Chapter 7

Triangles

Exercise No. 7.1

Multiple Choice Questions:

In each of the following, write the correct answer:

1. Which of the following is not a criterion for congruence of triangles?
(A) SAS
(B) ASA
(C) SSA
(D) SSS

Solution:

SSA is not a criterion for congruence of triangles.
Hence, the correct option is (C).
2. If $\mathrm{AB}=\mathrm{QR}, \mathrm{BC}=\mathrm{PR}$ and $\mathrm{CA}=\mathrm{PQ}$, then
(A) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
(B) $\triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$
(C) $\triangle \mathrm{BAC} \cong \triangle \mathrm{RPQ}$
(D) $\triangle \mathrm{PQR} \cong \triangle \mathrm{BCA}$

Solution:

Given:
$\mathrm{AB}=\mathrm{QR}, \mathrm{BC}=\mathrm{PR}$ and $\mathrm{CA}=\mathrm{PQ}$, then
The vertices are one-one corresponding that is P corresponding to C, Q to A and R to B , which is written as:

$$
P \leftrightarrow C, Q \leftrightarrow A, R \leftrightarrow B
$$

Under that correspondence, we have:
$\triangle C B Q \cong \triangle P R Q$
Hence, the correct option is (B).
3. In $\triangle \mathrm{ABC}, \mathbf{A B}=\mathbf{A C}$ and $\angle \mathrm{B}=50^{\circ}$. Then $\angle \mathrm{C}$ is equal to (A) 40°
(B) 50°
(C) 80°
(D) 130°

Solution:

According to the question, triangle ABC is:

$\mathrm{AB}=\mathrm{AC}$ [Given]
So, $\angle C=\angle B$ [Angles opposite to equal sides are equal]
Given: $\angle B=50^{\circ}$. So, $\angle C=50^{\circ}$
Hence, the correct option is (B).
4. In $\triangle \mathrm{ABC}, \mathbf{B C}=\mathbf{A B}$ and $\angle \mathrm{B}=80^{\circ}$. Then $\angle \mathrm{A}$ is equal to
(A) 80°
(B) 40°
(C) 50°
(D) $\mathbf{1 0 0}^{\circ}$

Solution:
In triangle ABC :

$\mathrm{BC}=\mathrm{AB}$ [given]
$\angle A=\angle C$ [Since, angles opposite to equal sides are equal]
$\angle B=80^{\circ}$
Therefore, $\angle A+\angle B+\angle C=180^{\circ}$
$\angle A+80^{\circ}-\angle A=180^{\circ}$
$2 \angle A=100^{\circ}$
$\angle A=\frac{100^{\circ}}{2}$
$\angle A=50^{\circ}$

Hence, the correct option is (C).
5. In $\triangle P Q R, \angle R=\angle P$ and $Q R=4 \mathrm{~cm}$ and $P R=5 \mathrm{~cm}$. Then the length of $P Q$ is
(A) 4 cm
(B) 5 cm
(C) 2 cm
(D) 2.5 cm

Solution:

In triangle PQR :

$\angle R=\angle P$ [Given]
$\mathrm{PQ}=\mathrm{QR}$ [Sides opposite to equal angles are equal]
Now, $\mathrm{QR}=4 \mathrm{~cm}$, therefore, $\mathrm{PQ}=4 \mathrm{~cm}$.
Therefore, the length of the PQ is 4 cm
Hence, the correct option is (A).
6. D is a point on the side $B C$ of a $\triangle A B C$ such that $A D$ bisects $\angle B A C$. Then
(A) $\mathrm{BD}=\mathrm{CD}$
(B) $\mathrm{BA}>\mathrm{BD}$
(C) $\mathrm{BD}>$ BA
(D) $\mathrm{CD}>\mathrm{CA}$

Solution:
In triangle ADC ,

Ext. $\angle A D B>$ Int. opp $\angle D A C$
$\angle A D B>\angle B A D$
[Because: $\angle B A D=\angle D A C$]
$A B>B D$ [Side opposite to greater angle is longer]
Hence, the correct option is (B).
7. It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=\mathbf{5} \mathbf{~ c m}, \angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$. Then which of the following is true?
(A) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{~F}=60^{\circ}$
(B) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
(C) $\mathrm{DE}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
(D) $\mathrm{DE}=5 \mathrm{~cm}, \angle \mathrm{D}=60^{\circ}$

Solution:

Given: $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$

$\mathrm{DF}=\mathrm{AB}$
$\mathrm{DF}=5 \mathrm{~cm}$
$\angle E=\angle C$
$\angle E=\angle C=180^{\circ}-(\angle A+\angle B)$
$\angle E=180^{\circ}-\left(80^{\circ}+40^{\circ}\right)$
$\angle E=60^{\circ}$
8. Two sides of a triangle are of lengths 5 cm and 1.5 cm . The length of the third side of the triangle cannot be
(A) 3.6 cm
(B) 4.1 cm
(C) 3.8 cm
(D) 3.4 cm

Solution:

Sum of any two sides of a triangle is greater than third side. So, third side of the triangle cannot be 3.4 cm because then, $1.5 \mathrm{~cm}+3.4 \mathrm{~cm}=4.9 \mathrm{~cm}<$ third side $[5 \mathrm{~cm}$] Hence, the correct option is (D).
9. In $\triangle P Q R$, if $\angle R>\angle Q$, then
(A) QR > PR
(B) $\mathrm{PQ}>\mathrm{PR}$
(C) $\mathrm{PQ}<\mathrm{PR}$
(D) $\mathrm{QR}<\mathbf{P R}$

Solution:

Given: In triangle $P Q R$, $\angle R>\angle Q$

PQ>PR
[side opposite to greater angle is longer]
Hence, the correct option is (B).
10. In triangles $\mathbf{A B C}$ and $\mathrm{PQR}, \mathbf{A B}=\mathbf{A C}, \angle \mathrm{C}=\angle \mathrm{P}$ and $\angle \mathrm{B}=\angle \mathrm{Q}$. The two triangles are
(A) isosceles but not congruent
(B) isosceles and congruent
(C) congruent but not isosceles
(D) neither congruent nor isosceles

Solution:

In triangle ABC ,
$\mathrm{AB}=\mathrm{AC}$
$\angle C=\angle B$
[Given]
So, in triangle ABC is an isosceles triangle.
$\angle B=\angle Q \quad$ [Given]
$\angle C=\angle P$
$\angle P=\angle Q \quad[$ Since, $\angle C=\angle B]$
$\mathrm{QR}=\mathrm{PR}$
[Sides opposite to equal angles are equal]

So, in triangle PQR is also an isosceles triangle.

Hence, both triangle are isosceles but not congruent.
Hence, the correct option is (A).
11. In triangles ABC and $\mathrm{DEF}, \mathrm{AB}=\mathrm{FD}$ and $\angle \mathrm{A}=\angle \mathrm{D}$. The two triangles will be congruent by SAS axiom if
(A) $\mathrm{BC}=\mathrm{EF}$
(B) $\mathrm{AC}=\mathrm{DE}$
(C) $\mathrm{AC}=\mathrm{EF}$
(D) $\mathrm{BC}=\mathrm{DE}$

Solution:
Given, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DF}$ and $\angle \mathrm{A}=\angle \mathrm{D}$
As we know that, two triangles will be congruent by ASA rule, if two angles and the included side of one triangle are equal to the two angles and the included side of other triangle.
Since, AC = DE
Hence, the correct option is (B).

Exercise No. 7.2

Short Answer Questions with Reasoning:

1. In triangles ABC and $\mathrm{PQR}, \angle \mathrm{A}=\angle \mathrm{Q}$ and $\angle \angle \mathrm{B}=\angle \mathrm{R}$. Which side of $\triangle \mathrm{PQR}$ should be equal to side $A B$ of $\triangle A B C$ so that the two triangles are congruent? Give reason for your answer.

Solution:

Given: in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}, \angle \mathrm{A}=\angle \mathrm{Q}$ and $\angle \mathrm{B}=\angle \mathrm{R}$

Now, the triangle $A B C$ and $P Q R$ will be congruent if $A B=Q R$ by ASA congruence rule.
2. In triangles ABC and $\mathrm{PQR}, \angle \mathrm{A}=\angle \mathrm{Q}$ and $\angle \mathrm{B}=\angle \mathrm{R}$. Which side of $\triangle \mathrm{PQR}$ should be equal to side BC of $\triangle \mathrm{ABC}$ so that the two triangles are congruent? Give reason for your answer.

Solution:

Given: In triangle ABC and PQR ,

$\angle A=\angle Q$ and $\angle B=\angle R$ [given]
$\mathrm{BC}=\mathrm{RP}$ [For the triangle to be congruent]
Hence, it will be congruent by AAS congruence rule.
3. "If two sides and an angle of one triangle are equal to two sides and an angle of another triangle, then the two triangles must be congruent." Is the statement true? Why?

Solution:
Angle must be the included angles. Hence, this statement is not true.
4. "If two angles and a side of one triangle are equal to two angles and a side of another triangle, then the two triangles must be congruent." Is the statement true? Why?

Solution:

As we know that, the sum of any two sides of the triangle is always greater than the third side.
5. Is it possible to construct a triangle with lengths of its sides as $4 \mathbf{c m}, 3 \mathrm{~cm}$ and 7 cm ? Give reason for your answer.

Solution:

As we know that, the sum of any two sides of the triangle is always greater than the third side. So,
4 cm and $3 \mathrm{~cm}=4 \mathrm{~cm}+3 \mathrm{~cm}=7 \mathrm{~cm}$ that is equal to the length of third side that is 7 cm .
Therefore, this is not possible to construct a triangle with length of sides $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm .
6. It is given that $\triangle A B C \cong \triangle R P Q$. Is it true to say that $\mathbf{B C}=\mathbf{Q R}$? Why?

Solution:

It is false that $\mathrm{BC}=\mathrm{QR}$ because $\mathrm{BC}=\mathrm{PQ}$ as $\triangle A B C \cong \triangle R P Q$.
7. If $\triangle P Q R \cong \triangle E D F$, then is it true to say that $P R=E F$? Give reason for your answer.

Solution:

It is true, $\mathrm{PR}=\mathrm{EF}$ because this is the corresponding sides of triangle PQR and triangle EDF.
8. In $\triangle \mathrm{PQR}, \angle \mathrm{P}=70^{\circ}$ and $\angle \mathrm{R}=30^{\circ}$. Which side of this triangle is the longest? Give reason for your answer.

Solution:

In triangle PQR ,

$$
\begin{aligned}
\angle Q & =180^{\circ}-(\angle P+\angle R) \\
& =180^{\circ}-\left(70^{\circ}+30^{\circ}\right) \\
& =180^{\circ}-100^{\circ} \\
& =80^{\circ}
\end{aligned}
$$

Now, in triangle PQR , angle Q is larger and side opposite to greater angle is longer. Therefore, PR is the longer side.
9. AD is a median of the triangle ABC . Is it true that $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AD}$? Give reason for your answer.

Solution:

In triangle ABD ,
$\mathrm{AB}+\mathrm{BD}>\mathrm{AD} \ldots(\mathrm{I})$

$\mathrm{AC}+\mathrm{CD}>\mathrm{AD} \ldots$ (II) [Sum of the lengths of any two sides of a triangle must be greater that the third side]

Adding (I) and (II), get:
$\mathrm{AB}+\mathrm{BD}+\mathrm{CD}+\mathrm{AC}>2 \mathrm{AD}$
$\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AD} \quad[\mathrm{BD}=\mathrm{CD}$ as AD is median of triangle ABC$]$
10. M is a point on side $B C$ of a triangle $A B C$ such that $A M$ is the bisector of $\angle \angle \mathrm{BAC}$. Is it true to say that perimeter of the triangle is greater than 2 AM? Give reason for your answer.

Solution:

To prove: $\mathrm{AB}+\mathrm{BC}+\mathrm{AC}>2 \mathrm{AM}$
Proof: We know that sum of any two side of a triangle is greater than the third side,
Now, in triangle ABM, $\mathrm{AB}+\mathrm{BM}>\mathrm{Am} .$. (I)

And, in triangle ACM,
$\mathrm{AC}+\mathrm{CM}>\mathrm{AM} \ldots$. (II)

Adding (I) and (II), get:
$\mathrm{AB}+\mathrm{BM}+\mathrm{AC}+\mathrm{CM}>2 \mathrm{AM}$
$\mathrm{AB}+(\mathrm{BM}+\mathrm{CM})+\mathrm{AC}>2 \mathrm{AM}$
$\mathrm{AB}+\mathrm{BC}+\mathrm{AC}>2 \mathrm{AM}$
Hence, it is true that the perimeter of the triangle is greater than 2 AM .

11. Is it possible to construct a triangle with lengths of its sides as $\mathbf{9} \mathbf{~ c m}, 7 \mathbf{c m}$ and $\mathbf{1 7} \mathbf{c m}$? Give reason for your answer.

Solution:

We know that sum of any two side of a triangle is greater than the third side. So, $9 \mathrm{~cm}+7 \mathrm{~cm}=16 \mathrm{~cm}<17 \mathrm{~cm}$
Hence, it is not possible to construct a triangle.
12. Is it possible to construct a triangle with lengths of its sides as $8 \mathbf{c m}, 7 \mathrm{~cm}$ and 4 cm ? Give reason for your answer.

Solution:

Yes, that is possible to construct a triangle with lengths of its sides as $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 4 cm because the sum of any two side of a triangle is greater than the third side.

Exercise No. 7.3

Short Answer Questions:

1. $A B C$ is an isosceles triangle with $A B=A C$ and $B D$ and $C E$ are its two medians. Show that BD = CE .

Solution:

Given:
ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ and BD and CE are its two medians.

To prove: $\mathrm{BD}=\mathrm{CE}$
Proof: in triangle ABC ,
$\mathrm{AB}=\mathrm{AC} \quad$ [Given]
$\frac{1}{2} A B=\frac{1}{2} A C$
$\mathrm{AE}=\mathrm{AD}[\mathrm{D}$ is the mid-point of AC and E is the mid-point of AB]
Now, in triangle ABD and triangle ACE,
$\mathrm{AB}=\mathrm{AC}$
[Given]
$\angle A=\angle A \quad$ [Common angle]
$\mathrm{AE}=\mathrm{AD}$ [above proved]
Now, by SAS criterion of congruence, get:
$\triangle A B D \cong \triangle A C E$
$\mathrm{BD}=\mathrm{CE} \quad[\mathrm{CPCT}]$
Hence, proved.
2. In Fig., D and E are points on side $B C$ of $a A B C$ such that $B D=C E$ and $\mathbf{A D}=\mathbf{A E}$.
Show that $\triangle A B D \cong \triangle A C E$.

Solution:

Given in triangle ABD,
$\mathrm{BD}=\mathrm{CE}$ and $\mathrm{AD}=\mathrm{AE}$
To prove that $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}$
Proof:
$\mathrm{AD}=\mathrm{AE}$
$\angle A D E=\angle A E D$
$\angle A D B+\angle A D E=180^{\circ}$
$\angle A D B=180^{\circ}-\angle A D E$
$\angle A D B=180^{\circ}-\angle A E D$ [From equation (i)]
In triangle ABD and triangle ACE ,

```
\angleADB= \angleAEC [Since, }\angleAEC+\angleAED=18\mp@subsup{0}{}{\circ},\mathrm{ linear pair axiom]
BD = CE [Given]
AD = AE [Given]
\triangleABD\cong\triangleACE [By SAS congruence rule]
```


3. CDE is an equilateral triangle formed on a side CD of a square ABCD as

 shown in fig. Show that $\triangle A D E \cong \triangle B C E$.

Solution:

Given in figure triangle CDE is an equilateral triangle formed on a side CD of a square ABCD .
To proof that $\triangle A D E \cong \triangle B C E$
Proof: In triangle ADE and triangle BCE,
$\mathrm{DE}=\mathrm{CE} \quad$ [Sides of an equilateral triangle]
$\angle A D E=\angle B C E$
$\angle A D C=\angle B C D=90^{\circ}$ and $\angle E D C=\angle E C D=60^{\circ}$
$\angle A D E=90^{\circ}+60^{\circ}=150^{\circ}$ and $\angle B C E=90^{\circ}+60^{\circ}=150^{\circ}$
$\mathrm{AD}=\mathrm{BC}$
[Sides of a square]
$\triangle A D E \cong \triangle B C E$
[By SAS congruence rule]
4. In Fig., $\mathrm{BA} \perp \mathrm{AC}, \mathrm{DE} \perp \mathrm{DF}$ such that $\mathrm{BA}=\mathrm{DE}$ and $\mathrm{BF}=\mathbf{E C}$. Show that $\Delta \mathrm{ADC} \cong \triangle \mathrm{DEF}$.

Solution:

See in the figure,
$\mathrm{BA} \perp \mathrm{AC}, \mathrm{DE} \perp \mathrm{DF}$ such that $\mathrm{BA}=\mathrm{DE}$ and $\mathrm{BF}=\mathrm{EC}$
To proof that $\triangle \mathrm{ADC} \cong \triangle \mathrm{DEF}$
Proof:
$B F=E C$
[Given]
Now, adding CF both sides, get:
$B F+C F=E C+C F$
$\mathrm{BC}=\mathrm{EF}$
In triangle ABC and triangle DEF ,
$\angle A=\angle D=90^{\circ}$
$[\mathrm{BA} \perp \mathrm{AC}$ and $\mathrm{DE} \perp \mathrm{DF}]$
$\mathrm{BC}=\mathrm{EF}$
$\mathrm{BA}=\mathrm{DE}$
[from eq. (I)]
$\triangle A B C \cong \triangle D E F$
[By RHS congruence rule]
5. Q is a point on the side $S R$ of a $\triangle P S R$ such that $P Q=P R$. Prove that $P S$ $P Q$.

Solution:
In triangle PSR, Q is a point on the side SR such that $\mathrm{PQ}=\mathrm{PR}$.
To proof that PS $>$ PQ

Proof: In triangle PRQ ,
$\mathrm{PQ}=\mathrm{PR}$
[Given]
$\angle R=\angle P Q R$
...(I) [Angle opposite to equal sides are equal]
$\angle P Q R>\angle S \quad \ldots$ (II) [Exterior angle of a triangle is greater than each of the opposite interior angle]

Now, from equation (I) and (II), get:
$\angle R>\angle S$
$\mathrm{PS}>\mathrm{PR} \quad$ [side opposite to greater angle is longer]
$\mathrm{PS}>\mathrm{PQ}$
[PQ = PR]
6. S is any point on side $Q R$ of a $\triangle P Q R$. Show that: $P Q+Q R+R P>2 P S$.

Solution:

Given in triangle PQR, S is any point on side QR .

To proof that $\mathrm{PQ}+\mathrm{QR}+\mathrm{RP}>2 \mathrm{PS}$
Proof: In triangle PQS,
$\mathrm{PQ}+\mathrm{QS}>\mathrm{PS}$ (i) [Sum of two side of a triangle is greater than the third side]
Now, similarly in triangle PRS,
$\mathrm{SR}+\mathrm{RP}>\mathrm{PS}$ (ii) [Sum of two side of a triangle is greater than the third side]
Adding equation (I) and (II), get:
$\mathrm{PQ}+\mathrm{QS}+\mathrm{SR}+\mathrm{RP}>2 \mathrm{PS}$
$\mathrm{PQ}+(\mathrm{QS}+\mathrm{SR})+\mathrm{RP}>2 \mathrm{PS}$
$\mathrm{PQ}+\mathrm{QR}+\mathrm{RP}>2 \mathrm{PS} \quad[\mathrm{QR}=\mathrm{QS}+\mathrm{SR}]$

7. D is any point on side $A C$ of a $\triangle A B C$ with $A B=A C$. Show that $C D<B D$.

Solution:

Given in triangle $A B C, D$ is any point on side $A C$ such that $A B=A C$.

To proof that $\mathrm{CD}<\mathrm{BD}$ or $\mathrm{BD}>\mathrm{CD}$
To proof:
$\mathrm{AC}=\mathrm{AB}$
[Given]
$\angle A B C=\angle A C B \quad$ (i)[Angle opposite to equal sides are equal]
In triangle ABC and triangle DBC ,
$\angle A B C>\angle D B C \quad[\angle D B C$ is a internal angle of $\angle B]$
$\angle A C B>\angle D B C \quad$ [From equation (I)]
$\mathrm{BD}>\mathrm{CD} \quad$ [Side opposite to greater angle is longer]
$\mathrm{CD}<\mathrm{BD}$
8. In Fig., $l \| m$ and M is the mid-point of a line segment $A B$. Show that M is also the mid-point of any line segment $C D$, having its end points on l and m, respectively.

Solution:

See in the figure, $l \| m$ and M is the mid-point of a line segment AB .
To proof that MC = MD
Proof: $l|\mid \mathrm{m} \quad$ [Given]
$\angle B A C=\angle A B D \quad$ [Alternate interior angles]
$\angle A M C=\angle B M D \quad[$ Vertical opposite angle]
In triangle AMC and triangle BMD,

$\angle B A C=\angle A B D$	[Proved above]
$\mathrm{AM}=\mathrm{BM}$	[Given]
$\angle A M C=\angle B M D$	[By ASA congruence rule]
$\mathrm{MC}=\mathrm{MD}$	[By CPCT]

9. Bisectors of the angles B and C of an isosceles triangle with $A B=A C$ intersect each other at $\mathrm{O} . \mathrm{BO}$ is produced to a point M . Prove that $\angle \mathrm{MOC}=$ $\angle A B C$.

Solution:

Given in the question, bisectors of the angles B and C of an isosceles triangle ABC with $\mathrm{AB}=$ AC intersect each other at O . Now BO is produced to a point M .

In triangle ABC ,
$\mathrm{AB}=\mathrm{AC}$
$\angle A B C=\angle A C B \quad$ [Angle opposite to equal sides of a triangle are equal]
$\frac{1}{2} \angle A B C=\frac{1}{2} \angle A C B$
That is $\angle 1=\angle 2$ [Since, BO and Co are bisectors of $\angle B$ and $\angle C$]
In triangle OBC , Ext. $\angle M O C=\angle 1+\angle 2$ [Exterior angle of a triangle is equal to the sum of interior opposite angles]
Ext. $\angle M O C=2 \angle 1 \quad[\angle 1=\angle 2]$
Hence, $\angle M O C=\angle A B C$.
10. Bisectors of the angles B and C of an isosceles triangle $A B C$ with $A B=$ $A C$ intersect each other at O. Show that external angle adjacent to $\angle A B C$ is equal to $\angle \mathrm{BOC}$.

Solution:
In triangle ABC ,

$\mathrm{AB}=\mathrm{AC}$
So, $\angle B=\angle C$ [Angle opposite to equal sides of a triangle are equal]
$\frac{1}{2} \angle B=\frac{1}{2} \angle C$
In triangle OBC ,
$\angle 1=\frac{1}{2} \angle B$
And, $\angle 2=\frac{1}{2} \angle 2$
$\angle D B C+\angle 1+\angle O B A=180^{\circ} \quad$ [ABD is a straight line]
In triangle OBC ,
$\angle 1+\angle 2+\angle B O C=180^{\circ}$
$2 \angle 1+\angle B O C=180^{\circ}$
[$\angle 1=\angle 2] \ldots$ (II)
From equation (I) and (II), get:
$\angle D B A+2 \angle 1=2 \angle 1+\angle B O C$
$\angle D B C=\angle B O C$

11. In Fig. 7.8, $A D$ is the bisector of $\angle B A C$. Prove that $A B>B D$.

Solution:

In triangle $A C D$,
Ext. $\angle A D B>\angle D A C$ [Exterior angle of a triangle is greater than either of the interior opposite angle]
$\angle A D B>\angle B A D$

Since, in triangle ABD ,
$\angle A D B>\angle B A D$
Hence, $\mathrm{AB}>\mathrm{BD}$. [In a triangle, side opposite to greater angle is longer]

Exercise No. 7.4

Long Answer Questions:

1. Find all the angles of an equilateral triangle.

Solution:

In triangle ABC ,

$$
\mathrm{AB}=\mathrm{AC}
$$

$\angle C=\angle B \quad \ldots$ (I) [Angles opposite to equal sides of a triangle are equal]
$\mathrm{BC}=\mathrm{AC}$
$\angle A=\angle B \quad$... (II)
$\angle A+\angle B+\angle C=180^{\circ}$ [Angle sum property of a triangle]
$\angle A+\angle A+\angle A=180^{\circ}[$ From equation (I) and (II)]
$\angle A=\frac{180^{\circ}}{3}$
$\angle A=60^{\circ}$
2. The image of an object placed at a point A before a plane mirror $L M$ is seen at the point B by an observer at D as shown in Fig. Prove that the image is as far behind the mirror as the object is in front of the mirror.
[Hint: CN is normal to the mirror. Also, angle of incidence $=$ angle of reflection].

Solution:

Let AB intersect LM at O .
To prove: $\mathrm{AO}=\mathrm{BO}$.
Proof: $\angle i=\angle r$
...(I) [Angle of incidence $=$ Angle of reflection]
$\angle B=\angle r$ [Corresponding angle]
Now,
$\angle A=\angle i \quad$ [Alternate int. $\angle s] \ldots$ (III)
Since, from equation (I), (II) and (III), get:
$\angle B=\angle A$
$\angle B C O=\angle A C O$

In triangle BOC and triangle AOC , get:
$\angle 1=\angle 2$
$\mathrm{OC}=\mathrm{OC}$
$\angle B C O=\angle A C O$
[Each $=90^{\circ}$]
[Prove above]
$\triangle B O C \cong \triangle A O C \quad$ [ASA congruence rule]
Hence, $\mathrm{AO}=\mathrm{BQ} \quad$ [CPCT]
3. $A B C$ is an isosceles triangle with $A B=A C$ and D is a point on $B C$ such that $A D \perp B C$ (as shown in Fig.). To prove that $\angle B A D=\angle C A D$, a student proceeded as follows:

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,
$\mathrm{AB}=\mathrm{AC}$ (Given)
$\angle \mathrm{B}=\angle \mathrm{C}$ (because $\mathrm{AB}=\mathrm{AC}$)
and $\angle \mathrm{ADB}=\angle \mathrm{ADC}$
Therefore, $\angle \mathrm{ABD} \cong \angle \mathrm{ACD}$ (AAS)
So, $\angle \mathrm{BAD}=\angle \mathrm{CAD}(\mathrm{CPCT})$

What is the defect in the above arguments?
[Hint: Recall how $\angle \mathrm{B}=\angle \mathrm{C}$ is proved when $\mathrm{AB}=\mathrm{AC}$].

Solution:

In triangle ADB and triangle ADC , get:

$$
\angle A D B=\angle A D C \quad\left[\text { Each equal to } 90^{\circ}\right]
$$

$\mathrm{AB}=\mathrm{AC} \quad$ [Given]
$\mathrm{AD}=\mathrm{AD} \quad$ [Common side]
Now, by RHS criterion of congruence, get:
$\triangle A D B \cong \triangle A D C$
So, $\angle B A D=\angle C A D \quad[\mathrm{CPCT}]$
Hence, proved.

4. P is a point on the bisector of $\angle A B C$. If the line through P, parallel to $B A$ meet $B C$ at Q, prove that $B P Q$ is an isosceles triangle.

Solution:

Given in the question, P is a point on the bisector of $\angle A B C$. If the line through P, parallel to BA meet BC at Q .
To prove: BPQ is an isosceles triangle.

Proof: $\angle 1=\angle 2$...(I) [BP is the bisector of $\angle A B C$]

PQ is parallel to BA and BP cuts them. So,
$\angle 1=\angle 3$
$\angle 2=\angle 3$
[Alternate interior angles as $\mathrm{PQ} \| \mathrm{AB}$]
[Proved above]
$P Q=B Q$
[Sides opposite to equal angle are equal]
Hence, BPQ is an isosceles triangle.

5. $A B C D$ is a quadrilateral in which $A B=B C$ and $A D=C D$. Show that $B D$ bisects both the angles ABC and ADC.

Solution:
In triangle ABC and triangle CBD ,

$\mathrm{AB}=\mathrm{BC} \quad$ [Given]
$\mathrm{AD}=\mathrm{CD} \quad$ [Given]
$\mathrm{BD}=\mathrm{BD} \quad$ [Common side]

So, $\triangle A B C \cong \triangle C B D \quad[$ By SSS congruence rule $]$
$\angle 1=\angle 2$
[CPCT]
And, $\angle 3=\angle 4$
Hence, BD bisects both the angle ABC and ADC .
6. ABC is a right triangle with $\mathrm{AB}=\mathrm{AC}$. Bisector of $\angle \mathrm{A}$ meets BC at D . Prove that $B C=2$ AD.

Solution:

Given in the question, ABC is a right triangle with $\mathrm{AB}=\mathrm{AC}$. Bisector of $\angle \mathrm{A}$ meets BC at D .

To prove that $\mathrm{BC}=2 \mathrm{AD}$
Proof: In right triangle ABC ,
$A B=A C$
[Given]
BC is hypotenuse. So,
$\angle B A C=90^{\circ}$

Now, in triangle CAD and triangle BAD, get:
$\mathrm{AC}=\mathrm{AB}$
$\angle 1=\angle 2$
$\mathrm{AD}=\mathrm{AD}$
[Given]
[AD is the bisector of $\angle A$]
[Common side]

Now, by SAS criterion of congruence, get:
$\triangle C A D \cong \triangle B A D$
$\mathrm{CD}=\mathrm{BD}$
[CPCT]
$\mathrm{AD}=\mathrm{BD}=\mathrm{CD} \ldots$ (I) [Mid-point of hypotenuse of a rt. Triangle is equidistant from the three vertices of a triangle]

Now, $\mathrm{BC}=\mathrm{BD}+\mathrm{CD}$
$B C=A D+A D \quad[$ Using (I)]
$\mathrm{BC}=2 \mathrm{AD}$
Hence, proved.
7. O is a point in the interior of a square $A B C D$ such that $O A B$ is an equilateral triangle. Show that $\triangle \mathrm{OCD}$ is an isosceles triangle.

Solution:

Given in the question, A square of ABCD and $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$.

To prove that triangle OCD is an isosceles triangle.
Proof: In triangle ABCD,
$\angle 1=\angle 2 \quad \ldots$ (I) [Each equal to 90°]
In triangle OAB ,
$\angle 3=\angle 4 \quad \ldots$ (II) [Each equal to 60°]
Now, subtracting equation (II) from equation (I), get:
$\angle 1-\angle 3=\angle 2-\angle 4$
$\angle 5=\angle 6$

In triangle DAO and triangle CBO ,
$\mathrm{AD}=\mathrm{BC} \quad$ [Given]
$\angle 5=\angle 6 \quad$ [Proved above]
$\mathrm{OA}=\mathrm{OB} \quad$ [Given]
So, by SAS criterion of congruence, get:
$\triangle D A O \cong \triangle C B O$
$\mathrm{OD}=\mathrm{OC}$
Now, in triangle OCD is an isosceles triangle.
Hence, proved.

8. $A B C$ and DBC are two triangles on the same base BC such that A and D

 lie on the opposite sides of $B C, A B=A C$ and $D B=D C$. Show that $A D$ is the perpendicular bisector of $B C$.
Solution:

Given in the question, ABC and DBC are two triangles on the same base BC such that A and D lie on the opposite sides of $\mathrm{BC}, \mathrm{AB}=\mathrm{AC}$ and $\mathrm{DB}=\mathrm{DC}$.

To proof that $A D$ is the perpendicular bisector of $B C$ that is $O B=O C$.
Proof: In triangle BAD and triangle CAD ,
$\mathrm{AB}=\mathrm{AC} \quad$ [Given]
$\mathrm{BD}=\mathrm{CD} \quad$ [Given]
$\mathrm{AD}=\mathrm{AD} \quad$ [Common side]
Now, by SSS criterion of congruence, $\triangle B A D \cong \triangle C A D$
So, $\angle 1=\angle 2 \quad[\mathrm{CPCT}]$
Now, in triangle BAO and triangle CAO ,
$\mathrm{AB}=\mathrm{AC} \quad$ [Given]
$\angle 1=\angle 2 \quad$ [Proved above]
$\mathrm{AO}=\mathrm{AO} \quad[$ Common side $]$
So, by SAS criterion of congruence,

$$
\Delta B A O \cong \triangle C A O
$$

Since, $\mathrm{BO}=\mathrm{CO} \quad[\mathrm{CPCT}]$
And, $\angle 3=\angle 4$ [CPCT]
$\angle 3+\angle 4=180^{\circ} \quad$ [Linear pair axiom]
$\angle 3+\angle 3=180^{\circ}$
$2 \angle 3=180^{\circ}$
$\angle 3=\frac{180^{\circ}}{2}$
$\angle 3=90^{\circ}$
Therefore, AD is perpendicular to bisector of BC .
Hence, proved.

9. ABC is an isosceles triangle in which $\mathrm{AC}=\mathrm{BC}$. AD and BE are respectively two altitudes to sides $B C$ and $A C$. Prove that $A E=B D$.

Solution:
In triangle ADC and triangle BEC ,

$\mathrm{AC}=\mathrm{BC}$
[Given]...(I)
$\angle A D C=\angle B E C$
[Each is 90°]
$\angle A C D=\angle B C E$
[Common angle]
So, $\triangle A D C \cong \angle B E C \quad$ [By SSS congruence rule]
$\mathrm{CE}=\mathrm{CD}$
Now, Subtracting equation (II) from (I), get:
$\mathrm{AC}-\mathrm{AE}=\mathrm{BC}-\mathrm{CD}$
$\mathrm{AE}=\mathrm{BD}$
Hence, proved.

10. Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.

Solution:

Given in triangle ABC with median AD ,
To proof:
$\mathrm{AB}+\mathrm{AC}>2 \mathrm{AD}$
$A B+B C>2 A D$
$\mathrm{BC}+\mathrm{AC}>2 \mathrm{AD}$

Producing AD to E such that $\mathrm{DE}=\mathrm{AD}$ and join EC .
Proof: In triangle ADB and triangle EDC,
$\mathrm{AD}=\mathrm{ED} \quad[$ By construction]
$\angle 1=\angle 2 \quad$ [Vertically opposite angles are equal]
$\mathrm{DB}=\mathrm{DC} \quad$ [Given]
So, by SAS criterion of congruence,
$\triangle A D B \cong \triangle E D C$
$\mathrm{AB}=\mathrm{EC} \quad[\mathrm{CPCT}]$
And, $\angle 3=\angle 4[\mathrm{CPCT}]$
Again, in triangle AEC,
$\mathrm{AC}+\mathrm{CE}>\mathrm{AE}$ [Sum of the lengths of any two sides of a triangle must be greater than the third side]
$\mathrm{AC}+\mathrm{CE}>\mathrm{AD}+\mathrm{DE}$
$\mathrm{AC}+\mathrm{CE}>\mathrm{AD}+\mathrm{AD}[\mathrm{AD}=\mathrm{DE}]$
$A C+C E>2 A D$
$\mathrm{AC}+\mathrm{AB}>2 \mathrm{AD} \quad[$ Because $\mathrm{AB}=\mathrm{CE}]$
Hence proved.
Similarly, $\mathrm{AB}+\mathrm{BC}>2 \mathrm{AD}$ and $\mathrm{BC}+\mathrm{AC}>2 \mathrm{AD}$.

11. Show that in a quadrilateral $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{BD}+\mathrm{AC})$

Solution:

Given in the question, A quadrilateral,

To prove that $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}<2(\mathrm{BD}+\mathrm{AC})$
Proof: In triangle AOB ,
$\mathrm{OA}+\mathrm{OB}>\mathrm{AB} \quad \ldots$ (I) [Sum of the lengths of any two sides of a triangle must be greater than the third side]

In triangle BOC ,
$\mathrm{OB}+\mathrm{OC}>\mathrm{BC} \ldots$ (II) [Same reason]
In triangle COD,
OC + OD > CD...(III) [Same reason]
In triangle DOA,
$\mathrm{OD}+\mathrm{OA}>\mathrm{DA} \ldots(\mathrm{IV}) \quad$ [Same reason]
Now, adding equation (I), (II), (III) and (IV), get:
$\mathrm{OA}+\mathrm{OB}+\mathrm{OB}+\mathrm{OC}+\mathrm{OD}+\mathrm{OD}+\mathrm{OA}>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$2(\mathrm{OA}+\mathrm{OB}+\mathrm{OC}+\mathrm{OD})>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$2\{(\mathrm{OA}+\mathrm{OC})+(\mathrm{OB}+\mathrm{OD})\}>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$2(\mathrm{AC}+\mathrm{BD})>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{BD}+\mathrm{AC})$
Hence, proved.

12. Show that in a quadrilateral ABCD , $\mathbf{A B}+\mathbf{B C}+\mathbf{C D}+\mathbf{D A}>\mathbf{A C}+\mathbf{B D}$

Solution:

Given in the question, a quadrilateral ABCD .
To proof that $A B+B C+C D+D A>A C+B D$.
Proof: In triangle ABC ,

$\mathrm{AB}+\mathrm{BC}>\mathrm{AC} \ldots$ (I) [Sum of the lengths of any two sides of a triangle must be greater than the third side]

In triangle BCD ,
$\mathrm{BC}+\mathrm{CD}>\mathrm{BD}$
...(II) [Sum of the lengths of any two sides of a triangle must be greater than the third side]

In triangle CDA,
AD + DA $>$ AC ...(III) [Sum of the lengths of any two sides of a triangle must be greater than the third side]

Similarly, in triangle DAB,
$A D+A B>B D$
...(IV) [Sum of the lengths of any two sides of a triangle must be greater than the third side]

Now, adding equation (I), (II), (III) and (IV), get:
$\mathrm{AB}+\mathrm{BC}+\mathrm{BC}+\mathrm{CD}+\mathrm{CD}+\mathrm{DA}+\mathrm{AD}+\mathrm{AB}>\mathrm{AC}+\mathrm{BD}+\mathrm{AC}+\mathrm{BD}$
$2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{CD}>2 \mathrm{AC}+2 \mathrm{BD}$
$2(\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA})>2(\mathrm{AC}+\mathrm{BD})$
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}$
Hence, proved.
13. In a triangle $A B C, D$ is the mid-point of side $A C$ such that $B D=\frac{1}{2} A C$. Show that $\angle A B C$ is a right angle.

Solution:

Given: D is the mid-point of side AC .
To proof: $\angle A B C=90^{\circ}$

Proof: AD = DC
And, $\mathrm{BD}=\frac{1}{2} A C=A D \quad[\mathrm{D}$ is the mid-point of side AC$]$
$\mathrm{BD}=\mathrm{AD}=\mathrm{DC}$
In triangle ABD ,
$\mathrm{BD}=\mathrm{AD}$
$\angle 1=\angle 2 \quad \ldots$ (I) [Angles opposite to equal sides are equal]

