Mathematics

(Chapter-14) (Symmetry)
 (Class - VII)
 Exercise 14.1

Question 1:

Copy the figures with punched holes and find the axes of symmetry for the following:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(1)
$\tau_{\text {tai }}$ Answer 1:

S.No.	Punched holed figures	The axes of symmetry
(a)		
(b)		

Question 2:

Express the following in exponential form:

(a)

(b)

(c)

(d)

(e)

Eni Answer 2:

(e)

Question 3:

In the following figures, the mirror line (i.e., the line of symmetry) is given as a dotted line. Complete each figure performing reflection in the dotted (mirror) line. (You might perhaps place a mirror along the dotted line and look into the mirror for the image). Are you able to recall the name of the figure you complete?

(a)

(b)

(c)

(d)

(e)

(f)

Answer 3:

S.No.	Question figures	Complete figures	Names of the figure
(a)			Square
(b)			
(c)			
(d)			

| (e) | Pentagon |
| :--- | :--- | :--- |
| (f) | |

Question 4:

The following figures have more than one line of symmetry. Such figures are said to have multiple lines of symmetry:

(a)

(b)

(c)

Identify multiple lines of symmetry, if any, in each of the following figures:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Gein Answer 4:

Question 5:

Copy the figure given here:
Take any one diagonal as a line of symmetry and shade a few more squares to make the figure symmetric about a diagonal. Is there more than one way to do that? Will the figure be symmetric about both the diagonals?

Answer 5:

Answer figures are:

Yes, there is more than one way.
Yes, this figure will be symmetric about both the diagonals.

Question 6:

Copy the diagram and complete each shape to be symmetric about the mirror line(s):

(a)

(b)

(c)

(d)

Eni Answer 6:

Question 7:

State the number of lines of symmetry for the following figures:
(a) An equilateral triangle
(b) An isosceles triangle
(c) A scalene triangle
(d) A square
(e) A rectangle
(f) A rhombus
(g) A parallelogram
(h) A quadrilateral
(i) A regular hexagon
(j) A circle

Answer 7:

(h) \quad Quadrilateral

Question 8:

What letters of the English alphabet have reflectional symmetry (i.e., symmetry related to mirror reflection) about.
(a) a vertical mirror
(b) a horizontal mirror
(c) both horizontal and vertical mirrors

Enin Answer 8:

(a) Vertical mirror - A, H, I, M, 0, T, U, V, W, X and Y

mirror	mirror		
A	A	U	U
H	H	V	V
I	I	W	W
M	M	X	X
O	O	Y	Y
\mathbf{T}	\mathbf{T}		

(b) Horizontal mirror - B, C, D, E, H, I, O and X

	B	C	D	E	H	I	0	X
mirror	мाmm	mmm		,			,	
	B	C	D	E	H	I	0	X

(c) Both horizontal and vertical mirror - $\mathrm{H}, \mathrm{I}, \mathrm{O}$ and X

Question 9:

Give three examples of shapes with no line of symmetry.

teini Answer 9:

The three examples are:
$>\quad$ Quadrilateral
$>\quad$ Scalene triangle
> Parallelogram

Question 10:

What other name can you give to the line of symmetry of:
(a) an isosceles triangle?
(b) a circle?

Eniui Answer 10:
(a) The line of symmetry of an isosceles triangle is median or altitude.
(b) The line of symmetry of a circle is diameter.

Exercise 14.2

Question 1:

Which of the following figures have rotational symmetry of order more than 1 :

(a)

(b)

(c)

(e)

(f)

$\tan _{\text {mici }}$ Answer 1:

Rotational symmetry of order more than 1 are $(a),(b),(d),(e)$ and (f) because in these figures, a complete turn, more than 1 number of times, an object looks exactly the same.

Question 2:

Give the order the rotational symmetry for each figure:

(a)

(b)
(f)

(c)

(d)

(e)

(g)

(h)
$\varepsilon_{\text {mai }}$ Answer 2:

S.No.	Problem figures	Rotational figures	Order of rotational symmetry
(a)			2

Exercise 14.3

Question 1:

Name any two figures that have both line symmetry and rotational symmetry.

tein Answer 1:

Circle and Square.

Question 2:

Draw, wherever possible, a rough sketch of:
(i) a triangle with both line and rotational symmetries of order more than 1.
(ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.
(iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry.
(iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.
Enai Answer 2:
(i) An equilateral triangle has both line and rotational symmetries of order more than 1.

Line symmetry:

Rotational symmetry:

(ii) An isosceles triangle has only one line of symmetry and no rotational symmetry of order more than 1.

Line symmetry:

(iii) It is not possible because order of rotational symmetry is more than 1 of a figure, most acertain the line of symmetry.
(iv) A trapezium which has equal non-parallel sides, a quadrilateral with line symmetry but not a rotational symmetry of order more than 1 .

Line symmetry:

Rotational symmetry:

Question 3:

In a figure has two or more lines of symmetry, should it have rotational symmetry of order more than 1 ?

tuin Answer 3:

Yes, because every line through the centre forms a line of symmetry and it has rotational symmetry around the centre for every angle.

Question 4:

Fill in the blanks:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square			
Rectangle			
Rhombus			
Equilateral triangle			
Regular hexagon			
Circle			
Semi-circle			

Emic Answer 4:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	Intersecting point of diagonals.	4	90°
Rectangle	Intersecting point of diagonals.	2	180°
Rhombus	Intersecting point of diagonals.	2	180°
Equilateral triangle	Intersecting point of medians.	2	120°
Regular hexagon	Intersecting point of diagonals.	6	60°
Circle	Centre	infinite	At every point
Semi-circle	Mid-point of diameter	1	360°

Question 5:

Name the quadrilateral which has both line and rotational symmetry of order more than 1.
teas Answer 5:
Square has both line and rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

Question 6:

After rotating by 60° about a centre, a figure looks exactly the same as its original position. At what other angles will this happen for the figure?

tein Answer 6:

Other angles will be $120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}, 360^{\circ}$.
For 60° rotation:
It will rotate six times.

For 120° rotation:
It will rotate three times.

For 180° rotation:
It will rotate two times.

For 360° rotation:
It will rotate one time.

Question 7:

Can we have a rotational symmetry of order more than 1 whose angle of rotation is:
(i) 45°
(ii) 17° ?

Emin Answer 7:

(i) If the angle of rotation is 45°, then symmetry of order is possible and would be 8 rotations.
(ii) If the angle of rotational is 17°, then symmetry of order is not possible because 360° is not complete divided by 17°.

