Science

(Chapter - 13) (Motion and Time)
 (Class - VII)
 Exercises

Question 1:

Classify the following as motion along a straight line, circular or oscillatory motion:
(i) Motion of your hands while running.
(ii) Motion of a horse pulling a cart on a straight road.
(iii) Motion of a child in a merry-go-round.
(iv) Motion of a child on a see-saw.
(v) Motion of the hammer of an electric bell.
(vi) Motion of a train on a straight bridge.

Answer 1:

(i) Motion of your hands while running - Oscillatory motion.
(ii) Motion of a horse pulling a cart on a straight road - Straight line motion.
(iii) Motion of a child in a merry-go-round - Circular motion.
(iv) Motion of a child on a see-saw - Oscillatory motion.
(v) Motion of the hammer of an electric bell - Oscillatory motion.
(vi) Motion of a train on a straight bridge - Straight line motion.

Question 2:

Which of the following are not correct?
(i) The basic unit of time is second.
(ii) Every object moves with a constant speed.
(iii) Distances between two cities are measured in kilometers.
(iv) The time period of a given pendulum is not constant.
(v) The speed of a train is expressed in m / h.

Answer 2:
(i) The basic unit of time is second - Correct
(ii) Every object moves with a constant speed - Not correct
(iii) Distances between two cities are measured in kilometers - Correct
(iv) The time period of a given pendulum is not constant - Not correct
(v) The speed of a train is expressed in m / h - Not correct

Question 3:

A simple pendulum takes 32 s to complete 20 oscillations. What is the time period of the pendulum?

Answer 3:
The time taken to complete one oscillation is known as time period of the pendulum.

$$
\text { Time period }=\frac{\text { Total time taken }}{\text { Number of oscillations }}=\frac{32}{20}=1.6 \text { seconds }
$$

Question 4:

The distance between two stations is 240 km . A train takes 4 hours to cover this distance. Calculate the speed of the train.

Answer 4:

$$
\text { Speed }=\frac{\text { Distance covered }}{\text { Time taken }}=\frac{240 \mathrm{~km}}{4 \mathrm{~h}}=60 \mathrm{~km} / \mathrm{h}
$$

Question 5:

The odometer of a car reads 57321.0 km when the clock shows the time 08:30 AM. What is the distance moved by the car, if at 08:50 AM , the odometer reading has changed to 57336.0 km ? Calculate the speed of the car in $\mathrm{km} / \mathrm{min}$ during this time. Express the speed in km / h also.

Answer 5:
Distance covered by car $=57336.0 \mathrm{~km}-57321.0 \mathrm{~km}=15.0 \mathrm{~km}$
Time taken between 08:30 AM to 08:50 $\mathrm{AM}=20$ minutes $=20 / 60$ hour $=1 / 3$ hour So, speed in km/min

$$
\text { Speed }=\frac{\text { Distance covered }}{\text { Time taken }}=\frac{15 \mathrm{~km}}{20 \mathrm{~min}}=0.75 \mathrm{~km} / \mathrm{min}
$$

Speed in km/h

$$
\text { Speed }=\frac{\text { Distance covered }}{\text { Time taken }}=\frac{15 \mathrm{~km}}{1 / 3 \mathrm{~h}}=\frac{15 \times 3 \mathrm{~km}}{1 \mathrm{~h}}=45 \mathrm{~km} / \mathrm{h}
$$

Question 6:

Salma takes 15 minutes from her house to reach her school on a bicycle. If the bicycle has a speed of $2 \mathrm{~m} / \mathrm{s}$, calculate the distance between her house and the school.

Answer 6:

Speed $=2 \mathrm{~m} / \mathrm{s}$
Time taken $=15$ minutes $=15 \times 60$ seconds $=900$ seconds
Now, distance $=$ speed \times time $=2 \times 900=1800 \mathrm{~m}=1.8 \mathrm{~km}$

Question 7:

Show the shape of the distance-time graph for the motion in the following cases:
(i) A car moving with a constant speed.
(ii) A car parked on a side road.

Answer 7:

A car moving with a constant speed

A car parked on a side road

Question 8:

Which of the following relations is correct?
(i) Speed $=$ Distance \times Time
(ii) Speed $=\frac{\text { Distance }}{\text { Time }}$
(iii) Speed $=\frac{\text { Time }}{\text { Distance }}$
(iv) Speed $=\frac{1}{\text { Distance } \times \text { Time }}$

Answer 8:

(ii) Speed $=\frac{\text { Distance }}{\text { Time }}$

Question 9:

The basic unit of speed is:
(i) $\mathrm{km} / \mathrm{min}$
(ii) $\mathrm{m} / \mathrm{min}$
(iii) km / h
(iv) m/s

Answer 9:
(iv) m/s

Question 10:

A car moves with a speed of $40 \mathrm{~km} / \mathrm{h}$ for 15 minutes and then with a speed of $60 \mathrm{~km} / \mathrm{h}$ for the next 15 minutes. The total distance covered by the car is:
(i) 100 km
(ii) 25 km
(iii) 15 km
(iv) 10 km

Answer 10:
(ii) 25 km

Solution:

Case I:

Speed $=40 \mathrm{~km} / \mathrm{h}$
Time $=15 \mathrm{~min}=15 / 60$ hour
Distance $=$ Speed \times Time $=40 \times \frac{15}{60}=10 \mathrm{~km}$

Case II:

Speed $=60 \mathrm{~km} / \mathrm{h}$
Time $=15 \mathrm{~min}=15 / 60$ hour
Distance $=$ Speed \times Time $=60 \times \frac{15}{60}=15 \mathrm{~km}$
Total distance $=10 \mathrm{~km}+15 \mathrm{~km}=25 \mathrm{~km}$

Question 11:

Suppose the two photographs, shown in Fig. 13.1 and Fig. 13.2, had been taken at an interval of 10 seconds. If a distance of 100 metres is shown by 1 cm in these photographs, calculate the speed of the blue car.

Fig. 13.1

Fig. 13.2

Answer 11:

From the figures 13.1 and 13.2 , we conclude that the distance covered by blue car is 2 cm .

Fig. 13.1

Fig. 13.2

So, the distance covered $=2 \times 100 \mathrm{~m}=200 \mathrm{~m}$
Time taken $=10$ seconds

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}=\frac{200 \mathrm{~m}}{10 \mathrm{~s}}=20 \mathrm{~m} / \mathrm{s}
$$

Question 12:

Fig. 13.15 shows the distance-time graph for the motion of two vehicles A and B. Which one of them is moving faster?

Fig. 13.15 Distance-time graph for the motion of two cars

Answer 12:

Vehicle A is traveling longer distance in lesser time as compared to Vehicle B. So, vehicle A is moving faster.

Question 13:

Which of the following distance-time graphs shows a truck moving with speed which is not constant?

Answer 13:
(iii) Graph is not a straight line, so it shows a truck moving with speed which is not constant.

