Mathematics

(Chapter - 6) (The Triangle and its Properties)

(Class - VII)

Exercise 6.1

Question 1:

In $\triangle P Q R, D$ is the mid-point of $\overline{\mathrm{QR}}$.
$\overline{\mathrm{PM}}$ is \qquad
PD is \qquad
Is $\mathrm{QM}=\mathrm{MR}$?

Eain Answer 1:
Given: \quad QD $=\mathrm{DR}$
$\therefore \overline{\mathrm{PM}}$ is altitude.
PD is median.
No, $Q M \neq M R$ as D is the mid-point of $Q R$.

Question 2:

Draw rough sketches for the following:
(a) In $\triangle \mathrm{ABC}, \mathrm{BE}$ is a median.
(b) In $\triangle P Q R, P Q$ and $P R$ are altitudes of the triangle.
(c) In $\triangle \mathrm{XYZ}, \mathrm{YL}$ is an altitude in the exterior of the triangle.

teai Answer 2:

(a) Here, BE is a median in $\triangle \mathrm{ABC}$ and $\mathrm{AE}=\mathrm{EC}$.

(b) Here, PQ and PR are the altitudes of the $\triangle \mathrm{PQR}$ and $\mathrm{RP} \perp \mathrm{QP}$.

(c) YL is an altitude in the exterior of $\Delta \mathrm{XYZ}$.

Question 3:

Verify by drawing a diagram if the median and altitude of a isosceles triangle can be same.

Emini Answer 3:

Isosceles triangle means any two sides are same.
Take $\triangle \mathrm{ABC}$ and draw the median when $\mathrm{AB}=\mathrm{AC}$.
AL is the median and altitude of the given triangle.

Exercise 6.2

Question 1:

Find the value of the unknown exterior angle x in the following diagrams:

(i)

(ii)

(iv)

(v)

(iii)

(vi)

Answer 1:

Since, Exterior angle $=$ Sum of interior opposite angles, therefore
(i) $x=50^{\circ}+70^{\circ}=120^{\circ}$
(ii) $x=65^{\circ}+45^{\circ}=110^{\circ}$
(iii) $x=30^{\circ}+40^{\circ}=70^{\circ}$
(iv) $x=60^{\circ}+60^{\circ}=120^{\circ}$
(v) $x=50^{\circ}+50^{\circ}=100^{\circ}$
(vi) $x=60^{\circ}+30^{\circ}=90^{\circ}$

Question 2:

Find the value of the unknown interior angle x in the following figures:

(i)

(iv)

(ii)

(v)

(iii)

(vi)

Teisi Answer 2:

Since, Exterior angle $=$ Sum of interior opposite angles, therefore
(i) $x+50^{\circ}=115^{\circ} \Rightarrow x=115^{\circ}-50^{\circ}=65^{\circ}$
(ii) $70^{\circ}+x=100^{\circ} \Rightarrow x=100^{\circ}-70^{\circ}=30^{\circ}$
(iii) $x+90^{\circ}=125^{\circ} \quad \Rightarrow \quad x=120^{\circ}-90^{\circ}=35^{\circ}$
(iv) $60^{\circ}+x=120^{\circ} \quad \Rightarrow \quad x=120^{\circ}-60^{\circ}=60^{\circ}$
(v) $30^{\circ}+x=80^{\circ} \quad \Rightarrow \quad x=80^{\circ}-30^{\circ}=50^{\circ}$
(vi) $x+35^{\circ}=75^{\circ} \quad \Rightarrow \quad x=75^{\circ}-35^{\circ}=40^{\circ}$

Exercise 6.3

Question 1:

Find the value of unknown x in the following diagrams:

(i)
(iv)

(ii)

(v)

(iii)

(vi)

Answer 1:
(i) In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \angle \mathrm{BAC}+\angle \mathrm{ACB}+\angle \mathrm{ABC}=180^{\circ} \quad[\text { By angle sum property of a triangle }] \\
& \Rightarrow \quad x+50^{\circ}+60^{\circ}=180^{\circ} \\
& \Rightarrow \quad x+110^{\circ}=180^{\circ} \\
& \Rightarrow \quad x=180^{\circ}-110^{\circ}=70^{\circ}
\end{aligned}
$$

(ii) In $\triangle \mathrm{PQR}$,

$$
\begin{aligned}
& \angle \mathrm{RPQ}+\angle \mathrm{PQR}+\angle \mathrm{RPQ}=180^{\circ} \quad[\text { By angle sum property of a triangle }] \\
& \Rightarrow \quad 90^{\circ}+30^{\circ}+x=180^{\circ} \\
& \Rightarrow \quad x+120^{\circ}=180^{\circ} \\
& \Rightarrow \quad x=180^{\circ}-120^{\circ}=60^{\circ}
\end{aligned}
$$

(iii) In $\triangle X Y Z$,

$$
\begin{aligned}
& \left.\angle \mathrm{ZXY}+\angle \mathrm{XYZ}+\angle \mathrm{YZX}=180^{\circ} \quad \text { [By angle sum property of a triangle }\right] \\
& \Rightarrow \quad 30^{\circ}+110^{\circ}+x=180^{\circ} \\
& \Rightarrow \quad x+140^{\circ}=180^{\circ} \\
& \Rightarrow \quad x=180^{\circ}-140^{\circ}=40^{\circ}
\end{aligned}
$$

(iv) In the given isosceles triangle,

$$
\begin{aligned}
& x+x+50^{\circ}=180^{\circ} \\
& \Rightarrow \quad 2 x+50^{\circ}=180^{\circ} \\
& \Rightarrow \quad 2 x=180^{\circ}-50^{\circ} \\
& \Rightarrow \quad 2 x=130^{\circ} \\
& \Rightarrow \quad x=\frac{130^{\circ}}{2}=65^{\circ}
\end{aligned}
$$

[By angle sum property of a triangle]
(v) In the given equilateral triangle,

$$
\begin{aligned}
& x+x+x=180^{\circ} \\
& \Rightarrow \quad 3 x=180^{\circ} \\
& \Rightarrow \quad x=\frac{180^{\circ}}{3}=60^{\circ}
\end{aligned}
$$

[By angle sum property of a triangle]
(vi) In the given right angled triangle,

$$
\begin{aligned}
& x+2 x+90^{\circ}=180^{\circ} \\
& \Rightarrow \quad 3 x+90^{\circ}=180^{\circ} \\
& \Rightarrow \quad 3 x=180^{\circ}-90^{\circ} \\
& \Rightarrow \quad 3 x=90^{\circ} \\
& \Rightarrow \quad x=\frac{90^{\circ}}{3}=30^{\circ}
\end{aligned}
$$

Question 2:

Find the values of the unknowns x and y in the following diagrams:

(i)

(iv)

(ii)

(v)

(iii)

(vi)

${ }^{6}$ Answer 2:

(i) $50^{\circ}+x=120^{\circ}$
[Exterior angle property of a Δ]
$\Rightarrow \quad x=120^{\circ}-50^{\circ}=70^{\circ}$
Now, $50^{\circ}+x+y=180^{\circ}$
$\Rightarrow \quad 50^{\circ}+70^{\circ}+y=180^{\circ}$
$\Rightarrow \quad 120^{\circ}+y=180^{\circ}$
$\Rightarrow \quad y=180^{\circ}-120^{\circ}=60^{\circ}$
(ii) $y=80^{\circ}$ \qquad (i) [Vertically opposite angle]

Now, $50^{\circ}+x+y=180^{\circ}$
$\Rightarrow \quad 50^{\circ}+80^{\circ}+y=180^{\circ}$
$\Rightarrow \quad 130^{\circ}+y=180^{\circ}$
$\Rightarrow \quad y=180^{\circ}-130^{\circ}=50^{\circ}$
(iii) $50^{\circ}+60^{\circ}=x$
[Exterior angle property of a Δ]
$\Rightarrow \quad x=110^{\circ}$
Now $50^{\circ}+60^{\circ}+y=180^{\circ}$
[Angle sum property of a Δ]
$\Rightarrow \quad 110^{\circ}+y=180^{\circ}$
$\Rightarrow \quad y=180^{\circ}-110^{\circ}$
$\Rightarrow \quad y=70^{\circ}$
(iv) $\quad x=60^{\circ}$
i) [Vertically opposite angle] [Angle sum property of a Δ]
$\Rightarrow \quad 50^{\circ}+60^{\circ}+y=180^{\circ}$
[From equation (i)]
$\Rightarrow \quad 90^{\circ}+y=180^{\circ}$
$\Rightarrow \quad y=180^{\circ}-90^{\circ}=90^{\circ}$
(v) $y=90^{\circ}$
(i) [Vertically opposite angle]

Now, $y+x+x=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+2 x=180^{\circ}$
$\Rightarrow \quad 2 x=180^{\circ}-90^{\circ}$
$\Rightarrow \quad 2 x=90^{\circ}$
$\Rightarrow \quad x=\frac{90^{\circ}}{2}=45^{\circ}$

$\left.\begin{array}{lll}\text { (vi) } & x=y & \ldots \ldots(i) \\ & \text { Now, } & x+x+y=180^{\circ}\end{array}\right]$ [Vertically opposite angle] \quad [Angle sum property of a Δ]

Exercise 6.4

Question 1:

Is it possible to have a triangle with the following sides?
(i) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
(iii) $6 \mathrm{~cm}, 3 \mathrm{~cm}, 2 \mathrm{~cm}$

$\tau_{\text {tai }}$ Answer 1:

Since, a triangle is possible whose sum of the lengths of any two sides would be greater than the length of third side.
(i) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
$3+6>7 \quad$ Yes
$6+7>3 \quad$ Yes
$3+7>6 \quad$ Yes
This triangle is possible.
(iii) $6 \mathrm{~cm}, 3 \mathrm{~cm}, 2 \mathrm{~cm}$

$$
\begin{array}{ll}
6+3>2 & \text { Yes } \\
6+2>3 & \text { Yes } \\
2+3>6 & \text { No }
\end{array}
$$

This triangle is not possible.

Question 2:

Take any point 0 in the interior of a triangle $P Q R$. Is:
(i) $O P+O Q>P Q$?
(ii) $\quad \mathrm{QQ}+\mathrm{OR}>\mathrm{QR}$?
(iii) $\mathrm{OR}+\mathrm{OP}>\mathrm{RP}$?

Enicincer 2:

Join $O R, O Q$ and $O P$.
(i) \quad Is $O P+O Q>P Q$?

Yes, POQ form a triangle.
(ii) \quad Is $O Q+O R>Q R$?

Yes, RQO form a triangle.
(iii) Is OR + OP > RP ?

Yes, ROP form a triangle.

Question 3:

$A M$ is a median of a triangle $A B C$. Is $A B+B C+C A>2 A M$? (Consider the sides of triangles $\Delta \mathrm{ABM}$ and $\triangle \mathrm{AMC}$.)

nai Answer 3:

Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side.

Therefore, \quad In $\triangle \mathrm{ABM}, \quad \mathrm{AB}+\mathrm{BM}>\mathrm{AM}$
In $\triangle A M C, \quad A C+M C>A M$
Adding eq. (i) and (ii),
$A B+B M+A C+M C>A M+A M$
$\Rightarrow \quad \mathrm{AB}+\mathrm{AC}+(\mathrm{BM}+\mathrm{MC})>2 \mathrm{AM}$
$\Rightarrow \quad \mathrm{AB}+\mathrm{AC}+\mathrm{BC}>2 \mathrm{AM}$
Hence, it is true.

Question 4:

$A B C D$ is a quadrilateral. Is $A B+B C+C D+D A>A C+B D$?

$\tau_{\text {taic }}$ Answer 4:

Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side.

Therefore, In $\triangle A B C, \quad A B+B C>A C$
In $\triangle A D C, \quad A D+D C>A C$
In $\triangle \mathrm{DCB}, \quad \mathrm{DC}+\mathrm{CB}>\mathrm{DB}$
In $\triangle \mathrm{ADB}, \quad \mathrm{AD}+\mathrm{AB}>\mathrm{DB}$
Adding equations (i), (ii), (iii) and (iv), we get

$$
\begin{array}{ll}
& \mathrm{AB}+\mathrm{BC}+\mathrm{AD}+\mathrm{DC}+\mathrm{DC}+\mathrm{CB}+\mathrm{AD}+\mathrm{AB}>\mathrm{AC}+\mathrm{AC}+\mathrm{DB}+\mathrm{DB} \\
\Rightarrow & (\mathrm{AB}+\mathrm{AB})+(\mathrm{BC}+\mathrm{BC})+(\mathrm{AD}+\mathrm{AD})+(\mathrm{DC}+\mathrm{DC})>2 \mathrm{AC}+2 \mathrm{DB} \\
\Rightarrow & 2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{AD}+2 \mathrm{DC}>2(\mathrm{AC}+\mathrm{DB}) \\
\Rightarrow & 2(\mathrm{AB}+\mathrm{BC}+\mathrm{AD}+\mathrm{DC})>2(\mathrm{AC}+\mathrm{DB}) \\
\Rightarrow & \mathrm{AB}+\mathrm{BC}+\mathrm{AD}+\mathrm{DC}>\mathrm{AC}+\mathrm{DB} \\
\Rightarrow & \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{DB}
\end{array}
$$

Hence, it is true.

Question 5:

ABCD is quadrilateral. Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{AC}+\mathrm{BD})$?

Answer 5:

Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side.

Therefore, In $\triangle \mathrm{AOB}, \mathrm{AB}<\mathrm{OA}+\mathrm{OB}$
In $\triangle B O C, \quad B C<O B+O C$
In $\triangle C O D, \quad C D<O C+O D$
In $\triangle A O D, \quad D A<O D+O A$
Adding equations (i), (ii), (iii) and (iv), we get
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<\mathrm{OA}+\mathrm{OB}+\mathrm{OB}+\mathrm{OC}+\mathrm{OC}+\mathrm{OD}+\mathrm{OD}+\mathrm{OA}$
$\Rightarrow \quad \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2 \mathrm{OA}+2 \mathrm{~B}+2 \mathrm{C}+20 \mathrm{D}$
$\Rightarrow \quad \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2[(\mathrm{AO}+\mathrm{OC})+(\mathrm{DO}+\mathrm{OB})]$
$\Rightarrow \quad \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{AC}+\mathrm{BD})$
Hence, it is proved.

Question 6:

The lengths of two sides of a triangle are 12 cm and 15 cm . Between what two measures should the length of the third side fall?

Emini Answer 6:

Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side.

It is given that two sides of triangle are 12 cm and 15 cm .
Therefore, the third side should be less than $12+15=27 \mathrm{~cm}$.
And also the third side cannot be less than the difference of the two sides.
Therefore, the third side has to be more than $15-12=3 \mathrm{~cm}$.
Hence, the third side could be the length more than 3 cm and less than 27 cm .

Exercise 6.5

Question 1:

$P Q R$ is a triangle, right angled at P. If $P Q=10 \mathrm{~cm}$ and $P R=24 \mathrm{~cm}$, find $Q R$.
Enisi Answer 1:
Given: $P Q=10 \mathrm{~cm}, \mathrm{PR}=24 \mathrm{~cm}$
Let QR be $x \mathrm{~cm}$.
In right angled triangle QPR,
$(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2} \quad$ [By Pythagoras theorem]
$\Rightarrow \quad(\mathrm{QR})^{2}=(\mathrm{PQ})^{2}+(\mathrm{PR})^{2}$
$\Rightarrow \quad x^{2}=(10)^{2}+(24)^{2}$
$\Rightarrow \quad x^{2}=100+576=676$
$\Rightarrow \quad x=\sqrt{676}=26 \mathrm{~cm}$
Thus, the length of QR is 26 cm .

Question 2:

$A B C$ is a triangle, right angled at C. If $A B=25 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$, find $B C$.

$\epsilon_{\text {mai Answer 2: }}$

Given: $\mathrm{AB}=25 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$
Let BC be $x \mathrm{~cm}$.
In right angled triangle ACB,

Thus, the length of BC is 24 cm .

Question 3:

A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.

Answer 3:

Let AC be the ladder and A be the window.
Given: $\mathrm{AC}=15 \mathrm{~m}, \mathrm{AB}=12 \mathrm{~m}, \mathrm{CB}=a \mathrm{~m}$
In right angled triangle ACB,

Thus, the distance of the foot of the ladder from the wall is 9 m .

Question 4:

Which of the following can be the sides of a right triangle?
(i) $2.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 6 \mathrm{~cm}$
(ii) $2 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$
(iii) $1.5 \mathrm{~cm}, 2 \mathrm{~cm}, 2.5 \mathrm{~cm}$

In the case of right angled triangles, identify the right angles.

tein Answer 4:

Let us consider, the larger side be the hypotenuse and also using Pythagoras theorem,
$(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$

(i) $2.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 6 \mathrm{~cm}$

In $\triangle \mathrm{ABC}, \quad(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
L.H.S. $=(6.5)^{2}=42.25 \mathrm{~cm}$
R.H.S. $=(6)^{2}+(2.5)^{2}=36+6.25=42.25 \mathrm{~cm}$

Since, L.H.S. = R.H.S.
Therefore, the given sides are of the right angled triangle.
Right angle lies on the opposite to the greater side 6.5 cm , i.e., at B.
(ii) $2 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$

In the given triangle, $(5)^{2}=(2)^{2}+(2)^{2}$
L.H.S. $=(5)^{2}=25$
R.H.S. $=(2)^{2}+(2)^{2}=4+4=8$

Since, L.H.S. \neq R.H.S.
Therefore, the given sides are not of the right angled triangle.
(iii) $1.5 \mathrm{~cm}, 2 \mathrm{~cm}, 2.5 \mathrm{~cm}$

In $\triangle \mathrm{PQR}, \quad(\mathrm{PR})^{2}=(\mathrm{PQ})^{2}+(\mathrm{RQ})^{2}$

L.H.S. $=(2.5)^{2}=6.25 \mathrm{~cm}$
R.H.S. $=(1.5)^{2}+(2)^{2}=2.25+4=6.25 \mathrm{~cm}$

Since, L.H.S. = R.H.S.
Therefore, the given sides are of the right angled triangle.
Right angle lies on the opposite to the greater side 2.5 cm , i.e., at Q.

Question 5:

A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.

tai Answer 5:

Let A'CB represents the tree before it broken at the point C and let the top A^{\prime} touches the ground at A after it broke. Then $\triangle \mathrm{ABC}$ is a right angled triangle, right angled at B.
$\mathrm{AB}=12 \mathrm{~m}$ and $\mathrm{BC}=5 \mathrm{~m}$
Using Pythagoras theorem, In $\triangle \mathrm{ABC}$

$$
\begin{array}{ll}
& (\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2} \\
\Rightarrow & (\mathrm{AC})^{2}=(12)^{2}+(5)^{2} \\
\Rightarrow & (\mathrm{AC})^{2}=144+25 \\
\Rightarrow & (\mathrm{AC})^{2}=169 \\
\Rightarrow & \mathrm{AC}=13 \mathrm{~m}
\end{array}
$$

Hence, the total height of the tree $=A C+C B=13+5=18 \mathrm{~m}$.

Question 6:

Angles Q and R of a $\triangle P Q R$ are 25° and 65°.
Write which of the following is true:

Emin Answer 6:

In $\triangle P Q R$,

$$
\begin{array}{lll}
& \angle \mathrm{PQR}+\angle \mathrm{QRP}+\angle \mathrm{RPQ}=180^{\circ} \quad \text { [By Angle sum property of a } \Delta \text {] } \\
\Rightarrow & 25^{\circ}+65^{\circ}+\angle \mathrm{RPQ}=180^{\circ} \\
\Rightarrow & 90^{\circ}+\angle \mathrm{RPQ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{RPQ}=180^{\circ}-90^{\circ}=90^{\circ} &
\end{array}
$$

Thus, $\triangle P Q R$ is a right angled triangle, right angled at P.
$\therefore \quad(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2} \quad$ [By Pythagoras theorem]
$\Rightarrow \quad(\mathrm{QR})^{2}=(\mathrm{PR})^{2}+(\mathrm{QP})^{2}$
Hence, Option (ii) is correct.

Question 7:

Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm . Eni Answer 7:
Given diagonal $(P R)=41 \mathrm{~cm}$, length $(P Q)=40 \mathrm{~cm}$
Let breadth (QR) be $x \mathrm{~cm}$.

Now, in right angled triangle PQR ,

$$
\begin{array}{ll}
& (\mathrm{PR})^{2}=(\mathrm{RQ})^{2}+(\mathrm{PQ})^{2} \\
\Rightarrow & (41)^{2}=x^{2}+(40)^{2} \\
\Rightarrow & 1681=x^{2}+1600 \\
\Rightarrow & x^{2}=1681-1600 \\
\Rightarrow & x^{2}=81 \\
\Rightarrow & x=\sqrt{81}=9 \mathrm{~cm}
\end{array}
$$

[By Pythagoras theorem]

Therefore the breadth of the rectangle is 9 cm .
Perimeter of rectangle $=2$ (length + breadth $)$

$$
\begin{aligned}
& =2(9+49) \\
& =2 \times 49=98 \mathrm{~cm}
\end{aligned}
$$

Hence, the perimeter of the rectangle is 98 cm .

Question 8:

The diagonals of a rhombus measure 16 cm and 30 cm . Find its perimeter.

tein Answer 8:

Given: Diagonals AC $=30 \mathrm{~cm}$ and $\mathrm{DB}=16 \mathrm{~cm}$.
Since the diagonals of the rhombus bisect at right angle to each other.

Therefore, $\quad O D=\frac{D B}{2}=\frac{16}{2}=8 \mathrm{~cm}$
And $\quad \mathrm{OC}=\frac{\mathrm{AC}}{2}=\frac{30}{2}=15 \mathrm{~cm}$
Now, In right angle triangle DOC,

$(\mathrm{DC})^{2}=(\mathrm{OD})^{2}+(\mathrm{OC})^{2}$
[By Pythagoras theorem]
$\Rightarrow \quad(\mathrm{DC})^{2}=(8)^{2}+(15)^{2}$
$\Rightarrow \quad(\mathrm{DC})^{2}=64+225=289$
$\Rightarrow \quad \mathrm{DC}=\sqrt{289}=17 \mathrm{~cm}$
Perimeter of rhombus $=4 \times$ side $=4 \times 17=68 \mathrm{~cm}$
Thus, the perimeter of rhombus is 68 cm .

