Mathematics

(Chapter - 7) (Congruence of Triangles) (Class - VII)

Exercise 7.1

Question 1:

Complete the following statements:
(a) Two line segments are congruent if \qquad .
(b) Among two congruent angles, one has a measure of 70°, the measure of other angle is \qquad .
(c) When we write $\angle \mathrm{A}=\angle \mathrm{B}$, we actually mean \qquad .

$\underbrace{}_{\text {tai }}$ Answer 1:

(a) they have the same length
(b) 70°
(c) $m \angle \mathrm{~A}=m \angle \mathrm{~B}$

Question 2:

Give any two real time examples for congruent shapes.

tain Answer 2:

(i) Two footballs
(ii) Two teacher's tables

Question 3:

If $\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$ under the correspondence $\mathrm{ABC} \leftrightarrow \mathrm{FED}$, write all the corresponding congruent parts of the triangles.

Emin Answer 3:

Given: $\triangle \mathrm{ABC} \cong \triangle$ FED.
The corresponding congruent parts of the triangles are:
(i) $\quad \angle \mathrm{A} \leftrightarrow \angle \mathrm{F}$
(ii) $\quad \angle \mathrm{B} \leftrightarrow \angle \mathrm{E}$
(iii) $\quad \angle \mathrm{C} \leftrightarrow \angle \mathrm{D}$
(iv) $\quad \overline{\mathrm{AB}} \leftrightarrow \overline{\mathrm{FE}}$
(v) $\overline{\mathrm{BC}} \leftrightarrow \overline{\mathrm{ED}}$
(vi) $\overline{\mathrm{AC}} \leftrightarrow \overline{\mathrm{FD}}$

Question 4:

If $\Delta \mathrm{DEF} \cong \Delta \mathrm{BCA}$, write the part(s) of $\Delta \mathrm{BCA}$ that correspond to:
(i) $\angle \mathrm{E}$
(ii) $\overline{\mathrm{EF}}$
(iii) $\angle \mathrm{F}$
(iv) $\overline{\mathrm{DF}}$

Answer 4:
Given: $\quad \triangle \mathrm{DEF} \cong \triangle \mathrm{BCA}$.
(i) $\quad \angle \mathrm{E} \leftrightarrow \angle \mathrm{C}$
(ii) $\overline{\mathrm{EF}} \leftrightarrow \overline{\mathrm{CA}}$
(iii) $\angle \mathrm{F} \leftrightarrow \angle \mathrm{A}$
(iv) $\overline{\mathrm{DF}} \leftrightarrow \overline{\mathrm{BA}}$

Exercise 7.2

Question 1:

Which congruence criterion do you use in the following?
(a) Given: $\quad \mathrm{AC}=\mathrm{DF}, \mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}$

So $\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

(b) Given: $\quad \mathrm{RP}=\mathrm{ZX}, \mathrm{RQ}=\mathrm{ZY}, \angle \mathrm{PRQ}=\angle \mathrm{XZY}$

So $\quad \triangle P Q R \cong \triangle X Y Z$

(c) Given: $\quad \angle \mathrm{MLN}=\angle \mathrm{FGH}, \angle \mathrm{NML}=\angle \mathrm{HFG}, \mathrm{ML}=\mathrm{FG}$

So $\quad \triangle \mathrm{LMN} \cong \triangle \mathrm{GFH}$

(d) Given: $\quad \mathrm{EB}=\mathrm{BD}, \mathrm{AE}=\mathrm{CB}, \angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}$

So $\quad \triangle \mathrm{ABE} \cong \triangle \mathrm{CDB}$

Answer 1:

(a) By SSS congruence criterion, since it is given that $\mathrm{AC}=\mathrm{DF}, \mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}$
The three sides of one triangle are equal to the three corresponding sides of another triangle.
Therefore, $\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
(b) By SAS congruence criterion,
since it is given that $\mathrm{RP}=\mathrm{ZX}, \mathrm{RQ}=\mathrm{ZY}$ and $\angle \mathrm{PRQ}=\angle \mathrm{XZY}$
The two sides and one angle in one of the triangle are equal to the corresponding sides and the angle of other triangle.
Therefore, $\quad \triangle P Q R \cong \triangle X Y Z$
(c) By ASA congruence criterion,
since it is given that $\angle \mathrm{MLN}=\angle \mathrm{FGH}, \angle \mathrm{NML}=\angle \mathrm{HFG}, \mathrm{ML}=\mathrm{FG}$.
The two angles and one side in one of the triangle are equal to the corresponding angles and side of other triangle.
Therefore, $\quad \Delta \mathrm{LMN} \cong \Delta \mathrm{GFH}$
(d) By RHS congruence criterion,
since it is given that $\mathrm{EB}=\mathrm{BD}, \mathrm{AE}=\mathrm{CB}, \angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}$
Hypotenuse and one side of a right angled triangle are respectively equal to the hypotenuse and one side of another right angled triangle.
Therefore, $\quad \triangle \mathrm{ABE} \cong \triangle \mathrm{CDB}$

Question 2:

You want to show that $\triangle \mathrm{ART} \cong \triangle$ PEN:
(a) If you have to use SSS criterion, then you need to show:
(i) $\mathrm{AR}=$
(ii) RT =
(iii) $\mathrm{AT}=$
(b) If it is given that $\angle \mathrm{T}=\angle \mathrm{N}$ and you are to use SAS criterion, you need to have:
(i) $\mathrm{RT}=$
and
(ii) $\mathrm{PN}=$
(c) If it is given that AT = PN and you are to use ASA criterion, you need to have:
(i)?
(ii)?

Answer 2:

(a) Using SSS criterion, $\quad \triangle \mathrm{ART} \cong \triangle \mathrm{PEN}$
(i) $\mathrm{AR}=\mathrm{PE}$
(ii) $\mathrm{RT}=\mathrm{EN}$
(iii) $\mathrm{AT}=\mathrm{PN}$
(b) Given: $\quad \angle \mathrm{T}=\angle \mathrm{N}$ Using SAS criterion, $\quad \triangle \mathrm{ART} \cong \triangle \mathrm{PEN}$
(i) $\mathrm{RT}=\mathrm{EN}$
(ii) $\mathrm{PN}=\mathrm{AT}$
(c) Given: $\quad \mathrm{AT}=\mathrm{PN}$

Using ASA criterion, $\quad \triangle \mathrm{ART} \cong \triangle \mathrm{PEN}$
(i) $\angle \mathrm{RAT}=\angle \mathrm{EPN}$
(ii) $\angle \mathrm{RTA}=\angle \mathrm{ENP}$

Question 3:

You have to show that $\Delta \mathrm{AMP} \cong \triangle \mathrm{AMQ}$. In the following proof, supply the missing reasons:

Steps	Reasons
(i) $\mathbf{P M}=\mathbf{Q M}$ (ii) $\angle \mathbf{P M A}=\angle \mathbf{Q M A}$ (iii) $\mathbf{A M}=\mathbf{A M}$ (iv) $\triangle \mathrm{AMP} \cong \triangle \mathrm{AMQ}$	$\begin{array}{ll} \text { (i) } \\ \text { (ii) } \\ \text { (iii) } \\ \text { (iv) } \\ \hline \end{array}$
tein Answer 3:	
Steps	Reasons
(i) $\mathbf{P M}=\mathbf{Q M}$ (ii) $\angle \mathbf{P M A}=\angle \mathbf{Q M A}$ (iii) $\mathbf{A M}=\mathbf{A M}$ (iv) $\triangle \mathrm{AMP} \cong \triangle \mathrm{AMQ}$	(i) Given (ii) Given (iii) Common (iv) SAS congruence rule

Question 4:

In $\triangle \mathrm{ABC}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{C}=110^{\circ}$.
In $\triangle \mathrm{PQR}, \angle \mathrm{P}=30^{\circ}, \angle \mathrm{Q}=40^{\circ}$ and $\angle \mathrm{R}=110^{\circ}$.
A student says that $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ by AAA congruence criterion. Is he justified? Why or why not?
Emin Answer 4:
No, because the two triangles with equal corresponding angles need not be congruent. In such a correspondence, one of them can be an enlarged copy of the other.

Question 5:

In the figure, the two triangles are congruent. The corresponding parts are marked. We can write $\Delta \mathrm{RAT} \cong$?

$E_{\text {mix }}$ Answer 5:

In the figure, given two triangles are congruent. So, the corresponding parts are:

$$
\mathrm{A} \leftrightarrow 0, \quad \mathrm{R} \leftrightarrow \mathrm{~W}, \quad \mathrm{~T} \leftrightarrow \mathrm{~N}
$$

We can write, $\quad \triangle \mathrm{RAT} \cong \triangle$ WON $\quad[$ By SAS congruence rule]

Question 6:

Complete the congruence statement:

$\Delta \mathrm{BCA} \cong ?$

$\Delta \mathrm{QRS} \cong ?$

${ }^{6}$ Answer 6:

In $\triangle \mathrm{BAT}$ and $\triangle \mathrm{BAC}$, given triangles are congruent so the corresponding parts are:
$B \leftrightarrow B, \quad \mathrm{~A} \leftrightarrow \mathrm{~A}, \quad \mathrm{~T} \leftrightarrow \mathrm{C}$
Thus, $\quad \triangle \mathrm{BCA} \cong \triangle \mathrm{BTA}$
[By SSS congruence rule]
In $\Delta \mathrm{QRS}$ and $\triangle \mathrm{TPQ}$, given triangles are congruent so the corresponding parts are:
$P \leftrightarrow R, \quad T \leftrightarrow Q, \quad Q \leftrightarrow S$
Thus, $\quad \Delta \mathrm{QRS} \cong \Delta \mathrm{TPQ} \quad$ [By SSS congruence rule]

Question 7:

In a squared sheet, draw two triangles of equal area such that:
(i) the triangles are congruent.
(ii) the triangles are not congruent.

What can you say about their perimeters?

teini Answer 7:

In a squared sheet, draw $\triangle A B C$ and $\triangle P Q R$.
When two triangles have equal areas and
(i) these triangles are congruent, i.e., $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ [By SSS congruence rule] Then, their perimeters are same because length of sides of first triangle are equal to the length of sides of another triangle by SSS congruence rule.
(ii) But, if the triangles are not congruent, then their perimeters are not same because lengths of sides of first triangle are not equal to the length of corresponding sides of another triangle.

Question 8:

Draw a rough sketch of two triangles such that they have five pairs of congruent parts but still the triangles are not congruent.
$\epsilon_{\text {mai }}$ Answer 8:
Let us draw two triangles PQR and ABC.

All angles are equal, two sides are equal except one side. Hence, $\triangle \mathrm{PQR}$ are not congruent to $\triangle \mathrm{ABC}$.

Question 9:

If $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are to be congruent, name one additional pair of corresponding parts. What criterion did you use?

Emin Answer 9:

$\Delta \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are congruent. Then one additional pair is $\overline{\mathrm{BC}}=\overline{\mathrm{QR}}$.
Given: $\angle \mathrm{B}=\angle \mathrm{Q}=90^{\circ}$

$$
\angle \mathrm{C}=\angle \mathrm{R}
$$

$$
\overline{\mathrm{BC}}=\overline{\mathrm{QR}}
$$

Therefore, $\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \quad$ [By ASA congruence rule]

Question 10:

Explain, why $\Delta \mathrm{ABC} \cong \Delta \mathrm{FED}$.

tewi Answer 10:

Given: $\quad \angle \mathrm{A}=\angle \mathrm{F}, \mathrm{BC}=\mathrm{ED}, \angle \mathrm{B}=\angle \mathrm{E}$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{FED}$,

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{E}=90^{\circ} \\
& \angle \mathrm{A}=\angle \mathrm{F} \\
& \mathrm{BC}=\mathrm{ED}
\end{aligned}
$$

Therefore, $\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{FED} \quad$ [By RHS congruence rule]

