal sides are equal]
Now, $\angle \mathrm{RPQ}=50^{\circ}$ [vertically opposite angles]
Hence, $x=50^{\circ}$.
137. In Fig. 6.45, if $S T=S U$, then find the values of x and y.

Fig. 6.45

Solution:

$\angle \mathrm{TSU}=78^{\circ}$ [vertically opposite angles]
$\angle \mathrm{SUT}=\angle \mathrm{STU}=\mathrm{y}[\because \mathrm{ST}=\mathrm{SU}]$
Now, in Δ STU,
$\angle \mathrm{STU}+\angle \mathrm{SUT}+\angle \mathrm{TSU}=180^{\circ}$ [Angle sum property]
$\mathrm{y}+\mathrm{y}+78^{\circ}=180^{\circ}$
$2 \mathrm{y}=180^{\circ}-78^{\circ}=102^{\circ}$
$y=\frac{102^{\circ}}{2}$
$y=51^{\circ}$
Now, $\mathrm{x}=\angle \mathrm{TSU}+\angle \mathrm{UTS}$ [Exterior angle property]
$\mathrm{x}=78^{\circ}+51^{\circ}$
$\mathrm{x}=129^{\circ}$
Hence, $\mathrm{x}=129^{\circ}$ and $\mathrm{y}=51^{\circ}$,
138. Check whether the following measures (in cm) can be the sides of a right-angled triangle or not. 1.5, 3.6, 3.9

Solution:

As we know that, in a right angled triangle, the sum of square of two shorter sides must be equal to the square of the third.
$(1.5)^{2}+(3.6)^{2}=2.25+12.96=15.21$ and $(3.9)^{2}=15.21$
So, $(1.5)^{2}+(3.6)^{2}=(3.9)^{2}$
Hence, given sides are sides of a right angled triangle.
139. Height of a pole is 8 m . Find the length of rope tied with its top from a point on the ground at a distance of $\mathbf{6} \mathbf{m}$ from its bottom.

Solution:

Suppose $A B$ be the given pole of height 8 m and rope be $A C$

As, $\triangle \mathrm{ABC}$ is a right angled triangle.
So, $(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
$(\mathrm{AC})^{2}=8^{2}+6^{2}=64+36$
$(\mathrm{AC})^{2}=100=10^{2}$
So, $\mathrm{AC}=10 \mathrm{~m}$
Hence, the required length of rope is 10 m .
140. In Fig. 6.46, if y is five times x, find the value of z.

Fig. 6.46

Solution:

In \triangle QRS,
$\angle \mathrm{ROS}+\angle \mathrm{RSQ}+\angle \mathrm{QRS}=180^{\circ}$ [Angle sum property]
$x+y+60^{\circ}=180^{\circ}$
$x+5 x=180^{\circ}-60^{\circ}[\because y=5 x$ (given) $]$
$6 x=120^{\circ}$
$x=\frac{120^{\circ}}{6}$
$x=20^{\circ}$
So, $\mathrm{y}=5 \mathrm{x}=5 \times 20^{\circ}-100^{\circ}$
Now, $\angle \mathrm{RQP}=\angle \mathrm{QRS}+\angle \mathrm{QSR}$ [Exterior angle property]
$\mathrm{z}=60^{\circ}+100^{\circ}=160^{\circ}$
Hence, the angle of z is 160°.
141. The lengths of two sides of an isosceles triangle are 9 cm and 20 cm . What is the perimeter of the triangle? Give reason.

Solution:

Sides of isosceles triangle are 9 cm and 20 cm .
As, sum of any two sides of a triangle is greater than third side.
If third side will be 9 cm then $9+9=18<20$
So, the triangle will not form.

So, third side of triangle must be 20 cm .
Perimeter $=(9+20+20) \mathrm{cm}=49 \mathrm{~cm}$.
142. Without drawing the triangles write all six pairs of equal measures in each of the following pairs of congruent triangles.
(a) $\Delta \mathbf{S T U} \cong \triangle \mathrm{DEF}$
(b) $\Delta \mathbf{A B C} \cong \Delta \mathbf{L M N}$
(c) $\triangle Y Z X \cong P Q R$
(d)
$\Delta \mathbf{X Y Z} \cong \Delta \mathbf{M L N}$

Solution:
(a) $\Delta \mathrm{STU} \cong \triangle \mathrm{DEF}$
$\mathrm{ST}=\mathrm{DE}, \mathrm{TU}=\mathrm{LF}, \mathrm{SU}=\mathrm{DF}$
$\angle \mathrm{STU}=\angle \mathrm{DEF}, \angle \mathrm{SUT}=\angle \mathrm{DFE}, \angle \mathrm{TSU}=\angle \mathrm{EDF}$
(b) $\triangle \mathrm{ABC} \cong \triangle \mathrm{LMN}$
$\mathrm{AB}=\mathrm{LM}, \mathrm{BC}=\mathrm{MN}, \mathrm{AC}=\mathrm{LN}$
$\angle \mathrm{ABC}=\angle \mathrm{LMN}, \angle \mathrm{ACB}=\mathrm{ANM}, \angle \mathrm{BAC}=\angle \mathrm{MLN}$
(c) $\triangle \mathrm{YZX} \cong \triangle \mathrm{POR}$
$\mathrm{YZ}=\mathrm{PQ}, \mathrm{ZX}=\mathrm{OR}, \mathrm{YX}=\mathrm{PR}$
$\angle \mathrm{YZX}=\angle \mathrm{POR}, \angle \mathrm{YXZ}=\angle \mathrm{PRO}, \angle \mathrm{XYZ}=\angle \mathrm{RPQ}$
(d) $\triangle \mathrm{XYZ} \cong \triangle \mathrm{MLN}$
$X Y=M L, Y Z=L N, X Z=M N$
$\angle \mathrm{XYZ}=\angle \mathrm{MLN}, \angle \mathrm{XZY}=\angle \mathrm{MNL}, \angle \mathrm{ZXY}=\angle \mathrm{NML}$
143. In the following pairs of triangles of Fig. 6.47, the lengths of the sides are indicated along the sides. By applying SSS congruence criterion, determine which triangles are congruent. If congruent, write the results in symbolic form.

Solution:

(a)
(b)

(c)

(d)
(e)

(f)

(g)

(h)

Fig. 6.47

Solution:

(a) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{NLM}$, $\mathrm{AB}=\mathrm{NL}=5 \mathrm{~cm}$ (given)
$\mathrm{BC}=\mathrm{LM}=6 \mathrm{~cm} \quad$ (given)
$\mathrm{AC}=\mathrm{NM}=4 \mathrm{~cm} \quad$ (given) So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{NLM}$ (SSS criterion)
(b) In $\Delta \mathrm{LMN}$ and $\Delta \mathrm{GHI}$,
$\mathrm{LM}=\mathrm{GH}=4.5 \mathrm{~cm}$
(given)
$\mathrm{LN}=\mathrm{GI}=5 \mathrm{~cm}$
$\mathrm{MN}=\mathrm{HI}=6 \mathrm{~cm}$
(given)
(given)
So, $\Delta \mathrm{LMN} \cong \Delta \mathrm{GHI}$
(SSS criterion)
(c) In $\triangle \mathrm{LMN}$ and $\Delta \mathrm{LON}$,
$\mathrm{LM}=\mathrm{LO}=5 \mathrm{~cm}$
(given)
$\mathrm{MN}=\mathrm{ON}=5.5 \mathrm{~cm} \quad$ (given)
$\mathrm{LN}=\mathrm{LN}$ (common)
So, $\Delta \mathrm{LMN} \cong \Delta \mathrm{LON}$
(SSS criterion)
(d) In $\triangle \mathrm{XYZ}$ and $\triangle \mathrm{YXW}$,
$X Y=Y X$
(common)
$\mathrm{ZY}=\mathrm{WX}=3 \mathrm{~cm}$ (given)
$\mathrm{ZX}=\mathrm{WY}=5 \mathrm{~cm}$
(given)
So, $\Delta \mathrm{YXW} \cong \Delta \mathrm{XYZ}$
(SSS criterion)
(e) In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{DOE}$,
$\mathrm{AO}=\mathrm{DO}=2 \mathrm{~cm}$
(given)
$\mathrm{AB}=\mathrm{DE}=2 \mathrm{~cm} \quad$ (given)
$\mathrm{BO}=\mathrm{EO}=1.5 \mathrm{~cm} \quad$ (given)
So, $\triangle \mathrm{AOB} \cong \Delta \mathrm{DOE}$
(SSS criterion)
(f) In $\Delta \mathrm{STU}$ and $\Delta \mathrm{SVU}$,
$\mathrm{SU}=\mathrm{SU} \quad$ (common)
$\mathrm{ST}=\mathrm{SV}=5 \mathrm{~cm} \quad$ (given)
$\mathrm{UT}=\mathrm{UV}=3 \mathrm{~cm} \quad$ (given)
So, $\Delta \mathrm{STU} \cong \Delta \mathrm{SVU}$ (SSS criterion)
(g) In $\triangle P Q R$ and $\triangle R S P$,
$P R=R P$
(common)
$\mathrm{PQ}=\mathrm{RS}=5 \mathrm{~cm} \quad$ (given)
$\mathrm{OR}=\mathrm{SP}=3 \mathrm{~cm} \quad$ (given)
So, $\triangle \mathrm{PQR} \cong \triangle \mathrm{RSP}$
(SSS criterion)
(h) In $\Delta \mathrm{STU}$, by Pythagoras theorem,
$\mathrm{TU}^{2}=(10.5)^{2}-5^{2}=135.25$
and in $\triangle \mathrm{PQR}, \mathrm{QR}^{2}=(10.5)^{2}-5^{2}=135.25$
(i) $\mathrm{So}, \mathrm{TU}^{2}=\mathrm{QR}^{2}$
$\mathrm{TU}=\mathrm{QR} \ldots(\mathrm{I})$
In \triangle STU and $\triangle P O R$,
$\mathrm{ST}=\mathrm{PQ}=5 \mathrm{~cm}$
$\mathrm{SU}=\mathrm{PR}=10.5 \mathrm{~cm}$
$\mathrm{TU}=\mathrm{QR}$
en)
بamu
$\Delta \mathrm{STU} \cong \Delta \mathrm{PQR}$
(given)
[From equation (I)].
(SSS criterion)
144. $A B C$ is an isosceles triangle with $A B=A C$ and D is the mid-point of base BC (Fig. 6.48). (a) State three pairs of equal parts in the triangles ABD and $A C D$.
(b) Is $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$. If so why?

Fig. 6.48

Solution:

(a) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,
$\mathrm{AD}=\mathrm{AD}$ (common)
$\mathrm{AB}=\mathrm{AC}$ (given)
$\mathrm{BD}=\mathrm{CD}(\mathrm{D}$ is mid-point of BC$)$
(b) Yes, by using part (a), get
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ (SSS criterion)
145. In Fig. 6.49, it is given that $\mathrm{LM}=\mathrm{ON}$ and $\mathrm{NL}=\mathrm{MO}$
(a) State the three pairs of equal parts in the triangles NOM and MLN.
(b) Is $\triangle \mathbf{N O M} \cong \Delta M L N$. Give reason?

Fig. 6.49

Solution:

(a) In $\triangle \mathrm{NOM}$ and $\triangle \mathrm{MLN}$,
$\mathrm{NM}=\mathrm{MN}$ (common)
OM = LN (given)
$\mathrm{ON}=\mathrm{LM}$ (given)
(b) Yes, by using part (a), we get $\Delta \mathrm{NOM} \cong \triangle \mathrm{MLN}$ (SSS criterion)
146. Triangles DEF and LMN are both isosceles with $\mathrm{DE}=\mathrm{DF}$ and $\mathrm{LM}=$ LN , respectively. If $\mathrm{DE}=\mathrm{LM}$ and $\mathrm{EF}=\mathrm{MN}$, then, are the two triangles congruent? Which condition do you use? If $\angle \mathrm{E}=40^{\circ}$, what is the measure of $\angle \mathrm{N}$?

Solution:

In $\triangle \mathrm{DEF}$ and $\Delta \mathrm{LMN}$,
$\mathrm{EF}=\mathrm{MN}$ (given)
$\mathrm{DE}=\mathrm{LM}$ given
$\mathrm{DF}=\mathrm{LN}[\because \mathrm{DE}=\mathrm{DF}$ and $\mathrm{LM}=\mathrm{LN}]$
So, $\triangle \mathrm{DEF} \cong \triangle \mathrm{LMN}$ (SSS criterion)
So, $\angle \mathrm{E}=\angle \mathrm{M}$ [By C.P.C.T.)
Now, $\angle \mathrm{E}=40^{\circ} \Rightarrow \angle \mathrm{M}=40^{\circ}$
Since, $\angle \mathrm{M}=\angle \mathrm{N}[\because \mathrm{LN}=\mathrm{LM}]$
Hence, $\angle \mathrm{N}=40^{\circ}$.
147. If $\triangle P Q R$ and $\triangle S Q R$ are both isosceles triangle on a common base $Q R$ such that P and S lie on the same side of QR. Are triangles PSQ and PSR congruent? Which condition do you use?

Solution:

Suppose $\triangle \mathrm{PQR}$ and $\triangle \mathrm{SOR}$ are the given triangles such that $\mathrm{PQ}=\mathrm{PR}$ and $\mathrm{SQ}=\mathrm{SR}$.

Now, in $\triangle \mathrm{PSQ}$ and $\triangle \mathrm{PSR}$,
$\mathrm{PQ}=\mathrm{PR}$ (given)
$S Q=S R$ (given)
$\mathrm{PS}=\mathrm{PS}$ (common)

So, $\Delta \mathrm{PSQ} \cong \triangle \mathrm{PSR}$ (SSS criterion)
Yes, the $\triangle \mathrm{PSQ}$ and $\triangle \mathrm{PSR}$ are congruent by using SSS criterion
148. In Fig. 6.50, which pairs of triangles are congruent by SAS congruence criterion (condition)? If congruent, write the congruence of the two triangles in symbolic form.
(1)

(11)

(111)

(Iv)

(v)

(vi)

Solution:

(j) In \triangle POR and $\triangle T U S$,

$\mathrm{PQ}=\mathrm{TU}=3 \mathrm{~cm}$	(given)
$\mathrm{OR}=\mathrm{US}=5.5 \mathrm{~cm}$	(given)
$\angle \mathrm{POR}=\angle \mathrm{TUS}=40^{\circ}$	(given)
$\mathrm{So}, \triangle \mathrm{POR} \cong \triangle \mathrm{TUS}$	(SAS criterion)

(ii) In the given figure, $\Delta \mathrm{JKL}$ and $\Delta \mathrm{MNO}$ are not congruent by any criterion.
(iii) In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CBD}$,
$\angle \mathrm{EAB}=\angle \mathrm{DCB}=50^{\circ} \quad$ (given)
$\mathrm{AE}=\mathrm{CD}=5 \mathrm{~cm}$
$\mathrm{AB}=\mathrm{CB}=5.2 \mathrm{~cm}$
So, $\triangle \mathrm{ABE} \cong \triangle \mathrm{CBD}$
(given)
(given)
(SAS criterion)
(iv) In \triangle SUT and $\triangle X Y Z$

```
ST = XZ = 3 cm (given)
UT = YZ = 4 cm (given)
\angleSTU = }\angle\textrm{XZY}=3\mp@subsup{0}{}{\circ}\quad\mathrm{ (given)
So, }\Delta\textrm{SUT}\cong\DeltaXYZ (SAS criterion)
```

(v) In $\triangle \mathrm{DOF}$ and $\triangle \mathrm{HOC}$,
$\mathrm{DO}=\mathrm{HO}$
(given)
$\mathrm{FO}=\mathrm{CO} \quad$ (given)
$\angle \mathrm{DOF}=\angle \mathrm{HOC} \quad$ (Vertically opposite angles)
So, $\mathrm{ADOF} \cong \mathrm{AHOC} \quad$ (SAS criterion)
(vi) In the given figure, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are not congruent by any criterion.
(vii) In $\triangle P S Q$ and $\triangle R Q S$.

$\mathrm{SQ}=\mathrm{QS}$	(common)
$\mathrm{PS}=\mathrm{RQ}=4 \mathrm{~cm}$	(given)
$\angle \mathrm{PSQ}=\angle \mathrm{RQS}=40^{\circ}$	(given)
$\mathrm{So}, \triangle \mathrm{PSQ} \cong \triangle \mathrm{ROS}$	(SAS criterion)

(viii) In $\triangle \mathrm{LMN}$ and $\triangle \mathrm{OMN}$,
$\mathrm{MN}=\mathrm{MN} \quad$ (common)
$\mathrm{LM}=\mathrm{OM} \quad$ (given)
$\angle \mathrm{LMN}=\angle \mathrm{OMN}=40^{\circ}$ (given)
So, $\Delta \mathrm{LMN} \cong \triangle \mathrm{OMN}$ (SAS criterion)
149. State which of the following pairs of triangles are congruent. If yes, write them in symbolic form (you may draw a rough figure).
(a) $\triangle \mathrm{PQR}: \mathrm{PQ}=3.5 \mathrm{~cm}, \mathrm{QR}=4.0 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ} \Delta \mathrm{STU}: \mathrm{ST}=3.5 \mathrm{~cm}, \mathrm{TU}$ $=4 \mathrm{~cm}, \angle \mathrm{~T}=60^{\circ}$
(b) $\triangle \mathrm{ABC}: \mathrm{AB}=4.8 \mathrm{~cm}, \angle \mathrm{~A}=90^{\circ}, \mathrm{AC}=6.8 \mathrm{~cm} \triangle \mathrm{XYZ}: \mathrm{YZ}=6.8 \mathrm{~cm}, \angle \mathrm{X}$
$=90^{\circ}, \mathrm{ZX}=4.8 \mathrm{~cm}$

Solution:

(a)

In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{STU}$, $\mathrm{PQ}=\mathrm{ST}=3.5 \mathrm{~cm}$ (given)
$\angle \mathrm{PQR}=\angle \mathrm{STU}=60^{\circ}$
(given)
$\mathrm{OR}=\mathrm{TU}=4 \mathrm{~cm} \quad$ (given)
So, $\triangle \mathrm{PQR} \cong \Delta \mathrm{STU} \quad$ (SAS criterion)
(b) Here, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{XYZ}$ are not congruent by any criterion.

150. In Fig. 6.51, $P Q=P S$ and $\angle 1=\angle 2$.
(i) Is $\triangle P Q R \cong \triangle P S R ?$ Give reasons.
(ii) $\mathrm{Is} \mathbf{Q R}=\mathbf{S R}$? Give reasons.

Fig. 6.51

Solution:

(i) In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{PSR}$,

$$
\begin{aligned}
& \mathrm{PQ}=\mathrm{PS} \text { (given) } \\
& \angle 1=\angle 2 \text { (given) } \\
& \mathrm{PR}=\mathrm{PR} \text { (common) } \\
& \text { So, } \triangle \mathrm{POR} \cong \triangle \mathrm{PSR} \text { (SAS criterion) }
\end{aligned}
$$

(ii) Yes, QR = SR (By C.P.C.T.)
151. In Fig. 6.52, $\mathrm{DE}=\mathrm{IH}, \mathrm{EG}=\mathrm{FI}$ and $\angle \mathrm{E}=\angle \mathrm{I}$. Is $\triangle \mathrm{DEF} \cong \triangle \mathrm{HIG}$? If yes, by which congruence criterion?

Fig. 6.52

Solution:
In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{HIG}$,
$\mathrm{DE}=\mathrm{HI}$ (given)
$\angle \mathrm{E}=\angle \mathrm{I}$ (given)
$\mathrm{EF}=\mathrm{IG}$
$\left[\begin{array}{l}E G=I F \text { (Given) } \\ E G+G F=I F+G F \\ E F=I G\end{array}\right]$
So, $\triangle \mathrm{DEF} \cong \Delta \mathrm{HIG}$ (SAS criterion)
152. In Fig. 6.53, $\angle 1=\angle 2$ and $\angle 3=\angle 4$.
(i) Is $\triangle \mathrm{ADC} \cong \triangle \mathrm{ABC}$? Why?
(ii) Show that $A D=A B$ and $C D=C B$.

Fig. 6.53
Solution:

```
(i) In \(\triangle A D C\) and \(\triangle A B C\), \(\angle 1=\angle 2\) [given]
\(\mathrm{AC}=\mathrm{AC}\) [common]
\(\angle 3=\angle 4\) [given]
```

So, $\triangle \mathrm{ADC}=\triangle \mathrm{ABC}$ (ASA criterion)
(ii) By using equation (I) part, get
$\mathrm{AD}=\mathrm{AB}$ [By C.P.C.T]
and $\mathrm{CD}=\mathrm{CB}$ [By C.P.C.T.]
153. Observe Fig. 6.54 and state the three pairs of equal parts in triangles ABC and DBC.
(i) Is $\triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$? Why?
(ii) Is $\mathrm{AB}=\mathrm{DC}$? Why?
(iii) Is AC = DB? Why?

Fig. 6.54

Solution:

(i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DCB}$,
$\angle \mathrm{ABC}=\angle \mathrm{DCB}=40^{\circ}+30=70^{\circ}$ (given)
$\angle \mathrm{ACB}=\angle \mathrm{DBC}=30^{\circ}$ (given)
$\mathrm{BC}=\mathrm{CB}$ (common)
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$ (ASA criterion)
(ii) Yes, by using (I) part, we get

AB = DC (By C.P.C.T.)
(iii) Yes, by using (I) part, we get
$\mathrm{AC}=\mathrm{DB}$ (By C.P.C.T.)
154. In Fig. 6.55, $Q S \perp P R, R T \perp P Q$ and $Q S=R T$.
(i) Is $\Delta \mathbf{Q S R} \cong \Delta \mathrm{RTQ}$? Give reasons.
(ii) Is $\angle \mathbf{P Q R}=\angle \mathbf{P R Q}$? Give reasons.

Fig. 6.55

Solution:

(i) In \triangle QSR and \triangle RTO,
$\angle \mathrm{OSR}=\angle \mathrm{RTO}=90^{\circ}[\mathrm{QS} \perp \mathrm{PR}$ and $\mathrm{RT} \perp \mathrm{PQ}$ (given) $]$
$\mathrm{QS}=\mathrm{RT}$ [given]
$\mathrm{QR}=\mathrm{RO}$ [common hypotenuse]
So, $\Delta \mathrm{QSR} \cong \Delta \mathrm{RTQ}$ [RHS criterion]
(ii) Yes, by using (1) part, we get
$\angle \mathrm{TQR}=\angle \mathrm{SRQ}$ [By C.P.C.T]
Hence, $\angle \mathrm{PQR}=\mathrm{PRQ}$
155. Points A and B are on the opposite edges of a pond as shown in Fig. 6.56. To find the distance between the two points, the surveyor makes a right-angled triangle as shown. Find the distance AB.

Fig. 6.56
Solution:

Since, $\triangle \mathrm{ADC}$ is right-angled triangle
So, $(\mathrm{AC})^{2}=(\mathrm{AD})^{2}+(\mathrm{CD})^{2}$
$=(30)^{2}+(40)^{2}$
$=900+1600$
$=2500$
$=(50)^{2}$
So, $\mathrm{AC}=50 \mathrm{~m}$
Now, $\mathrm{AB}=\mathrm{AC}-\mathrm{BC}=50-12=38$
Hence, the distance AB is 38 m .
156. Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is $\mathbf{1 3} \mathbf{~ m}$, find the distance between their feet.

Solution:

Suppose $A B$ and $C D$ are the given poles of heights 15 m and 10 m such that $\mathrm{AC}=13 \mathrm{~m}$.

Now, $\mathrm{BD}=\mathrm{CE}$ and $\mathrm{BE}=\mathrm{CD}=10 \mathrm{~m}$
So, $\mathrm{AE}=\mathrm{AB}-\mathrm{BE}=(15-10) \mathrm{m}=5 \mathrm{~m}$
Now, in $\triangle \mathrm{AEC}$,
$(\mathrm{AC})^{2}=(\mathrm{AE})^{2}+(\mathrm{EC})^{2}$
$(13)^{2}=5^{2}+(\mathrm{EC})^{2}$
$(E C)^{2}=169-25=144-(12)^{2}$
$\mathrm{sSo}, \mathrm{EC}=12 \mathrm{~m}$
Also, BD - 12 m
Hence, distance between the feet of poles is 12 m .
157. The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground, (a) Find the length of the ladder. (b) If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its top reach?

Solution:

(a) Suppose AC be the given ladder such that $\mathrm{BC}=6 \mathrm{~m}$ and $\mathrm{AB}=8 \mathrm{~m}$.

> Now, in $\triangle \mathrm{ABC}$,
> $(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
> $=8^{2}+6^{2}$
> $=64+36=100=(10)^{2}$

So, AC $=10 \mathrm{~m}$
Hence, length of the ladder is 10 m .
(b) Suppose AC be the ladder of length 10 m and $\mathrm{BC}=8 \mathrm{~m}$.

In $\triangle \mathrm{ABC}$,
$(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
$(10)^{2}=(A B)^{2}+(8)^{2}$
$(\mathrm{AB})^{2}=100-64=36=(6)^{2}$
So, $A B=6 \mathrm{~m}$
Hence, the ladder top reaches 6 m above the ground.
158. In Fig. 6.57, state the three pairs of equal parts in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EOD}$. Is $\Delta \mathrm{ABC} \cong \Delta \mathrm{EOD}$? Why?

Fig. 6.57

Solution:

In $\triangle \mathrm{ABC}$ and $\triangle E O D$,
$\mathrm{AB}=\mathrm{EO}$ (given)
$\angle \mathrm{ABC}=\angle \mathrm{EOD}=90^{\circ}$ [Given]
$\mathrm{AC}=\mathrm{ED}$ [given hypotenuse]
Hence, $\triangle \mathrm{ABC} \cong \triangle \mathrm{EOD}$ (RHS criterion)

