Mathematics

(Chapter - 14) (Symmetry)(Class - VII)

Exercise 14.1

Question 1:

Copy the figures with punched holes and find the axes of symmetry for the following:

Question 2:

Express the following in exponential form:

Answer 2:

Essai Allswer 2:							
S.No.	Line(s) of symmetry	Other holes on figures					
(a)							
(b)	•	•					
(c)							
(d)							

Question 3:

In the following figures, the mirror line (i.e., the line of symmetry) is given as a dotted line. Complete each figure performing reflection in the dotted (mirror) line. (You might perhaps place a mirror along the dotted line and look into the mirror for the image). Are you able to recall the name of the figure you complete?

East Answer 3:

S.No.	Question figures	Complete figures	Names of the figure
(a)		40	Square
(b)			Triangle
(c)			Rhombus
(d)			Circle

Question 4:

The following figures have more than one line of symmetry. Such figures are said to have multiple lines of symmetry:

Identify multiple lines of symmetry, if any, in each of the following figures:

Answer 4:

S.No.	Problem Figures	Lines of symmetry
(a)		
(b)		
(c)		
(d)		
(e)		
(f)		Sine Sine
(g)		

Question 5:

Copy the figure given here:

Take any one diagonal as a line of symmetry and shade a few more squares to make the figure symmetric about a diagonal. Is there more than one way to do that? Will the figure be symmetric about both the diagonals?

Example 2 Answer 5:

Answer figures are:

Yes, there is more than one way.

Yes, this figure will be symmetric about both the diagonals.

Question 6:

Copy the diagram and complete each shape to be symmetric about the mirror line(s):

Answer 6:

Question 7:

State the number of lines of symmetry for the following figures:

- (a) An equilateral triangle
- (b) An isosceles triangle
- (e) A rectangle
- (c) A scalene triangle (f) A rhombus

(d) A square (g) A parallelogram

(j) A circle

- (h) A quadrilateral
- (i) A regular hexagon

Answer 7:

Ewari AIISW		5	N. 1 CH
S.No.	Figure's name	Diagram with	Number of lines
		symmetry	
(a)	Equilateral triangle		3
(b)	Isosceles triangle		1
(c)	Scalene triangle		0
(d)	Square		4
(e)	Rectangle		2
(f)	Rhombus		2
(g)	Parallelogram		0

(h)	Quadrilateral	0
(i)	Regular Hexagon	6
(i)	Circle	Infinite

Question 8:

What letters of the English alphabet have reflectional symmetry (i.e., symmetry related to mirror reflection) about.

- (a) a vertical mirror
- (b) a horizontal mirror
- (c) both horizontal and vertical mirrors

Answer 8:

(a) Vertical mirror - A, H, I, M, O, T, U, V, W, X and Y

(b) Horizontal mirror – B, C, D, E, H, I, O and X

	В	\mathbf{C}	D	\mathbf{E}	H	I	0	X
mirror	mmm	inninininini	annana ann	manumin.	mmmmm		ananananananananananananananananananan	mmmma
	В	\mathbf{C}	D	\mathbf{E}	H	\mathbf{I}	O	\mathbf{X}

(c) Both horizontal and vertical mirror - H, I, O and X

Question 9:

Give three examples of shapes with no line of symmetry.

Answer 9:

The three examples are:

- Quadrilateral
- Scalene triangle
- Parallelogram

Question 10:

What other name can you give to the line of symmetry of:

- (a) an isosceles triangle?
- (b) a circle?

Answer 10:

- (a) The line of symmetry of an isosceles triangle is median or altitude.
- (b) The line of symmetry of a circle is diameter.

Exercise 14.2

Question 1:

Which of the following figures have rotational symmetry of order more than 1:

Rotational symmetry of order more than 1 are (a),(b),(d),(e) and (f) because in these figures, a complete turn, more than 1 number of times, an object looks exactly the same.

Question 2:

Give the order the rotational symmetry for each figure:

Answer 2:

S.No.	Problem figures	Rotational figures	Order of rotational symmetry
(a)	*	180° 180° M	2

Exercise 14.3

Question 1:

Name any two figures that have both line symmetry and rotational symmetry.

Answer 1:

Circle and Square.

Question 2:

Draw, wherever possible, a rough sketch of:

- (i) a triangle with both line and rotational symmetries of order more than 1.
- (ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.
- (iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry.
- (iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Answer 2:

(i) An equilateral triangle has both line and rotational symmetries of order more than 1.

Line symmetry:

Rotational symmetry:

(ii) An isosceles triangle has only one line of symmetry and no rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

- (iii) It is not possible because order of rotational symmetry is more than 1 of a figure, most acertain the line of symmetry.
- (iv) A trapezium which has equal non-parallel sides, a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

Question 3:

In a figure has two or more lines of symmetry, should it have rotational symmetry of order more than 1?

Answer 3:

Yes, because every line through the centre forms a line of symmetry and it has rotational symmetry around the centre for every angle.

Question 4:

Fill in the blanks:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square		<	
Rectangle		00,	
Rhombus		-07	
Equilateral triangle		70,	
Regular hexagon			
Circle	.(50	
Semi-circle			

Answer 4:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	Intersecting point of diagonals.	4	90°
Rectangle Intersecting point of diagonals.		2	180°
Rhombus	Intersecting point of diagonals.	2	180°
Equilateral triangle	Intersecting point of medians.	3	120°
Regular hexagon	Intersecting point of diagonals.	6	60°
Circle	Centre	infinite	At every point
Semi-circle	Mid-point of diameter	1	360°

Question 5:

Name the quadrilateral which has both line and rotational symmetry of order more than 1.

Answer 5:

Square has both line and rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

Question 6:

After rotating by 60° about a centre, a figure looks exactly the same as its original position. At what other angles will this happen for the figure?

Answer 6:

Other angles will be 120°,180°,240°,300°,360°.

For 60° rotation:

It will rotate six times.

For 120° rotation: It will rotate three times.

For 180° rotation: It will rotate two times.

For 360° rotation: It will rotate one time.

Question 7:

Can we have a rotational symmetry of order more than 1 whose angle of rotation is:

(i) 45

(ii) 17°?

Answer 7:

- (i) If the angle of rotation is 45°, then symmetry of order is possible and would be 8 rotations.
- (ii) If the angle of rotational is 17°, then symmetry of order is not possible because 360° is not complete divided by 17°.

MMM. Areantiopper in