Mathematics

(Chapter - 11) (Perimeter and Area) (Class - VII)
 Exercise 11.1

Question 1:

The length and breadth of a rectangular piece of land are 500 m and 300 m respectively. Find:
(i) Its area.
(ii) The cost of the land, if $1 \mathrm{~m}^{2}$ of the land costs ₹ 10,000 .

$\operatorname{tax}_{\text {mid }}$ Answer 1:

Given: Length of a rectangular piece of land $=500 \mathrm{~m}$ and
Breadth of a rectangular piece of land $=300 \mathrm{~m}$
(i) Area of a rectangular piece of land = Length \times Breadth

$$
=500 \times 300
$$

$$
=1,50,000 \mathrm{~m}^{2}
$$

(ii) Since, the cost of $1 \mathrm{~m}^{2}$ land $=₹ 10,000$

Therefore, the cost of $1,50,000 \mathrm{~m}^{2}$ land $=10,000 \times 1,50,000$
= ₹1,50,00,00,000

Question 2:

Find the area of a square park whose perimeter is 320 m .

teai Answer 2:

Given: Perimeter of square park $=320 \mathrm{~m}$
$\Rightarrow \quad 4 \times$ side $=320$

$$
\Rightarrow \quad \text { side }=\frac{320}{4}=80 \mathrm{~m}
$$

Now, Area of square park $=$ side \times side $=80 \times 80=6400 \mathrm{~m}^{2}$
Thus, the area of square park is $6400 \mathrm{~m}^{2}$.

Question 3:

Find the breadth of a rectangular plot of land, if its area is $440 \mathrm{~m}^{2}$ and the length is 22 m .
Also find its perimeter.

tmin Answer 3:

Area of rectangular park $=440 \mathrm{~m}^{2}$
$\Rightarrow \quad$ length x breadth $=440 \mathrm{~m}^{2}$
$\Rightarrow \quad 22 \times$ breadth $=440$

$$
\Rightarrow \quad \text { breadth }=\frac{440}{22}=20 \mathrm{~m}
$$

Now, Perimeter of rectangular park $=2$ (length + breadth)

$$
\begin{aligned}
& =2(22+20) \\
& =2 \times 42=84 \mathrm{~m}
\end{aligned}
$$

Thus, the perimeter of rectangular park is 84 m .

Question 4:

The perimeter of a rectangular sheet is 100 cm . If the length is 35 cm , find its breadth. Also find the area.

tmin Answer 4:

Perimeter of the rectangular sheet $=100 \mathrm{~cm}$
$\Rightarrow \quad 2$ (length + breadth $)=100 \mathrm{~cm}$
$\Rightarrow \quad 2(35+$ breadth $)=100$
$\Rightarrow \quad 35+$ breadth $=\frac{100}{2}$
$\Rightarrow \quad 35+$ breadth $=50$
$\Rightarrow \quad$ breadth $=50-35$
$\Rightarrow \quad$ breadth $=15 \mathrm{~cm}$
Now, Area of rectangular sheet = length x breadth

$$
=35 \times 15=525 \mathrm{~cm}^{2}
$$

Thus, breadth and area of rectangular sheet are 15 cm and $525 \mathrm{~cm}^{2}$ respectively.

Question 5:

The area of a square park is the same as of a rectangular park. If the side of the square park is 60 m and the length of the rectangular park is 90 cm , find the breadth of the rectangular park.

$\operatorname{tanin}^{\text {minswer 5: }}$

Given: The side of the square park $=60 \mathrm{~m}$
The length of the rectangular park $=90 \mathrm{~m}$
According to the question,
Area of square park = Area of rectangular park
$\Rightarrow \quad$ side x side $=$ length x breadth
$\Rightarrow \quad 60 \times 60=90 \times$ breadth
$\Rightarrow \quad$ breadth $=\frac{60 \times 60}{90}=40 \mathrm{~m}$
Thus, the breadth of the rectangular park is 40 m .

Question 6:

A wire is in the shape of a rectangle. Its length is 40 cm and breadth is 22 cm . If the same wire is rebent in the shape of a square, what will be the measure of each side. Also find which shape encloses more area?

Enia Answer 6:

According to the question,

$$
\text { Perimeter of square }=\text { Perimeter of rectangle }
$$

$\Rightarrow \quad 4 \times$ side $=2$ (length + breadth $)$
$\Rightarrow \quad 4 \times$ side $=2(40+22)$
$\Rightarrow \quad 4 \times$ side $=2 \times 62$
$\Rightarrow \quad$ side $=\frac{2 \times 62}{4}=31 \mathrm{~cm}$
Thus, the side of the square is 31 cm .
Now, Area of rectangle $=$ length \times breadth $=40 \times 22=880 \mathrm{~cm}^{2}$
And Area of square $=$ side \times side $=31 \times 31=961 \mathrm{~cm}^{2}$
Therefore, on comparing, the area of square is greater than that of rectangle.

Question 7:

The perimeter of a rectangle is 130 cm . If the breadth of the rectangle is 30 cm , find its length. Also, find the area of the rectangle.

tain Answer 7:

Perimeter of rectangle $=130 \mathrm{~cm}$
$\Rightarrow \quad 2$ (length + breadth) $=130 \mathrm{~cm}$
$\Rightarrow \quad 2$ (length +30) $=130$
$\Rightarrow \quad$ length $+30=\frac{130}{2}$
$\Rightarrow \quad$ length $+30=65$
$\Rightarrow \quad$ length $=65-30=35 \mathrm{~cm}$
Now area of rectangle $=$ length \times breadth $=35 \times 30=1050 \mathrm{~cm}^{2}$
Thus, the area of rectangle is $1050 \mathrm{~cm}^{2}$.

Question 8:

A door of length 2 m and breadth 1 m is fitted in a wall. The length of the wall is 4.5 m and the breadth is 3.6 m . Find the cost of white washing the wall, if the rate of white washing the wall is ₹ 20 per m^{2}.

Answer 8:

Area of rectangular door $=$ length x breadth $=2 \mathrm{mx} 1 \mathrm{~m}=2 \mathrm{~m}^{2}$
Area of wall including door $=$ length x breadth $=4.5 \mathrm{mx} 3.6 \mathrm{~m}=16.2 \mathrm{~m}^{2}$
Now, Area of wall excluding door
= Area of wall including door - Area of door
$=16.2-2=14.2 \mathrm{~m}^{2}$
Since, \quad The rate of white washing of $1 \mathrm{~m}^{2}$ the wall $=₹ 20$
Therefore, the rate of white washing of $14.2 \mathrm{~m}^{2}$ the wall $=20 \times 14.2$
= ₹284

Thus, the cost of white washing the wall excluding the door is ₹ 284 .

Exercise 11.2

Question 1:

Find the area of each of the following parallelograms:

(a)

(d)

(b)

(e)

$\tau_{\text {misi }}$ Answer 1:

We know that the area of parallelogram = base x height
(a) Here base $=7 \mathrm{~cm}$ and height $=4 \mathrm{~cm}$
$\therefore \quad$ Area of parallelogram $=7 \times 4=28 \mathrm{~cm}^{2}$
(b) Here base $=5 \mathrm{~cm}$ and height $=3 \mathrm{~cm}$
$\therefore \quad$ Area of parallelogram $=5 \times 3=15 \mathrm{~cm}^{2}$
(c) Here base $=2.5 \mathrm{~cm}$ and height $=3.5 \mathrm{~cm}$
$\therefore \quad$ Area of parallelogram $=2.5 \times 3.5=8.75 \mathrm{~cm}^{2}$
(d) Here base $=5 \mathrm{~cm}$ and height $=4.8 \mathrm{~cm}$
$\therefore \quad$ Area of parallelogram $=5 \times 4.8=24 \mathrm{~cm}^{2}$
(e) Here base $=2 \mathrm{~cm}$ and height $=4.4 \mathrm{~cm}$
$\therefore \quad$ Area of parallelogram $=2 \times 4.4=8.8 \mathrm{~cm}^{2}$

Question 2:

Find the area of each of the following triangles:

(a)

(b)

(c)

(d)

Answer 2:

We know that the area of triangle $=\frac{1}{2} \mathrm{x}$ base x height
(a) Here, base $=4 \mathrm{~cm}$ and height $=3 \mathrm{~cm}$
$\therefore \quad$ Area of triangle $=\frac{1}{2} \times 4 \times 3=6 \mathrm{~cm}^{2}$
(b) Here, base $=5 \mathrm{~cm}$ and height $=3.2 \mathrm{~cm}$

$$
\therefore \quad \text { Area of triangle }=\frac{1}{2} \times 5 \times 3.2=8 \mathrm{~cm}^{2}
$$

(c) Here, base $=3 \mathrm{~cm}$ and height $=4 \mathrm{~cm}$
$\therefore \quad$ Area of triangle $=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}$
(d) Here, base $=3 \mathrm{~cm}$ and height $=2 \mathrm{~cm}$
$\therefore \quad$ Area of triangle $=\frac{1}{2} \times 3 \times 2=3 \mathrm{~cm}^{2}$

Question 3:

Find the missing values:

S. No.	Base	Height	Area of the parallelogram
a.	20 cm		$246 \mathrm{~cm}^{2}$
b.		15 cm	$154.5 \mathrm{~cm}^{2}$
c.		84 cm	$48.72 \mathrm{~cm}^{2}$
d.	15.6 cm		$16.38 \mathrm{~cm}^{2}$

E Answer 3:

We know that the area of parallelogram $=$ base x height
(a) Here, base $=20 \mathrm{~cm}$ and area $=246 \mathrm{~cm}^{2}$
$\therefore \quad$ Area of parallelogram $=$ base x height
$\Rightarrow \quad 246=20 x$ height
$\Rightarrow \quad$ height $=\frac{246}{20}=12.3 \mathrm{~cm}$
(b) Here, height $=15 \mathrm{~cm}$ and area $=154.5 \mathrm{~cm}^{2}$
$\therefore \quad$ Area of parallelogram $=$ base x height
$\Rightarrow \quad 154.5=$ base x 15
\Rightarrow base $=\frac{154.5}{15}=10.3 \mathrm{~cm}$
(c) Here, height $=8.4 \mathrm{~cm}$ and area $=48.72 \mathrm{~cm}^{2}$
$\therefore \quad$ Area of parallelogram $=$ base x height
$\Rightarrow \quad 48.72$ = base x 8.4
$\Rightarrow \quad$ base $=\frac{48.72}{8.4}=5.8 \mathrm{~cm}$
(d) Here, base $=15.6 \mathrm{~cm}$ and area $=16.38 \mathrm{~cm}^{2}$
$\therefore \quad$ Area of parallelogram $=$ base x height
$\Rightarrow \quad 16.38=15.6 \mathrm{x}$ height
$\Rightarrow \quad$ height $=\frac{16.38}{15.6}=1.05 \mathrm{~cm}$

Thus, the missing values are:

S. No.	Base	Height	Area of the parallelogram
a.	20 cm	$\mathbf{1 2 . 3} \mathbf{~ c m}$	$246 \mathrm{~cm}^{2}$
b.	$\mathbf{1 0 . 3} \mathbf{~ c m}$	15 cm	$154.5 \mathrm{~cm}^{2}$
c.	$\mathbf{5 . 8} \mathbf{~ c m}$	84 cm	$48.72 \mathrm{~cm}^{2}$
d.	15.6 cm	$\mathbf{1 . 0 5}$	$16.38 \mathrm{~cm}^{2}$

Question 4:

Find the missing values:

Base	Height	Area of triangle
$\mathbf{1 5 ~ c m ~}$	----	$87 \mathrm{~cm}^{2}$
----	31.4 mm	$1256 \mathrm{~mm}^{2}$
$\mathbf{2 2 ~ c m}$	----	$170.5 \mathrm{~cm}^{2}$

Emin Answer 4:

We know that the area of triangle $=\frac{1}{2} \times$ base \times height
In first row, base $=15 \mathrm{~cm}$ and area $=87 \mathrm{~cm}^{2}$

$$
\begin{array}{ll}
\therefore & 87=\frac{1}{2} \times 15 \times \text { height } \\
\Rightarrow & \text { height }=\frac{87 \times 2}{15} 11.6 \mathrm{~cm}
\end{array}
$$

In second row, height $=31.4 \mathrm{~mm}$ and area $=1256 \mathrm{~mm}^{2}$

$$
\begin{array}{ll}
\therefore & 1256=\frac{1}{2} \times \text { base } \times 31.4 \\
\Rightarrow & \text { base }=\frac{1256 \times 2}{31.4} 80 \mathrm{~mm}
\end{array}
$$

In third row, base $=22 \mathrm{~cm}$ and area $=170.5 \mathrm{~cm}^{2}$

$$
\begin{array}{ll}
\therefore & 170.5=\frac{1}{2} \times 22 \times \text { height } \\
\Rightarrow & \text { height }=\frac{170.5 \times 2}{22} 15.5 \mathrm{~cm}
\end{array}
$$

Thus, the missing values are:

Base	Height	Area of triangle
$\mathbf{1 5 ~ c m ~}$	$\mathbf{1 1 . 6} \mathbf{~ c m}$	$87 \mathrm{~cm}^{2}$
$\mathbf{8 0 ~ m m}$	31.4 mm	$1256 \mathrm{~mm}^{2}$
$\mathbf{2 2 ~ c m ~}$	$\mathbf{1 5 . 5} \mathbf{~ c m}$	$170.5 \mathrm{~cm}^{2}$

Question 5:

PQRS is a parallelogram (Fig 11.23). QM is the height from Q to SR and QN is the height from Q to $P S$. If $S R=12 \mathrm{~cm}$ and $Q M=7.6 \mathrm{~cm}$. Find:
(a) the area of the parallelogram PRS
(b) QN , if $\mathrm{PS}=8 \mathrm{~cm}$

Fig 11.23

Emini Answer 5:

Given: $\quad \mathrm{SR}=12 \mathrm{~cm}, \mathrm{QM}=7.6 \mathrm{~cm}, \mathrm{PS}=8 \mathrm{~cm}$.
(a) Area of parallelogram $=$ base \times height

$$
=12 \times 7.6=91.2 \mathrm{~cm}^{2}
$$

(b) Area of parallelogram = base x height

$$
\begin{array}{ll}
\Rightarrow & 91.2=8 \times \mathrm{QN} \\
\Rightarrow & \mathrm{QN}=\frac{91.2}{8}=11.4 \mathrm{~cm}
\end{array}
$$

Question 6:

DL and $B M$ are the heights on sides $A B$ and AD respectively of parallelogram ABCD (Fig 11.24). If the area of the parallelogram is $1470 \mathrm{~cm}^{2}, \mathrm{AB}=35 \mathrm{~cm}$ and $\mathrm{AD}=49 \mathrm{~cm}$, find the length of BM and DL.

Answer 6:

Fig 11.24
Given: Area of parallelogram $=1470 \mathrm{~cm}^{2}$
Base (AB) $=35 \mathrm{~cm}$ and base (AD) $=49 \mathrm{~cm}$
Since Area of parallelogram = base x height
$\Rightarrow \quad 1470=35 \times$ DL

$$
\begin{array}{ll}
\Rightarrow & \text { DL }=\frac{1470}{35} \\
\Rightarrow & \text { DL }=42 \mathrm{~cm} \\
\text { Again, } & \text { Area of parallelogram = base } \times \text { height } \\
\Rightarrow & 1470=49 \times \text { BM } \\
\Rightarrow & \text { BM }=\frac{1470}{49} \\
\Rightarrow & \text { BM }=30 \mathrm{~cm}
\end{array}
$$

Thus, the lengths of DL and BM are 42 cm and 30 cm respectively.

Question 7:

$\triangle \mathrm{ABC}$ is right angled at A (Fig 11.25). AD is perpendicular to BC . If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=13 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$, find the area of $\triangle A B C$. Also, find the length of $A D$.

Fig 11.25

Emin Answer 7:

In right angles triangle $\mathrm{BAC}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm}$
Area of triangle $=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times A B \times A C$

$$
=\frac{1}{2} \times 5 \times 12=30 \mathrm{~cm}^{2}
$$

Now, in $\triangle \mathrm{ABC}$,
Area of triangle $\mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}$
$\Rightarrow \quad 30=\frac{1}{2} \times 13 \times \mathrm{AD}$
$\Rightarrow \quad \mathrm{AD}=\frac{30 \times 2}{13}=\frac{60}{13} \mathrm{~cm}$

Question 8:

$\Delta \mathrm{ABC}$ is isosceles with $\mathrm{AB}=\mathrm{AC}=7.5 \mathrm{~cm}$ and $\mathrm{BC}=9 \mathrm{~cm}$ (Fig 11.26). The height AD from A to $B C$, is 6 cm . Find the area of $\triangle A B C$. What will be the height from C to $A B$ i.e., $C E$?

Fig 11.26

Emini Answer 8:

In $\triangle \mathrm{ABC}, \quad \mathrm{AD}=6 \mathrm{~cm}$ and $\mathrm{BC}=9 \mathrm{~cm}$
Area of triangle $=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times B C \times A D$

$$
=\frac{1}{2} \times 9 \times 6=27 \mathrm{~cm}^{2}
$$

Again, Area of triangle $=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times A B \times C E$

$$
\begin{array}{ll}
\Rightarrow & 27=\frac{1}{2} \times 7.5 \times \mathrm{CE} \\
\Rightarrow & \mathrm{CE}=\frac{27 \times 2}{7.5} \\
\Rightarrow & \mathrm{CE}=7.2 \mathrm{~cm}
\end{array}
$$

Thus, height from C to AB i.e., CE is 7.2 cm .

Exercise 11.3

Question 1:

Find the circumference of the circles with the following radius: (Take $\pi=\frac{22}{7}$)
(a) 14 cm
(b) 28 mm
(c) 21 cm

Emini Answer 1:

(a) Circumference of the circle $=2 \pi r=2 \times \frac{22}{7} \times 14=88 \mathrm{~cm}$
(b) Circumference of the circle $=2 \pi r=2 \times \frac{22}{7} \times 28=176 \mathrm{~mm}$
(c) Circumference of the circle $=2 \pi r=2 \times \frac{22}{7} \times 21=132 \mathrm{~cm}$

Question 2:

Find the area of the following circles, given that: $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
(a) radius $=14 \mathrm{~mm}$
(b) diameter $=49 \mathrm{~m}$
(c) radius 5 cm

Emin Answer 2:
(a) Area of circle $=\pi r^{2}=\frac{22}{7} \times 14 \times 14$

$$
\begin{aligned}
& =22 \times 2 \times 14 \\
& =616 \mathrm{~mm}^{2}
\end{aligned}
$$

(b) Diameter $=49 \mathrm{~m}$

$$
\begin{aligned}
\therefore \quad \text { radius }=\frac{49}{2} & =24.5 \mathrm{~m} \\
\therefore \quad \text { Area of circle } & =\pi r^{2}=\frac{22}{7} \times 24.5 \times 24.5 \\
& =22 \times 3.5 \times 24.5 \\
& =1886.5 \mathrm{~m}^{2}
\end{aligned}
$$

(c) Area of circle $=\pi r^{2}=\frac{22}{7} \times 5 \times 5$

$$
=\frac{550}{7} \mathrm{~cm}^{2}
$$

Question 3:

If the circumference of a circular sheet is 154 m , find its radius. Also find the area of the sheet. (Take $\pi=\frac{22}{7}$)

Answer 3:

Circumference of the circular sheet $=154 \mathrm{~m}$

$$
\begin{array}{ll}
\Rightarrow & 2 \pi r=154 \mathrm{~m} \\
\Rightarrow & r=\frac{154}{2 \pi} \\
\Rightarrow & r=\frac{154 \times 7}{2 \times 22}=24.5 \mathrm{~m}
\end{array}
$$

Now Area of circular sheet $=\pi r^{2}=\frac{22}{7} \times 24.5 \times 24.5$

$$
=22 \times 3.5 \times 24.5=1886.5 \mathrm{~m}^{2}
$$

Thus, the radius and area of circular sheet are 24.5 m and $1886.5 \mathrm{~m}^{2}$ respectively.

Question 4:

A gardener wants to fence a circular garden of diameter 21 m . Find the length of the rope he needs to purchase, if he makes 2 rounds of fence. Also, find the costs of the rope, if it cost ₹ 4 per meter. (Take $\pi=\frac{22}{7}$)

Answer 4:

Diameter of the circular garden $=21 \mathrm{~m}$
$\therefore \quad$ Radius of the circular garden $=\frac{21}{2} \mathrm{~m}$
Now Circumference of circular garden $=2 \pi r=2 \times \frac{22}{7} \times \frac{21}{2}$

$$
=22 \times 3=66 \mathrm{~m}
$$

The gardener makes 2 rounds of fence so the total length of the rope of fencing

$$
\begin{aligned}
& =2 \times 2 \pi r \\
& =2 \times 66=132 \mathrm{~m}
\end{aligned}
$$

Since, the cost of 1 meter rope $=₹ 4$
Therefore, cost of 132 meter rope $=4 \times 132=₹ 528$

Question 5:

From a circular sheet of radius 4 cm , a circle of radius 3 cm is removed. Find the area of the remaining sheet. (Take $\pi=3.14$)

teini Answer 5:

Radius of circular sheet $(\mathrm{R})=4 \mathrm{~cm}$ and
radius of removed circle $(r)=3 \mathrm{~cm}$
Area of remaining sheet

$$
\begin{aligned}
& =\text { Area of circular sheet }- \text { Area of removed circle } \\
& =\pi \mathrm{R}^{2}-\pi r^{2}=\pi\left(\mathrm{R}^{2}-r^{2}\right) \\
& =\pi\left(4^{2}-3^{2}\right)=\pi(16-9) \\
& =3.14 \times 7=21.98 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the area of remaining sheet is $21.98 \mathrm{~cm}^{2}$.

Question 6:

Saima wants to put a lace on the edge of a circular table cover of diameter 1.5 m . Find the length of the lace required and also find its cost if one meter of the lace costs ₹15. (Take $\pi=3.14$)

Answer 6:

Diameter of the circular table cover $=1.5 \mathrm{~m}$
\therefore Radius of the circular table cover $=\frac{1.5}{2} \mathrm{~m}$
Circumference of circular table cover $=2 \pi r$

$$
\begin{aligned}
& =2 \times 3.14 \times \frac{1.5}{2} \\
& =4.71 \mathrm{~m}
\end{aligned}
$$

Therefore the length of required lace is 4.71 m .
Now the cost of 1 m lace = ₹ 15
Then the cost of 4.71 m lace $=15 \times 4.71$

$$
\text { = ₹ } 70.65
$$

Hence, the cost of 4.71 m lace is ₹ 70.65 .

Question 7:

Find the perimeter of the adjoining figure, which is a semicircle including its diameter.

Answer 7:

Diameter $=10 \mathrm{~cm}$
\therefore Radius $=\frac{10}{2}=5 \mathrm{~cm}$
According to question,
Perimeter of figure $=$ Circumference of semi-circle + diameter

$$
\begin{aligned}
& =\pi r+\mathrm{D} \\
& =\frac{22}{7} \times 5+10=\frac{110}{7}+10 \\
& =\frac{110+70}{7}=\frac{180}{7}=25.71 \mathrm{~cm}
\end{aligned}
$$

Thus, the perimeter of the given figure is 25.71 cm .

Question 8:

Find the cost of polishing a circular table-top of diameter 1.6 m , if the rate of polishing is $₹ 15 / \mathrm{m}^{2}$. (Take $\pi=3.14$)
$\varepsilon_{\text {tain }}$ Answer 8:
Diameter of the circular table top $=1.6 \mathrm{~m}$
\therefore Radius of the circular table top $=\frac{1.6}{2}=0.8 \mathrm{~m}$
Area of circular table top $\quad=\pi r^{2}$

$$
=3.14 \times 0.8 \times 0.8
$$

$$
=2.0096 \mathrm{~m}^{2}
$$

Now cost of $1 \mathrm{~m}^{2}$ polishing $=₹ 15$
Then cost of $2.0096 \mathrm{~m}^{2}$ polishing $=15 \times 2.0096=₹ 30.14$ (approx.)
Thus, the cost of polishing a circular table top is ₹ 30.14 (approx.)

Question 9:

Shazli took a wire of length 44 cm and bent it into the shape of a circle. Find the radius of that circle. Also find its area. If the same wire is bent into the shape of a square, what will be the length of each of its sides? Which figure encloses more area, the circle or the square? (Take $\pi=\frac{22}{7}$)

Enain Answer 9:

Total length of the wire $=44 \mathrm{~cm}$
$\therefore \quad$ the circumference of the circle $=2 \pi r=44 \mathrm{~cm}$
$\Rightarrow \quad 2 \times \frac{22}{7} \times r=44$
$\Rightarrow \quad r=\frac{44 \times 7}{2 \times 22}=7 \mathrm{~cm}$
Now Area of the circle $=\pi r^{2}$

$$
=\frac{22}{7} \times 7 \times 7=154 \mathrm{~cm}^{2}
$$

Now the wire is converted into square.
Then perimeter of square $=44 \mathrm{~cm}$

$$
\Rightarrow \quad 4 \times \text { side }=44
$$

$\Rightarrow \quad$ side $=\frac{44}{4}=11 \mathrm{~cm}$
Now area of square $=$ side \times side $=11 \times 11=121 \mathrm{~cm}^{2}$
Therefore, on comparing, the area of circle is greater than that of square, so the circle enclosed more area.

Question 10:

From a circular card sheet of radius 14 cm , two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1 cm are removed (as shown in the adjoining figure). Find the area of the remaining sheet. (Take $\pi=\frac{22}{7}$)

E Answer 10:

Radius of circular sheet $(\mathrm{R})=14 \mathrm{~cm}$ and Radius of smaller circle $(r)=3.5 \mathrm{~cm}$
Length of rectangle $(l)=3 \mathrm{~cm}$ and breadth of rectangle $(b)=1 \mathrm{~cm}$
According to question,
Area of remaining sheet=Area of circular sheet- (Area of two smaller circle + Area of rectangle)

$$
\begin{aligned}
& =\pi \mathrm{R}^{2}-\left[2\left(\pi r^{2}\right)+(l \times b)\right] \\
& =\frac{22}{7} \times 14 \times 14-\left[\left(2 \times \frac{22}{7} \times 3.5 \times 3.5\right)-(3 \times 1)\right] \\
& =22 \times 14 \times 2-[44 \times 0.5 \times 3.5+3] \\
& =616-80 \\
& =536 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore the area of remaining sheet is $536 \mathrm{~cm}^{2}$.

Question 11:

A circle of radius 2 cm is cut out from a square piece of an aluminium sheet of side 6 cm .
What is the area of the left over aluminium sheet? (Take $\pi=3.14$)

teax Answer 11:

Radius of circle $=2 \mathrm{~cm}$ and side of aluminium square sheet $=6 \mathrm{~cm}$
According to question,
Area of aluminium sheet left $=$ Total area of aluminium sheet - Area of circle

$$
\begin{aligned}
& =\text { side } \times \text { side }-\pi r^{2} \\
& =6 \times 6-\frac{22}{7} \times 2 \times 2 \\
& =36-12.56 \\
& =23.44 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of aluminium sheet left is $23.44 \mathrm{~cm}^{2}$.

Question 12:

The circumference of a circle is 31.4 cm . Find the radius and the area of the circle. (Take $\pi=3.14$)

EAnswer 12:

The circumference of the circle $=31.4 \mathrm{~cm}$

$$
\begin{array}{ll}
\Rightarrow & 2 \pi r=31.4 \\
\Rightarrow & 2 \times 3.14 \times r=31.4 \\
\Rightarrow & r=\frac{31.4}{2 \times 3.14}=5 \mathrm{~cm}
\end{array}
$$

Then area of the circle $=\pi r^{2}=3.14 \times 5 \times 5$

$$
=78.5 \mathrm{~cm}^{2}
$$

Therefore, the radius and the area of the circle are 5 cm and $78.5 \mathrm{~cm}^{2}$ respectively.

Question 13:

A circular flower bed is surrounded by a path 4 m wide. The diameter of the flower bed is 66 m . What is the area of this path? (Take $\pi=3.14$)

Emin Answer 13:

Diameter of the circular flower bed $=66 \mathrm{~m}$
$\therefore \quad$ Radius of circular flower bed $(r)=\frac{66}{2}=33 \mathrm{~m}$
$\therefore \quad$ Radius of circular flower bed with 4 m wide path $(\mathrm{R})=33+4=37 \mathrm{~m}$

According to the question,
Area of path $=$ Area of bigger circle - Area of smaller circle

$$
\begin{aligned}
& =\pi \mathrm{R}^{2}-\pi r^{2}=\pi\left(\mathrm{R}^{2}-r^{2}\right) \\
& =\pi\left[(37)^{2}-(33)^{2}\right] \\
& =3.14[(37+33)(37-33)]
\end{aligned}
$$

$$
\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]
$$

$$
\begin{aligned}
& =3.14 \times 70 \times 4 \\
& =879.20 \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, the area of the path is $879.20 \mathrm{~m}^{2}$.

Question 14:

A circular flower garden has an area of $314 \mathrm{~m}^{2}$. A sprinkler at the centre of the garden can cover an area that has a radius of 12 m . Will the sprinkler water the entire garden? (Take $\pi=3.14$)

tmin Answer 14:

Circular area by the sprinkler $=\pi r^{2}$

$$
\begin{aligned}
& =3.14 \times 12 \times 12 \\
& =3.14 \times 144 \\
& =452.16 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the circular flower garden $=314 \mathrm{~m}^{2}$
Since Area of circular flower garden is smaller than area by sprinkler.
Therefore, the sprinkler will water the entire garden.

Question 15:

Find the circumference of the inner and the outer circles, shown in the adjoining figure.
(Take $\pi=3.14$)

Answer 15:

Radius of outer circle $(r)=19 \mathrm{~m}$
\therefore Circumference of outer circle $\quad=2 \pi r=2 \times 3.14 \times 19$

$$
\text { = } 119.32 \mathrm{~m}
$$

Now radius of inner circle $\left(r^{\prime}\right) \quad=19-10=9 \mathrm{~m}$
\therefore Circumference of inner circle $=2 \pi r^{\prime}=2 \times 3.14 \times 9$

$$
=56.52 \mathrm{~m}
$$

Therefore, the circumferences of inner and outer circles are 56.52 m and 119.32 m respectively.

Question 16:

How many times a wheel of radius 28 cm must rotate to go 352 m ? (Take $\pi=\frac{22}{7}$)

teai Answer 16:

Let wheel must be rotate n times of its circumference.
Radius of wheel $=28 \mathrm{~cm}$ and Total distance $=352 \mathrm{~m}=35200 \mathrm{~cm}$
\therefore Distance covered by wheel $=n \mathrm{x}$ circumference of wheel
$\Rightarrow \quad 35200=n \times 2 \pi r$
$\Rightarrow \quad 35200=n \times 2 \times \frac{22}{7} \times 28$
$\Rightarrow \quad n=\frac{35200 \times 7}{2 \times 22 \times 28}$
$\Rightarrow \quad n=200$ revolutions
Thus, wheel must rotate 200 times to go 352 m .

Question 17:

The minute hand of a circular clock is 15 cm long. How far does the tip of the minute hand move in 1 hour? (Take $\pi=3.14$)
Emin Answer 17:
In 1 hour, minute hand completes one round means makes a circle.
Radius of the circle $(r)=15 \mathrm{~cm}$
Circumference of circular clock $=2 \pi r$

$$
\begin{aligned}
& =2 \times 3.14 \times 15 \\
& =94.2 \mathrm{~cm}
\end{aligned}
$$

Therefore, the tip of the minute hand moves 94.2 cm in 1 hour.

Exercise 11.4

Question 1:

A garden is 90 m long and 75 m broad. A path 5 m wide is to be built outside and around it. Find the area of the path. Also find the area of the garden in hectares.

tein Answer 1:

Length of rectangular garden $=90 \mathrm{~m}$ and breadth of rectangular garden $=75 \mathrm{~m}$ Outer length of rectangular garden with path $=90+5+5=100 \mathrm{~m}$ Outer breadth of rectangular garden with path $\quad=75+5+5=85 \mathrm{~m}$

Outer area of rectangular garden with path $=$ length x breadth $=100 \times 85=8,500 \mathrm{~m}^{2}$
Inner area of garden without path $=$ length \times breadth $=90 \times 75=6,750 \mathrm{~m}^{2}$
Now, Area of path = Area of garden with path - Area of garden without path

$$
=8,500-6,750
$$

$$
=1,750 \mathrm{~m}^{2}
$$

Since, $\quad 1 \mathrm{~m}^{2}=\frac{1}{10000}$ hectares
Therefore, $\quad 6,750 \mathrm{~m}^{2}=\frac{6750}{10000}=0.675$ hectares

Question 2:

A 3 m wide path runs outside and around a rectangular park of length 125 m and breadth 65 m . Find the area of the path.

$t_{\text {mid }}$ Answer 2:

Length of rectangular park $=125 \mathrm{~m}$,
Breadth of rectangular park $=65 \mathrm{~m}$ and
Width of the path $=3 \mathrm{~m}$
Length of rectangular park with path $\quad=125+3+3=131 \mathrm{~m}$
Breadth of rectangular park with path $\quad=65+3+3=71 \mathrm{~m}$

\therefore Area of path $=$ Area of park with path - Area of park without path

$$
\begin{aligned}
& =(\mathrm{AB} \times \mathrm{AD})-(\mathrm{EF} \times \mathrm{EH}) \\
& =(131 \times 71)-(125 \times 65) \\
& =9301-8125 \\
& =1,176 \mathrm{~m}^{2}
\end{aligned}
$$

Thus, area of path around the park is $1,176 \mathrm{~m}^{2}$.

Question 3:

A picture is painted on a cardboard 8 cm long and 5 cm wide such that there is a margin of 1.5 cm along each of its sides. Find the total area of the margin.

teini Answer 3:

Length of painted cardboard $=8 \mathrm{~cm}$ and breadth of painted card $=5 \mathrm{~cm}$
Since, there is a margin of 1.5 cm long from each of its side.
Therefore reduced length $=8-(1.5+1.5)=8-3=5 \mathrm{~cm}$

And reduced breadth $=5-(1.5+1.5)=5-3=2 \mathrm{~cm}$
\therefore Area of margin $=$ Area of cardboard (ABCD) - Area of cardboard (EFGH)

$$
\begin{aligned}
& =(\mathrm{AB} \times \mathrm{AD})-(\mathrm{EF} \times \mathrm{EH}) \\
& =(8 \times 5)-(5 \times 2) \\
& =40-10 \\
& =30 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the total area of margin is $30 \mathrm{~cm}^{2}$.

Question 4:

A verandah of width 2.25 m is constructed all along outside a room which is 5.5 m long and 4 m wide. Find:
(i) the area of the verandah.
(ii) the cost of cementing the floor of the verandah at the rate of ₹ 200 per m².

$\operatorname{tanin}^{\text {and }}$ Answer 4:

(i) The length of room $=5.5 \mathrm{~m}$ and width of the room $=4 \mathrm{~m}$ The length of room with verandah $=5.5+2.25+2.25=10 \mathrm{~m}$ The width of room with verandah $=4+2.25+2.25=8.5 \mathrm{~m}$

Area of verandah
= Area of room with verandah - Area of room without verandah
= Area of ABCD - Area of EFGH
$=(\mathrm{AB} \times \mathrm{AD})-(\mathrm{EF} \times \mathrm{EH})$
$=(10 \times 8.5)-(5.5 \times 4)$
= $85-22$
$=63 \mathrm{~m}^{2}$
(ii) The cost of cementing $1 \mathrm{~m}^{2}$ the floor of verandah = ₹ 200

The cost of cementing $63 \mathrm{~m}^{2}$ the floor of verandah $=200 \times 63=₹ 12,600$

Question 5:

A path 1 m wide is built along the border and inside a square garden of side 30 m . Find:
(i) the area of the path.
(ii) the cost of planting grass in the remaining portion of the garden at the rate of ₹ 40 per m^{2}.

Answer 5:

(i) Side of the square garden $=30 \mathrm{~m}$ and

Width of the path along the border $=1 \mathrm{~m}$
Side of square garden without path $=30-(1+1)=30-2=28 \mathrm{~m}$

Now Area of path = Area of ABCD - Area of EFGH
$=(A B \times A D)-(E F \times E H)$
$=(30 \times 30)-(28 \times 28)$
$=900-784$
$=116 \mathrm{~m}^{2}$

(ii) Area of remaining portion $=28 \times 28=784 \mathrm{~m}^{2}$

The cost of planting grass in $1 \mathrm{~m}^{2}$ of the garden $=₹ 40$
The cost of planting grass in $784 \mathrm{~m}^{2}$ of the garden $=₹ 40 \times 784=₹ 31,360$

Question 6:

Two cross roads, each of width 10 m , cut at right angles through the centre of a rectangular park of length 700 m and breadth 300 m and parallel to its sides. Find the area of the roads. Also find the area of the park excluding cross roads. Give the answer in hectares.

tain Answer 6:

Here, $\mathrm{PQ}=10 \mathrm{~m}$ and $\mathrm{PS}=300 \mathrm{~m}, \mathrm{EH}=10 \mathrm{~m}$ and $\mathrm{EF}=700 \mathrm{~m}$
And $\mathrm{KL}=10 \mathrm{~m}$ and $\mathrm{KN}=10 \mathrm{~m}$

$$
\text { Area of roads }=\text { Area of PQRS + Area of EFGH - Area of KLMN }
$$

[\because KLMN is taken twice, which is to be subtracted]
$=P S \times P Q+E F \times E H-K L \times K N$

$$
\begin{aligned}
& =(300 \times 10)+(700 \times 10)-(10 \times 10) \\
& =3000+7000-100 \\
& =9,900 \mathrm{~m}^{2}
\end{aligned}
$$

Area of road in hectares, $\quad 1 \mathrm{~m}^{2}=\frac{1}{10000}$ hectares

$$
\therefore \quad 9,900 \mathrm{~m}^{2}=\frac{9900}{10000}=0.99 \text { hectares }
$$

Now, Area of park excluding cross roads

$$
\begin{aligned}
& =\text { Area of park }- \text { Area of road } \\
& =(A B \times A D)-9,900 \\
& =(700 \times 300)-9,900 \\
& =2,10,000-9,900 \\
& =2,00,100 \mathrm{~m}^{2} \\
& =\frac{200100}{10000} \text { hectares }=20.01 \text { hectares }
\end{aligned}
$$

Question 7:

Through a rectangular field of length 90 m and breadth 60 m , two roads are constructed which are parallel to the sides and cut each other at right angles through the centre of the fields. If the width of each road is 3 m , find:
(i) the area covered by the roads.
(ii) the cost of constructing the roads at the rate of $₹ 110$ per m^{2}.

tmini Answer 7:

(i) Here, $\mathrm{PQ}=3 \mathrm{~m}$ and $\mathrm{PS}=60 \mathrm{~m}, \mathrm{EH}=3 \mathrm{~m}$ and $\mathrm{EF}=90 \mathrm{~m}$ and $\mathrm{KL}=3 \mathrm{~m}$ and $\mathrm{KN}=3 \mathrm{~m}$

Area of roads $=$ Area of PQRS + Area of EFGH - Area of KLMN
[\because KLMN is taken twice, which is to be subtracted]
$=P S \times P Q+E F \times E H-K L \times K N$

$$
=(60 \times 3)+(90 \times 3)-(3 \times 3)
$$

$$
=180+270-9
$$

$$
=441 \mathrm{~m}^{2}
$$

(ii) The cost of $1 \mathrm{~m}^{2}$ constructing the roads $=₹ 110$

The cost of $441 \mathrm{~m}^{2}$ constructing the roads $=₹ 110 \times 441=₹ 48,510$
Therefore, the cost of constructing the roads $=₹ 48,510$

Question 8:

Pragya wrapped a cord around a circular pipe of radius 4 cm (adjoining figure) and cut off the length required of the cord. Then she wrapped it around a square box of side 4 cm (also shown). Did she have any cord left? (Take $\pi=3.14$)

Emini Answer 8:

Radius of pipe $=4 \mathrm{~cm}$
Wrapping cord around circular pipe $=2 \pi r$

$$
=2 \times 3.14 \times 4=25.12 \mathrm{~cm}
$$

Again, wrapping cord around a square $=4 \times$ side

$$
=4 \times 4=16 \mathrm{~cm}
$$

Remaining cord $=$ Cord wrapped on pipe - Cord wrapped on square

$$
\begin{aligned}
& =25.12-16 \\
& =9.12 \mathrm{~cm}
\end{aligned}
$$

Thus, she has left 9.12 cm cord.

Question 9:

The adjoining figure represents a rectangular lawn with a circular flower bed in the middle. Find:

(i) the area of the whole land. 10 m
(ii) the area of the flower bed.
(iii) the area of the lawn excluding the area of the flower bed.
(iv) the circumference of the flower bed.

tain Answer 9:

Length of rectangular lawn $=10 \mathrm{~m}$,
breadth of the rectangular lawn $=5 \mathrm{~m}$
And radius of the circular flower bed $=2 \mathrm{~m}$
(i) Area of the whole land $=$ length x breadth

$$
\begin{aligned}
& =10 \times 5=50 \mathrm{~m}^{2} \\
& =\pi r^{2} \\
& =3.14 \times 2 \times 2=12.56 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) Area of flower bed $=\pi r^{2}$
(iii) Area of lawn excluding the area of the flower bed

$$
\begin{aligned}
& =\text { area of lawn - area of flower bed } \\
& =50-12.56 \\
& =37.44 \mathrm{~m}^{2}
\end{aligned}
$$

(iv) The circumference of the flower bed $=2 \pi r$

$$
=2 \times 3.14 \times 2=12.56 \mathrm{~m}
$$

Question 10:

In the following figures, find the area of the shaded portions:

Emin Answer 10:

(i) Here, $\mathrm{AB}=18 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}, \mathrm{AF}=6 \mathrm{~cm}, \mathrm{AE}=10 \mathrm{~cm}$ and $\mathrm{BE}=8 \mathrm{~cm}$ Area of shaded portion

$$
\begin{aligned}
& =\text { Area of rectangle } \mathrm{ABCD}-(\text { Area of } \triangle \mathrm{FAE}+\text { area of } \triangle \mathrm{EBC}) \\
& =(\mathrm{AB} \times \mathrm{BC})-\left(\frac{1}{2} \times \mathrm{AE} \times \mathrm{AF}+\frac{1}{2} \times \mathrm{BE} \times \mathrm{BC}\right) \\
& =(18 \times 10)-\left(\frac{1}{2} \times 10 \times 6+\frac{1}{2} \times 8 \times 10\right) \\
& =180-(30+40) \\
& =180-70 \\
& =110 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) $\mathrm{Here}, \mathrm{SR}=\mathrm{SU}+\mathrm{UR}=10+10=20 \mathrm{~cm}, \mathrm{QR}=20 \mathrm{~cm}$
$\mathrm{PQ}=\mathrm{SR}=20 \mathrm{~cm}, \mathrm{PT}=\mathrm{PS}-\mathrm{TS}=20-10 \mathrm{~cm}$
$T S=10 \mathrm{~cm}, \mathrm{SU}=10 \mathrm{~cm}, \mathrm{QR}=20 \mathrm{~cm}$ and $\mathrm{UR}=10 \mathrm{~cm}$
Area of shaded region
$=$ Area of square PQRS - Area of $\Delta \mathrm{QPT}-$ Area of $\Delta \mathrm{TSU}-$ Area of $\triangle \mathrm{UQR}$
$=(S R \times Q R)-\frac{1}{2} \times P Q \times P T-\frac{1}{2} \times S T \times S U-\frac{1}{2}$
$=20 \times 20-\frac{1}{2} \times 20 \times 10-\frac{1}{2} \times 10 \times 10-\frac{1}{2} \times 20 \times 10$
$=400-100-50-100$
$=150 \mathrm{~cm}^{2}$

Question 11:

Find the area of the equilateral ABCD . Here, $\mathrm{AC}=22 \mathrm{~cm}, \mathrm{BM}=3 \mathrm{~cm}, \mathrm{DN}=3 \mathrm{~cm}$ and $\mathrm{BM} \perp$ $\mathrm{AC}, \mathrm{DN} \perp \mathrm{AC}$.

Answer 11:

Here, $\mathrm{AC}=22 \mathrm{~cm}, \mathrm{BM}=3 \mathrm{~cm}, \mathrm{DN}=3 \mathrm{~cm}$
Area of quadrilateral $\mathrm{ABCDF}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ADC}$

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{AC} \times \mathrm{BM}+\frac{1}{2} \times \mathrm{AC} \times \mathrm{DN} \\
& =\frac{1}{2} \times 22 \times 3+\frac{1}{2} \times 22 \times 3 \\
& =3 \times 11+3 \times 11 \\
& =33+33 \\
& =66 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the area of quadrilateral ABCD is cm^{2}.

