Mathematics

(Chapter - 6) (Triangles)
(Class - X)

Exercise 6.1

Question 1:

Fill in the blanks using correct word given in the brackets:
(i) All circles are \qquad . (congruent, similar)
(ii) All squares are \qquad . (similar, congruent)
(iii) All \qquad triangles are similar. (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are \qquad and (b) their corresponding sides are \qquad . (equal, proportional)

Answer 1:

(i) Similar
(ii) Similar
(iii) Equilateral
(iv) (a) Equal
(b) Proportional

Question 2:

Give two different examples of pair of
(i) Similar figures (ii)Non-similar figures

Answer 2:

(i) Two equilateral triangles with sides 1 cm and 2 cm

Two squares with sides 1 cm and 2 cm

(ii) Trapezium and square

Triangle and parallelogram

Question 3:

State whether the following quadrilaterals are similar or not:

Answer 3:

Quadrilateral PQRS and $A B C D$ are not similar as their corresponding sides are proportional, i.e. 1:2, but their corresponding angles are not equal.

Mathematics

$$
\begin{gathered}
\text { (Chapter - 6) (Triangles) } \\
(\text { Class }-\mathrm{x})
\end{gathered}
$$

Exercise 6.2

Question 1:

In figure.6.17. (i) and (ii), $D E \| B C$. Find $E C$ in (i) and $A D$ in (ii).
(i)

(ii)

Answer 1:

(i)

Let $\mathrm{EC}=x \mathrm{~cm}$
It is given that $D E \| B C$.
By using basic proportionality theorem, we obtain

$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\frac{1.5}{3}=\frac{1}{x}$
$x=\frac{3 \times 1}{1.5}$
$x=2$
$\therefore \mathrm{EC}=2 \mathrm{~cm}$
(ii)

Let $\mathrm{AD}=x \mathrm{~cm}$
It is given that $D E \| B C$.
By using basic proportionality theorem, we obtain
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\frac{x}{7.2}=\frac{1.8}{5.4}$
$x=\frac{1.8 \times 7.2}{5.4}$
$x=2.4$
$\therefore \mathrm{AD}=2.4 \mathrm{~cm}$

Question 2:

E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. For each of the following cases, state whether EF || QR.
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$ (iii) $\mathrm{PQ}=$
$1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.63 \mathrm{~cm}$

Answer 2:

(i)

Given that, $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}, \mathrm{FR}=2.4 \mathrm{~cm}$
$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=1.3$
$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{3.6}{2.4}=1.5$
Hence, $\frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}}$
Therefore, EF is not parallel to QR.
(ii)

$\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}, \mathrm{RF}=9 \mathrm{~cm}$
$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{4}{4.5}=\frac{8}{9}$
$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{8}{9}$
Hence, $\frac{P E}{E Q}=\frac{P F}{F R}$
Therefore, EF is parallel to QR.
(iii)

$\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}, \mathrm{PF}=0.36 \mathrm{~cm}$

$\frac{\mathrm{PE}}{\mathrm{PQ}}=\frac{0.18}{1.28}=\frac{18}{128}=\frac{9}{64}$
$\frac{P F}{P R}=\frac{0.36}{2.56}=\frac{9}{64}$
Hence, $\frac{P E}{P Q}=\frac{P F}{P R}$
Therefore, EF is parallel to QR .

Question 3:

In the following figure, if $L M \| C B$ and $L N \| C D$, prove that $\quad \frac{A M}{A B}=\frac{A N}{A D}$.

Answer 3:

In the given figure, LM || CB
By using basic proportionality theorem, we obtain

$\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AL}}{\mathrm{AC}}$
Similarly, LN \| CD
$\therefore \frac{\mathrm{AN}}{\mathrm{AD}}=\frac{\mathrm{AL}}{\mathrm{AC}}$
(ii)

From (i) and (ii), we obtain
$\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}$

Question 4:

In the following figure, $D E \| A C$ and $D F \| A E$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$.

Answer 4:

In $\triangle A B C, D E \| A C$

$\therefore \frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BE}}{\mathrm{EC}}$
(Basic Proportionality Theorem)
(i)

In $\triangle \mathrm{BAE}, \mathrm{DF} \| \mathrm{AE}$
$\therefore \frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BF}}{\mathrm{FE}}$
(Basic Proportionality Theorem)
(ii)

From(i) and (ii), we obtain
$\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BF}}{\mathrm{FE}}$

Question 5:

In the following figure, $D E \| O Q$ and $D F \| O R$, show that $E F \| Q R$.

Answer 5:

In $\triangle \mathrm{POQ}, \mathrm{DE} \| \mathrm{OQ}$
$\therefore \frac{P E}{E Q}=\frac{P D}{D O}$
(Basic proportionality theorem)
(i)

In $\triangle \mathrm{POR}, \mathrm{DF} \| \mathrm{OR}$
$\therefore \frac{P F}{F R}=\frac{P D}{D O}$
(Basic proportionality theorem)
(ii)

From (i) and (ii), we obtain
$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}$
$\therefore \mathrm{EF} \| \mathrm{QR} \quad$ (Converse of basic proportionality theorem)

Question 6:

In the following figure, A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C \| Q R$.

Answer 6:

In $\triangle \mathrm{POQ}, \mathrm{AB}| | \mathrm{PQ}$

$$
\therefore \frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OB}}{\mathrm{BQ}} \quad \quad \text { (Basic proportionality theorem) }
$$

(i)

In $\triangle \mathrm{POR}, \mathrm{AC} \| \mathrm{PR}$
$\therefore \frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}}$
(By basic proportionality theorem)
(ii)

From (i) and (ii), we obtain
$\frac{O B}{B Q}=\frac{O C}{C R}$
$\therefore \mathrm{BC} \| \mathrm{QR} \quad$ (By the converse of basic proportionality theorem)

Question 7:

Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Answer 7:

Consider the given figure in which $P Q$ is a line segment drawn through the mid-point P of line $A B$, such that $P Q \| B C$

By using basic proportionality theorem, we obtain
$\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{\mathrm{AP}}{\mathrm{PB}}$
$\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{1}{1} \quad(\mathrm{P}$ is the mid-point of $\mathrm{AB} . \therefore \mathrm{AP}=\mathrm{PB})$
$\Rightarrow A Q=Q C$
Or, Q is the mid-point of $A C$.

Question 8:

Using Converse of basic proportionality theorem, prove that the line joining the midpoints of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Answer 8:

Consider the given figure in which $P Q$ is a line segment joining the mid-points P and Q of line $A B$ and $A C$ respectively.
i.e., $A P=P B$ and $A Q=Q C$ It
can be observed that
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{1}{1}$
and $\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{1}{1}$
$\therefore \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$
Hence, by using basic proportionality theorem, we obtain
PQ $\| B C$

Question 9:

$A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the
point O. Show that $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$.

Answer 9:

Draw a line $E F$ through point O, such that $E F \| C D$
In $\triangle A D C, \quad E O \| C D$
By using basic proportionality theorem, we obtain

$\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AO}}{\mathrm{OC}}$
In $\triangle A B D, O E \| A B$
So, by using basic proportionality theorem, we obtain
$\frac{\mathrm{ED}}{\mathrm{AE}}=\frac{\mathrm{OD}}{\mathrm{BO}}$
$\Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
From equations (1) and (2), we obtain
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
$\Rightarrow \frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OD}}$

Question 10:

The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that $A B C D$ is a trapezium.

Answer 10:

Let us consider the following figure for the given question.

Draw a line $O E \| A B$

In $\triangle A B D, O E \| A B$
By using basic proportionality theorem, we obtain

$$
\begin{equation*}
\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{OD}} \tag{1}
\end{equation*}
$$

However, it is given that
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$
From equations (1) and (2), we obtain
$\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AO}}{\mathrm{OC}}$
\Rightarrow EO || DC [By the converse of basic proportionality theorem]
$\Rightarrow \mathrm{AB}\|\mathrm{OE}\| \mathrm{DC}$
$\Rightarrow A B|\mid C D$
$\therefore A B C D$ is a trapezium.

Mathematics

(Chapter - 6) (Triangles)
(Class - X)

Exercise 6.3

Question 1:

State which pairs of triangles in the following figure are similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:
(i)

(ii)

(iii)

(iv)

(v)

(vi)

Answer 1:

(i) $\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{Q}=80^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{R}=40^{\circ}$
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [By AAA similarity criterion]

$$
\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{RP}}=\frac{\mathrm{CA}}{\mathrm{PQ}}
$$

(ii)
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{QRP} \quad$ [By SSS similarity criterion]
(iii)The given triangles are not similar as the corresponding sides are not proportional.

(iv)The given triangles are not similar as the corresponding sides are not proportional.
(v)The given triangles are not similar as the corresponding sides are not proportional.
(vi) In $\triangle D E F$,
$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$ (Sum of the measures of the angles of a triangle is 180°.)
$70^{\circ}+80^{\circ}+\angle \mathrm{F}=180^{\circ}$
$\angle F=30^{\circ}$
Similarly, in $\triangle P Q R$,
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
(Sum of the measures of the angles of a triangle is 180°.)
$\angle P+80^{\circ}+30^{\circ}=180^{\circ}$
$\angle \mathrm{P}=70^{\circ}$
In $\triangle D E F$ and $\triangle P Q R$,
$\angle \mathrm{D}=\angle \mathrm{P}\left(\right.$ Each $\left.70^{\circ}\right)$
$\angle \mathrm{E}=\angle \mathrm{Q}\left(\right.$ Each $\left.80^{\circ}\right)$
$\angle \mathrm{F}=\angle \mathrm{R}\left(\right.$ Each $\left.30^{\circ}\right)$
$\therefore \triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$ [By AAA similarity criterion]

Question 2:

In the following figure, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}$, $\angle D C O$ and $\angle O A B$

Answer 2:

DOB is a straight line.
$\therefore \angle \mathrm{DOC}+\angle \mathrm{COB}=180^{\circ}$
$\Rightarrow \angle D O C=180^{\circ}-125^{\circ}=55^{\circ}$
In $\triangle D O C$,
$\angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}$
(Sum of the measures of the angles of a triangle is 180°.)
$\Rightarrow \angle D C O+70^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}=55^{\circ}$
It is given that $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}$.
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OCD}$ [Corresponding angles are equal in similar triangles.]
$\Rightarrow \angle \mathrm{OAB}=55^{\circ}$

Question 3:

Diagonals AC and BD of a trapezium $A B C D$ with $A B$ || DC intersect each other at the point O . Using a similarity criterion for two triangles, show that $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$

Answer 3:

In $\triangle D O C$ and $\triangle B O A$,
$\angle \mathrm{CDO}=\angle \mathrm{ABO}$ [Alternate interior angles as $\mathrm{AB} \| \mathrm{CD}$]
$\angle \mathrm{DCO}=\angle \mathrm{BAO}$ [Alternate interior angles as $\mathrm{AB} \| \mathrm{CD}$]
$\angle \mathrm{DOC}=\angle \mathrm{BOA}$ [Vertically opposite angles]

$\therefore \triangle \mathrm{DOC} \sim \triangle \mathrm{BOA}$ [AAA similarity criterion]
$\therefore \frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OA}}$
[Corresponding sides are proportional]
$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$

Question 4:

In the following figure, $\quad \frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$ and $\angle \mathrm{l}=\angle 2$.

Show that $\quad \triangle P Q S \sim \triangle T Q R$

Answer 4:

In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$\therefore \mathrm{PQ}=\mathrm{PR}$

Given,

$$
\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}
$$

Using (i), we obtain
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}}$
In $\triangle P Q S$ and $\triangle T Q R$,
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}} \quad[\mathrm{Using}(i i)]$
$\angle \mathrm{Q}=\angle \mathrm{Q}$
$\therefore \triangle \mathrm{PQS} \sim \triangle \mathrm{TQR} \quad[\mathrm{SAS}$ similarity criterion]

Question 5:

S and T are point on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\Delta R P Q \sim \Delta R T S$.

Answer 5:

In $\triangle \mathrm{RPQ}$ and $\triangle \mathrm{RST}$,
$\angle \mathrm{RTS}=\angle \mathrm{QPS}$ (Given)
$\angle \mathrm{R}=\angle \mathrm{R}$ (Common angle)
$\therefore \triangle \mathrm{RPQ} \sim \triangle \mathrm{RTS}$ (By AA similarity criterion)

Question 6:

In the following figure, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$.

Answer 6:

It is given that $\triangle A B E \cong \triangle A C D$.
$\therefore A B=A C[B y C P C T]$
And, $A D=A E[B y C P C T]$
In $\triangle A D E$ and $\triangle A B C$,
$\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}} \quad$ [Dividing equation (2) by (1)]
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common angle]
$\therefore \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ [By SAS similarity criterion]

Question 7:

In the following figure, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that:

(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) \triangle AEP $\sim \triangle A D B$
(v) \triangle PDC $\sim \triangle B E C$

Answer 7:

(i)

In $\triangle \mathrm{AEP}$ and $\triangle C D P$,
$\angle \mathrm{AEP}=\angle \mathrm{CDP}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{APE}=\angle \mathrm{CPD}$ (Vertically opposite angles)
Hence, by using AA similarity criterion,
$\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii)

In $\triangle A B D$ and $\triangle C B E$,
$\angle \mathrm{ADB}=\angle \mathrm{CEB}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (Common)
Hence, by using AA similarity criterion,
$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$

(iii)

In $\triangle A E P$ and $\triangle A D B$,
$\angle \mathrm{AEP}=\angle \mathrm{ADB}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (Common)
Hence, by using AA similarity criterion,
$\triangle A E P ~ \triangle A D B$
(iv)

In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$,
$\angle P D C=\angle B E C\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{PCD}=\angle \mathrm{BCE}$ (Common angle)
Hence, by using AA similarity criterion,
$\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Question 8:

E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F.
Show that $\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$

Answer 8:

In $\triangle A B E$ and $\triangle C F B$,
$\angle \mathrm{A}=\angle \mathrm{C}$ (Opposite angles of a parallelogram)
$\angle A E B=\angle C B F$ (Alternate interior angles as $A E \| B C$)
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$ (By AA similarity criterion)

Question 9:

In the following figure, $A B C$ and $A M P$ are two right triangles, right angled at B and M respectively, prove that:

(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Answer 9:

In $\triangle A B C$ and $\triangle A M P$,
$\angle \mathrm{ABC}=\angle \mathrm{AMP}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{A}=\angle \mathrm{A}$ (Common)
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (By AA similarity criterion)
$\Rightarrow \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$
(Corresponding sides of similar triangles are proportional)

Question 10:

$C D$ and $G H$ are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides $A B$ and $F E$ of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, Show that:
(i)

$$
\frac{C D}{G H}=\frac{A C}{F G}
$$

(ii) $\triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$
(iii) $\triangle \mathrm{DCA} \sim \triangle \mathrm{HGF}$

Answer 10:

It is given that $\triangle A B C \sim \Delta F E G$.
$\therefore \angle \mathrm{A}=\angle \mathrm{F}, \angle \mathrm{B}=\angle \mathrm{E}$, and $\angle \mathrm{ACB}=\angle \mathrm{FGE}$
$\angle A C B=\angle F G E$
$\therefore \angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Angle bisector)
And, $\angle \mathrm{DCB}=\angle \mathrm{HGE}$ (Angle bisector)

In $\triangle A C D$ and $\triangle F G H$,
$\angle A=\angle F$ (Proved above)
$\angle A C D=\angle F G H$ (Proved above)
$\therefore \triangle \mathrm{ACD} \sim \Delta \mathrm{FGH}$ (By AA similarity criterion)
$\Rightarrow \frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
In $\triangle \mathrm{DCB}$ and $\triangle \mathrm{HGE}$,
$\angle D C B=\angle H G E$ (Proved above)
$\angle B=\angle E$ (Proved above)
$\therefore \triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$ (By AA similarity criterion)
In $\triangle D C A$ and $\triangle H G F$,
$\angle A C D=\angle F G H$ (Proved above)
$\angle A=\angle F$ (Proved above)
$\therefore \triangle \mathrm{DCA} \sim \Delta \mathrm{HGF}$ (By AA similarity criterion)

Question 11:

In the following figure, E is a point on side $C B$ produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \sim \triangle E C F$

Answer 11:

It is given that $A B C$ is an isosceles triangle.
$\therefore \mathrm{AB}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ECF}$

In $\triangle A B D$ and $\triangle E C F$,
$\angle A D B=\angle E F C\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle B A D=\angle C E F$ (Proved above)
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$ (By using AA similarity criterion)

Question 12:

Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of $\triangle P Q R$ (see the given figure). Show that $\triangle A B C \sim \triangle P Q R$.

Answer 12:

Median divides the opposite side.
$\therefore \quad \mathrm{BD}=\frac{\mathrm{BC}}{2}$ and $\mathrm{QM}=\frac{\mathrm{QR}}{2}$
Given that,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
In $\triangle A B D$ and $\triangle P Q M$,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}} \quad$ (Proved above)
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ (By SSS similarity criterion)
$\Rightarrow \angle A B D=\angle \mathrm{PQM}$ (Corresponding angles of similar triangles)
In $\triangle A B C$ and $\triangle P Q R$,
$\angle A B D=\angle P Q M$ (Proved above)
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (By SAS similarity criterion)

Question 13:

D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $\mathrm{CA}^{2}=\mathrm{CB} . \mathrm{CD}$.

Answer 13:

In $\triangle A D C$ and $\triangle B A C$,
$\angle A D C=\angle B A C$ (Given)
$\angle A C D=\angle B C A$ (Common angle)
$\therefore \triangle \mathrm{ADC} \sim \triangle \mathrm{BAC}$ (By AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
$\therefore \frac{C A}{C B}=\frac{C D}{C A}$
$\Rightarrow \mathrm{CA}^{2}=\mathrm{CB} \times C D$

Question 14:

Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$

Answer 14:

Given that,
$\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M}$
Let us extend $A D$ and $P M$ up to point E and L respectively, such that $A D=D E$ and $P M=$ $M L$. Then, join B to E, C to E, Q to L, and R to L.

We know that medians divide opposite sides.
Therefore, $B D=D C$ and $Q M=M R$
Also, $A D=D E$ (By construction)
And, $\mathrm{PM}=\mathrm{ML}$ (By construction)
In quadrilateral $A B E C$, diagonals $A E$ and $B C$ bisect each other at point D.

Therefore, quadrilateral $A B E C$ is a parallelogram.
$\therefore A C=B E$ and $A B=E C$ (Opposite sides of a parallelogram are equal)
Similarly, we can prove that quadrilateral PQLR is a parallelogram and $P R=Q L$,
$P Q=L R$
It was given that
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{2 \mathrm{AD}}{2 \mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{\mathrm{AE}}{\mathrm{PL}}$
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{PQL}$ (By SSS similarity criterion)
We know that corresponding angles of similar triangles are equal.
$\therefore \angle \mathrm{BAE}=\angle \mathrm{QPL}$..
Similarly, it can be proved that $\triangle A E C \sim \triangle P L R$ and
$\angle C A E=\angle R P L$
Adding equation (1) and (2), we obtain
$\angle B A E+\angle C A E=\angle Q P L+\angle R P L$
$\Rightarrow \angle C A B=\angle R P Q$.
In $\triangle A B C$ and $\triangle P Q R$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$ (Given)
$\angle C A B=\angle R P Q[$ Using equation (3)]
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (By SAS similarity criterion)

Question 15:

A vertical pole of a length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Answer 15:

Let $A B$ and $C D$ be a tower and a pole respectively.
Let the shadow of $B E$ and $D F$ be the shadow of $A B$ and $C D$ respectively.
At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.
Therefore, $\angle \mathrm{DCF}=\angle \mathrm{BAE}$
And, $\angle D F C=\angle B E A$
$\angle C D F=\angle A B E$ (Tower and pole are vertical to the ground)
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{CDF}$ (AAA similarity criterion)
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{BE}}{\mathrm{DF}}$
$\Rightarrow \frac{\mathrm{AB}}{6 \mathrm{~m}}=\frac{28}{4}$
$\Rightarrow \mathrm{AB}=42 \mathrm{~m}$
Therefore, the height of the tower will be 42 metres.

Question 16:

If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ prove tha $\mathrm{t} \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

Answer 16:

It is given that $\triangle A B C \sim \triangle P Q R$
We know that the corresponding sides of similar triangles are in proportion.
$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
Also, $\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R \ldots$
Since $A D$ and $P M$ are medians, they will divide their opposite sides.
$\therefore \mathrm{BD}=\frac{\mathrm{BC}}{2}$ and $\mathrm{QM}=\frac{\mathrm{QR}}{2}$
From equations (1) and (3), we obtain
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}$
In $\triangle A B D$ and $\triangle P Q M$,
$\angle B=\angle Q$ [Using equation (2)]
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}$ [Using equation (4)]
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ (By SAS similarity criterion)
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

Mathematics

(Chapter - 6) (Triangles)
(Class - X)

Exercise 6.4

Question 1:

Let $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=$ 15.4 cm , find BC .

Answer 1:

It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{\mathrm{AB}}{\mathrm{DE}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{DF}}\right)^{2}$
Given that,
$\mathrm{EF}=15.4 \mathrm{~cm}$,
$\operatorname{ar}(\triangle \mathrm{ABC})=64 \mathrm{~cm}^{2}$,
$\operatorname{ar}(\triangle \mathrm{DEF})=121 \mathrm{~cm}^{2}$
$\therefore \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{DEF})}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}$
$\Rightarrow\left(\frac{64 \mathrm{~cm}^{2}}{121 \mathrm{~cm}^{2}}\right)=\frac{\mathrm{BC}^{2}}{(15.4 \mathrm{~cm})^{2}}$
$\Rightarrow \frac{\mathrm{BC}}{15.4}=\left(\frac{8}{11}\right) \mathrm{cm}$
$\Rightarrow \mathrm{BC}=\left(\frac{8 \times 15.4}{11}\right) \mathrm{cm}=(8 \times 1.4) \mathrm{cm}=11.2 \mathrm{~cm}$

Question 2:

Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B$ $=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

Answer 2:

Since $A B \| C D$,
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OCD}$ and $\angle \mathrm{OBA}=\angle \mathrm{ODC}$ (Alternate interior angles)
In $\triangle A O B$ and $\triangle C O D$,
$\angle A O B=\angle C O D$ (Vertically opposite angles)
$\angle O A B=\angle O C D$ (Alternate interior angles)
$\angle O B A=\angle O D C$ (Alternate interior angles)
$\therefore \triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$ (By AAA similarity criterion)
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle C O D)}=\left(\frac{\mathrm{AB}}{\mathrm{CD}}\right)^{2}$
Since $A B=2 C D$,
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle \mathrm{COD})}=\left(\frac{2 \mathrm{CD}}{\mathrm{CD}}\right)^{2}=\frac{4}{1}=4: 1$

Question 3:

In the following figure, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$ intersects $B C$ at O, show that $\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D B C)}=\frac{A O}{D O}$

Answer 3:

Let us draw two perpendiculars $A P$ and $D M$ on line $B C$.

We know that area of a triangle $=\frac{1}{2} \times$ Base \times Height

$$
\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AP}}{\frac{1}{2} \mathrm{BC} \times \mathrm{DM}}=\frac{\mathrm{AP}}{\mathrm{DM}}
$$

In $\triangle \mathrm{APO}$ and $\triangle \mathrm{DMO}$,
$\angle A P O=\angle D M O\left(\right.$ Each $\left.=90^{\circ}\right)$
$\angle A O P=\angle D O M$ (Vertically opposite angles)
$\therefore \triangle \mathrm{APO} \sim \triangle \mathrm{DMO}$ (By AA similarity criterion)
$\therefore \frac{\mathrm{AP}}{\mathrm{DM}}=\frac{\mathrm{AO}}{\mathrm{DO}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$

Question 4:

If the areas of two similar triangles are equal, prove that they are congruent.

Answer 4:

Let us assume two similar triangles as $\triangle A B C \sim \triangle P Q R$.
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
Given that, ar $(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PQR})$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=1$
Putting this value in equation (1), we obtain
$1=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
$\Rightarrow \mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR}$, and $\mathrm{AC}=\mathrm{PR}$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
(By SSS congruence criterion)

Question 5:

D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the area of $\triangle D E F$ and $\triangle A B C$.

Answer 5:

D and E are the mid-points of $\triangle A B C$.

$\therefore \mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{AC}$
In $\triangle B E D$ and $\triangle B C A$,
$\angle \mathrm{BED}=\angle \mathrm{BCA} \quad$ (Corresponding angles)
$\angle \mathrm{BDE}=\angle \mathrm{BAC} \quad$ (Corresponding angles)
$\angle \mathrm{EBD}=\angle \mathrm{CBA} \quad$ (Common angles)
$\therefore \triangle \mathrm{BED} \sim \triangle \mathrm{BCA} \quad$ (AAA similarity criterion)
$\frac{\operatorname{ar}(\triangle \mathrm{BED})}{\operatorname{ar}(\triangle \mathrm{BCA})}=\left(\frac{\mathrm{DE}}{\mathrm{AC}}\right)^{2}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{BED})}{\operatorname{ar}(\triangle \mathrm{BCA})}=\frac{1}{4}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{BCA})$
Similarly, $\operatorname{ar}(\triangle \mathrm{CFE})=\frac{1}{4} \operatorname{ar}(\mathrm{CBA})$ and $\operatorname{ar}(\triangle \mathrm{ADF})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
Also, $\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC})-[\operatorname{ar}(\triangle \mathrm{BED})+\operatorname{ar}(\triangle \mathrm{CFE})+\operatorname{ar}(\triangle \mathrm{ADF})]$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC})-\frac{3}{4} \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{DEF})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{4}$

Question 6:

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Answer 6:

Let us assume two similar triangles as $\triangle A B C \sim \triangle P Q R$. Let $A D$ and $P S$ be the medians of these triangles.
\because
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
$\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R$
Since AD and PS are medians,
$\therefore \mathrm{BD}=\mathrm{DC}=\frac{\mathrm{BC}}{2}$
And, $\mathrm{QS}=\mathrm{SR}=\frac{\mathrm{QR}}{2}$

Equation (1) becomes
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
In $\triangle A B D$ and $\triangle P Q S$,
$\angle B=\angle Q$ [Using equation (2)]
And, $\quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}} \quad$ [Using equation (3)]
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQS}$ (SAS similarity criterion)
Therefore, it can be said that

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}}=\frac{\mathrm{AD}}{\mathrm{PS}}$
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
From equations (1) and (4), we may find that
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PS}}$
And hence,
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AD}}{\mathrm{PS}}\right)^{2}$

Question 7:

Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Answer 7:

Let $A B C D$ be a square of side a.
Therefore, its diagonal $=\sqrt{2} a$
Two desired equilateral triangles are formed as $\triangle A B E$ and $\triangle D B F$.
Side of an equilateral triangle, $\triangle A B E$, described on one its sides $=a$

Side of an equilateral triangle, $\triangle \mathrm{DBF}$, described on one of its diagonals $=\sqrt{2} a$
We know that equilateral triangles have all its angles as 60° and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.
$\frac{\text { Area of } \triangle \mathrm{ABE}}{\text { Area of } \triangle \mathrm{DBF}}=\left(\frac{a}{\sqrt{2} a}\right)^{2}=\frac{1}{2}$

Question 8:

$A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. Ratio of the area of triangles $A B C$ and $B D E$ is
(A) $2: 1$ (B)

1: 2
(C) $4: 1$
(D) $1: 4$

Answer 8:

We know that equilateral triangles have all its angles as 60° and all its sides of the same length. Therefore, all equilateral triangles are similar to each other.

Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.

Let side of $\triangle A B C=x$

Therefore, side of $\triangle \mathrm{BDE}=\frac{x}{2}$
$\therefore \frac{\operatorname{area}(\triangle \mathrm{ABC})}{\operatorname{area}(\triangle \mathrm{BDE})}=\left(\frac{x}{\frac{x}{2}}\right)^{2}=\frac{4}{1}$
Hence, the correct answer is (C).

Question 9:

Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$

Answer 9:

If two triangles are similar to each other, then the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides of these triangles. It is given that the sides are in the ratio 4:9.
It is given that the sides are in the ratio 4:9.
Therefore, ratio between areas of these triangles $=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}$
Hence, the correct answer is (D).

Mathematics

(Chapter - 6) (Triangles)
(Class 10)

Exercise 6.5

Question 1:

Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
(iv) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$

Answer 1:

(i) Sides of triangle: $7 \mathrm{~cm}, 24 \mathrm{~cm}$ and 25 cm .

Squaring these sides, we get 49,576 and 625 .
$49+576=625 \Rightarrow 7^{2}+24^{2}=25^{2}$
These sides satisfy the Pythagoras triplet, hence these are sides of right angled triangle.
We know that the hypotenuses is the longest side in right angled triangle.
Hence, its length is 25 cm .
(ii) Sides of triangle: $3 \mathrm{~cm}, 6 \mathrm{~cm}$ and 8 cm .

Squaring these sides, we get 9,36 and 64 .
$9+36 \neq 64 \Rightarrow 3^{2}+6^{2} \neq 8^{2}$
These sides do not satisfy the Pythagoras triplet, hence these are not the sides of right angled triangle.
(iii) Sides of triangle: $50 \mathrm{~cm}, 80 \mathrm{~cm}$ and 100 cm .

Squaring these sides, we get 2500,6400 and 10000 .
$2500+6400 \neq 10000 \Rightarrow 50^{2}+80^{2} \neq 100^{2}$
These sides do not satisfy the Pythagoras triplet, hence these are not the sides of right angled triangle.
(iv) Sides of triangle: $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm .

Squaring these sides, we get 25,144 and 169.
$25+144=169 \Rightarrow 5^{2}+12^{2}=13^{2}$
These sides satisfy the Pythagoras triplet, hence these are sides of right angled triangle.
We know that the hypotenuses is the longest side in right angled triangle.
Hence, its length is 13 cm .

Question 2:

$P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P^{2}=Q M . M R$.
Answer 2:
Let $\angle \mathrm{MPR}=x$
In $\triangle \mathrm{MPR}$,
$\angle \mathrm{MRP}=180^{\circ}-90^{\circ}-x$
Similarly,
In $\triangle \mathrm{MPR}$,
$\angle \mathrm{MPQ}=90^{\circ}-\angle \mathrm{MPR}=90^{\circ}-x$
$\angle \mathrm{MQP}=180^{\circ}-90^{\circ}-\left(90^{\circ}-x\right)=x$
In $\triangle Q M P$ and $\triangle P M R$,
$\angle M P Q=\angle M R P$
$\angle \mathrm{PMQ}=\angle \mathrm{RMP}$

$\angle \mathrm{MQP}=\angle \mathrm{MPR}$
$\Rightarrow \Delta \mathrm{QMP} \sim \Delta \mathrm{PMR}$
[AAA similarity]
We know that the corresponding sides of similar triangles are proportional.
Therefore,
$\frac{\mathrm{QM}}{\mathrm{PM}}=\frac{\mathrm{MP}}{\mathrm{MR}}$
$\Rightarrow P M^{2}=M Q \times M R$

Mathematics

(Chapter - 6) (Triangles)
(Class 10)

Question 3:

In Figure, ABD is a triangle right angled at A and $\mathrm{AC} \perp \mathrm{BD}$. Show that
(i) $\mathrm{AB}^{2}=\mathrm{BC} \times \mathrm{BD}$
(ii) $\mathrm{AC}^{2}=\mathrm{BC} \times \mathrm{DC}$
(iii) $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$

Answer 3:
(i) In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CAB}$,
$\angle D A B=\angle A C B$
[Each 90°]
$\angle \mathrm{ABD}=\angle \mathrm{CBA}$
[Common]
$\therefore \triangle \mathrm{DCM} \sim \triangle \mathrm{BDM}$
[AA similarity]
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{CB}}=\frac{\mathrm{BD}}{\mathrm{AB}}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{CB} \times \mathrm{BD}$
(ii) Let $\angle \mathrm{CAB}=x$

In $\triangle \mathrm{CBA}$,
$\angle \mathrm{CBA}=180^{\circ}-90^{\circ}-x$
$\Rightarrow \angle \mathrm{CBA}=90^{\circ}-x$
Similarly, in $\triangle \mathrm{CAD}$,

$\angle \mathrm{CAD}=90^{\circ}-\angle \mathrm{CAB}$
$\Rightarrow \angle \mathrm{CAD}=90^{\circ}-x$
$\angle \mathrm{CDA}=180^{\circ}-90^{\circ}-\left(90^{\circ}-x\right)$
$\Rightarrow \angle \mathrm{CDA}=x$
In $\triangle \mathrm{CBA}$ and $\triangle \mathrm{CAD}$,
$\angle \mathrm{CBA}=\angle \mathrm{CAD} \quad$ [Proved above]
$\angle \mathrm{CAB}=\angle \mathrm{CDA} \quad$ [Proved above]
$\angle \mathrm{ACB}=\angle \mathrm{DCA}$
$\therefore \triangle \mathrm{CBA} \sim \triangle \mathrm{CAD}$
[Each 90°]
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{BC} \times \mathrm{DC}$
(iii) In $\triangle D C A$ and $\triangle D A B$,
$\angle \mathrm{DCA}=\angle \mathrm{DAB}$
[Each 90°]
$\angle \mathrm{CDA}=\angle \mathrm{ADB}$
[Common]
$\therefore \triangle \mathrm{DCA} \sim \triangle \mathrm{DAB}$
[AA similarity]
$\Rightarrow \frac{\mathrm{DC}}{\mathrm{DA}}=\frac{\mathrm{DA}}{\mathrm{DB}}$
$\Rightarrow \mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$

Question 4:

$A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

Answer 4:

Given that the triangle ABC is an isosceles triangle such that $\mathrm{AC}=\mathrm{BC}$ and $\angle \mathrm{C}=90^{\circ}$,
In $\triangle A B C$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}$
[Because $\mathrm{AC}=\mathrm{BC}$]
$\Rightarrow \mathrm{AB}^{2}=2 \mathrm{AC}^{2}$

Mathematics

(Chapter - 6) (Triangles)
(Class 10)

Question 5:

ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$, prove that ABC is a right triangle.

Answer 5:

Given that: $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2} \quad[$ Because $\mathrm{AC}=\mathrm{BC}]$
These sides satisfy the Pythagoras theorem.
Hence, the triangle ABC is a right angled triangle.

Question 6:

ABC is an equilateral triangle of side $2 a$. Find each of its altitudes.

Answer 6:

Let ABC be any equilateral triangle with each sides of length 2 a . Perpendicular $A D$ is drawn from A to $B C$.
We know that the altitude in equilateral triangle, bisects the opposite sides.
Therefore, $\therefore \mathrm{BD}=\mathrm{DC}=\mathrm{a}$
In \triangle ADB, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\Rightarrow(2 \mathrm{a})^{2}=\mathrm{AD}^{2}+\mathrm{a}^{2}$
[Because AB = 2a]

$\Rightarrow 4 \mathrm{a}^{2}=A D^{2}+\mathrm{a}^{2}$
$\Rightarrow A D^{2}=3 a^{2} \Rightarrow A D=\sqrt{3} a$
Hence, the length of each altitude is $\sqrt{3}$ a.

Question 7:

Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

Answer 7:

In $\triangle A O B$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$
In $\triangle B O C$, by Pythagoras theorem
$\mathrm{BC}^{2}=\mathrm{BO}^{2}+\mathrm{OC}^{2}$
In \triangle COD, by Pythagoras theorem
$\mathrm{CD}^{2}=\mathrm{CO}^{2}+\mathrm{OD}^{2}$
In $\triangle A O D$, by Pythagoras theorem
$\mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2}$

Adding the equations (i), (ii), (iii) and (iv), we have
$\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}+\mathrm{OC}^{2}+\mathrm{OD}^{2}+\mathrm{OD}^{2}+\mathrm{OA}^{2}$
$=2\left[\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}+\mathrm{OD}^{2}\right]$
$=2[20 \mathrm{~A} 2+20 \mathrm{~B} 2] \quad[$ Because $\mathrm{OA}=\mathrm{OC}, \mathrm{OB}=\mathrm{OD}]$
$=4[0 A 2+O B 2]$
$=4\left[\left(\frac{\mathrm{AC}}{2}\right)^{2}+\left(\frac{\mathrm{BD}}{2}\right)^{2}\right] \quad[$ Because $\mathrm{OA}=1 / 2 \mathrm{AC}, \mathrm{OB}=1 / 2 \mathrm{BD}]$
$=4\left[\frac{\mathrm{AC}^{2}}{4}+\frac{\mathrm{BD}^{2}}{4}\right]$
$=\mathrm{AC}^{2}+\mathrm{BD}^{2}$

Mathematics

(Chapter - 6) (Triangles)
(Class 10)

Question 8:

In Figure, O is a point in the interior of a triangle $\mathrm{ABC}, \mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp \mathrm{AB}$. Show that
(i) $\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$
(ii) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$

Answer 8:
Join OA, OB and OC .
(i) In $\triangle A O F$, by Pythagoras theorem $0 A^{2}=0 F^{2}+\mathrm{AF}^{2}$
In \triangle BOD, by Pythagoras theorem $\mathrm{OB}^{2}=\mathrm{OD}^{2}+\mathrm{BD}^{2}$
In \triangle COE, by Pythagoras theorem
$\mathrm{OC}^{2}=\mathrm{OE}^{2}+\mathrm{EC}^{2}$
Adding equations (i), (ii) and (iii), we have
$\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}$
$=\mathrm{OF}^{2}+\mathrm{AF}^{2}+\mathrm{OD}^{2}+\mathrm{BD}^{2}+\mathrm{OE}^{2}+\mathrm{EC}^{2}$
$\Rightarrow \mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$
(ii) From the equation (iv), we have
$\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$
$=\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}$
$=\left(\mathrm{OA}^{2}-\mathrm{OE}^{2}\right)+\left(\mathrm{OC}^{2}-\mathrm{OD}^{2}\right)+\left(\mathrm{OB}^{2}-\mathrm{OF}^{2}\right)$
$=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$

Question 9:

A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Answer 9:

Let $O A$ is wall and $A B$ is ladder in the figure.
In $\triangle A O B$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$
$\Rightarrow 10^{2}=8^{2}+B O^{2}$
$\Rightarrow 100=64+B O^{2}$
$\Rightarrow B O^{2}=36$

$\Rightarrow B O=6 \mathrm{~m}$
Hence, the distance of the foot of the ladder from the base of the wall is 6 m .

Question 10:

A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Answer 10:

Let $O B$ is vertical pole in the figure.
In $\triangle A O B$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{OB}^{2}+\mathrm{OA}^{2}$
$\Rightarrow 24^{2}=18^{2}+O A^{2}$
$\Rightarrow 576=324+O A^{2}$
$\Rightarrow O A^{2}=252$
$\Rightarrow O A=6 \sqrt{7} \mathrm{~m}$
Hence, the distance of stake from the base of the pole is $6 \sqrt{7} \mathrm{~m}$.

Mathematics

(Chapter - 6) (Triangles)
(Class 10)

Question 11:

An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours?

Answer 11:

Distance travelled by first aeroplane (due north) in $1 \frac{1}{2}$ hours
$=1000 \times \frac{3}{2}=1500 \mathrm{~km}$
Distance travelled by second aeroplane (due west) in $1 \frac{1}{2}$ hours
$=1200 \times \frac{3}{2}=1800 \mathrm{~km}$
Now, OA and OB are the distance travelled.
Now by Pythagoras theorem, the distance between the two planes

$A B=\sqrt{O A^{2}+O B^{2}}$
$=\sqrt{(1500)^{2}+(1800)^{2}}=\sqrt{2250000+3240000}$
$=\sqrt{5490000}=300 \sqrt{61} \mathrm{~km}$
Hence, $1 \frac{1}{2}$ hours, the distance between two planes is $300 \sqrt{61} \mathrm{~km}$.

Question 12:

Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.

Answer 12:

Let AB and CD are the two pole with height 6 m and 11 m respectively.
Therefore, $\mathrm{CP}=11-6=5 \mathrm{~m}$ and $\mathrm{AP}=12 \mathrm{~m}$
In $\triangle A P C$, by Pythagoras theorem
$A P^{2}+P C^{2}=A C^{2}$
$\Rightarrow 12^{2}+5^{2}=A C^{2}$
$\Rightarrow A C^{2}=144+25=169$
$\Rightarrow A C=13 \mathrm{~m}$
Hence, the distance between the tops of two poles is 13 m .

Question 13:

D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A^{2}+$ $\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{DE}^{2}$.

Answer 13:

In \triangle ACE, by Pythagoras theorem
$\mathrm{AC}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}$
In $\triangle B C D$, by Pythagoras theorem
$\mathrm{BC}^{2}+\mathrm{CD}^{2}=\mathrm{DB}^{2}$
From the equation (1) and (2), we have
$\mathrm{AC}^{2}+\mathrm{CE}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}=\mathrm{AE}^{2}+\mathrm{DB}^{2}$
In $\triangle \mathrm{CDE}$, by Pythagoras theorem
$\mathrm{DE}^{2}=\mathrm{CD}^{2}+\mathrm{CE}^{2}$

In $\triangle A B C$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}$
From the equation (3), (4) and (5), we have
$\mathrm{DE}^{2}+\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{DB}^{2}$

Mathematics

(Chapter - 6) (Triangles)
(Class 10)

Question 14:

The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B=3 C D$ (see Figure). Prove that $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.

Answer 14:

In $\triangle A C D$, by Pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$\Rightarrow \mathrm{AC}^{2}-\mathrm{CD}^{2}=\mathrm{AD}^{2}$
In $\triangle \mathrm{ABD}$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\Rightarrow \mathrm{AB}^{2}-\mathrm{BD}^{2}=\mathrm{AD}^{2}$

From the equation (1) and (2), we have
$\mathrm{AC}^{2}-\mathrm{CD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}$
Given that: $3 \mathrm{DC}=\mathrm{DB}$, therefore
$D C=\frac{B C}{4}$ and $B D=\frac{3 B C}{4}$
From the equation (3) and (4), we have
$\mathrm{AC}^{2}-\left(\frac{\mathrm{BC}}{4}\right)^{2}=\mathrm{AB}^{2}-\left(\frac{3 \mathrm{BC}}{4}\right)^{2}$
$\Rightarrow \mathrm{AC}^{2}-\frac{\mathrm{BC}^{2}}{16}=\mathrm{AB}^{2}-\frac{9 \mathrm{BC}^{2}}{16}$
$\Rightarrow 16 \mathrm{AC}^{2}-\mathrm{BC}^{2}=16 \mathrm{AB}^{2}-9 \mathrm{BC}^{2}$
$\Rightarrow 16 \mathrm{AC}^{2}=16 \mathrm{AB}^{2}-8 \mathrm{BC}^{2}$
$\Rightarrow 2 \mathrm{AC}^{2}=2 \mathrm{AB}^{2}-\mathrm{BC}^{2}$
$\Rightarrow 2 A B^{2}=2 A C^{2}+B C^{2}$

Question 15:

In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=1 / 3 B C$. Prove that $9 A D^{2}=7 A^{2}$.

Answer 15:

Triangle ABC is an equilateral triangle with each side a . Draw an altitude AE from A to BC .
We know that the altitude in equilateral triangle, bisects the opposite sides.
Therefore, $\mathrm{BE}=\mathrm{EC}=\mathrm{a} / 2$
In \triangle AEB, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2}$
$\Rightarrow(\mathrm{a})^{2}=A D^{2}+(\mathrm{a} / 2)^{2} \quad[$ Because $\mathrm{AB}=\mathrm{a}]$
$\Rightarrow a^{2}=A D^{2}+a^{2} / 4 \quad \Rightarrow A D^{2}=3 a^{2} / 4 \quad \Rightarrow A D=\sqrt{3} a / 2$
Given that: $\mathrm{BD}=1 / 3 \mathrm{BC}$
$\therefore \mathrm{BD}=\mathrm{a} / 3$
$D E=B E-B D=a / 2-a / 3=a / 6$
In $\triangle \mathrm{ADE}$, by Pythagoras theorem,
$\mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2}$

$A D^{2}=\left(\frac{a \sqrt{3}}{2}\right)^{2}+\left(\frac{a}{6}\right)^{2}$
$=\frac{3 a^{2}}{4}+\frac{a^{2}}{36}=\frac{28 a^{2}}{36}=\frac{7}{9} a^{2}$
$\Rightarrow A D^{2}=\frac{7}{9} A B^{2}$
$\Rightarrow 9 A D^{2}=7 A B^{2}$

Mathematics

(Chapter - 6) (Triangles)
(Class 10)

Question 16:

In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Answer 16:

Let triangle ABC be an equilateral triangle with side a . Altitude AE is drown from A to BC .
We know that the altitude in equilateral triangle, bisects the opposite sides.
$\therefore \mathrm{BE}=\mathrm{EC}=\mathrm{BC} / 2=\mathrm{a} / 2$
In $\triangle \mathrm{ABE}$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2}$
$\Rightarrow a^{2}=A E^{2}+\left(\frac{a}{2}\right)^{2}=A E^{2}+\frac{a^{2}}{4}$
$\Rightarrow A E^{2}=a^{2}-\frac{a^{2}}{4}=\frac{3 a^{2}}{4}$
$4 A E^{2}=3 a^{2}$

$\Rightarrow 4 \times($ Altitude $)=3 \times($ Side $)$

Question 17:

Tick the correct answer and justify: In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. The angle B is:
(A) 120°
(B) 60°
(C) 90°
(D) 45°

Answer 17:

Given that: $\mathrm{AB}=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$.
Therefore, $\mathrm{AB}^{2}=108, \mathrm{AC}^{2}=144$ and $\mathrm{BC}^{2}=36$
Now,
$\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$=108+36$
$=144$
$=A C^{2}$

The sides are satisfying the Pythagoras triplet in $\triangle \mathrm{ABC}$. Hence, these are the sides of a right angled triangle. $\therefore \angle \mathrm{B}=90^{\circ}$
Hence, the option (C) is correct.

Mathematics

(Chapter - 6) (Triangles)
(Class 10)

Exercise 6.6 (Optional)

Question 1:

In Figure, PS is the bisector of $\angle \mathrm{QPR}$ of $\triangle \mathrm{PQR}$. Prove that $\frac{Q S}{S R}=\frac{P Q}{Q R}$.

Answer 1:

A line RT is drawn parallel to SP , which intersects QP produced at T.
Given that, SP bisects angle QPR, therefore
$\angle \mathrm{QPS}=\angle \mathrm{SPR}$
By construction,
$\angle \mathrm{SPR}=\angle \mathrm{PRT}$ (As PS || TR)
$\angle \mathrm{QPS}=\angle \mathrm{QTR}$ (As PS || TR)
From the above equations, we have
$\angle \mathrm{PRT}=\angle \mathrm{QTR}$
$\therefore \mathrm{PT}=\mathrm{PR}$
By construction, PS || TR
In $\triangle Q T R$, by Thales theorem
$\frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{QP}}{\mathrm{PT}} \Rightarrow \frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{PQ}}{\mathrm{QR}}$
$[\because \mathrm{PT}=\mathrm{TR}]$

Question 2:

In Figure, D is a point on hypotenuse AC of $\triangle \mathrm{ABC}, \mathrm{DM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{AB}$. Prove that:
(i) $\mathrm{DM}^{2}=\mathrm{DN} . \mathrm{MC}$
(ii) $\mathrm{DN}^{2}=$ DM.AN

Answer 2:

(i) Join B and D.

Given that, $\mathrm{DN}\left|\mid \mathrm{CB}, \mathrm{DM} \| \mathrm{AB}\right.$ and $\angle \mathrm{B}=90^{\circ}, \therefore \mathrm{DMBN}$ is a rectangle.
$\therefore \mathrm{DN}=\mathrm{MB}$ and $\mathrm{DM}=\mathrm{NB}$
Given that, $\mathrm{BD} \perp \mathrm{AC}, \therefore \angle \mathrm{CDB}=90^{\circ}$
$\Rightarrow \angle 2+\angle 3=90^{\circ}$

In $\triangle C D M, \angle 1+\angle 2+\angle D M C=180^{\circ}$
$\Rightarrow \angle 1+\angle 2=90^{\circ}$
In $\triangle \mathrm{DMB}, \angle 3+\angle \mathrm{DMB}+\angle 4=180^{\circ}$
$\Rightarrow \angle 3+\angle 4=90^{\circ}$
From the equations (1) and (2), we have, $\angle 1=\angle 3$
From the equations (1) and (3), we have, $\angle 2=\angle 4$
In $\triangle \mathrm{DCM}$ and $\triangle \mathrm{BDM}$,
$\angle 1=\angle 3$
[Proved above]
$\angle 2=\angle 4$ [Proved above] [AA similarity]
$\therefore \Delta \mathrm{DCM} \sim \Delta \mathrm{BDM}$
$\Rightarrow \frac{B M}{D M}=\frac{D M}{M C} \Rightarrow \frac{D N}{D M}=\frac{D M}{M C} \quad[\because B M=D N]$
$\Rightarrow D M^{2}=D N \times M C$
(ii) In \triangle DBN, $\angle 5+\angle 7=90^{\circ}$

In $\triangle \mathrm{DAN}, \angle 6+\angle 8=90^{\circ}$
$\mathrm{BD} \perp \mathrm{AC}, \therefore \angle \mathrm{ADB}=90^{\circ}$
$\Rightarrow \angle 5+\angle 6=90^{\circ}$
From the equations (4) and (6), we have, $\angle 6=\angle 7$
From the equations (5) and (6), we have, $\angle 8=\angle 5$

Mathematics

(Chapter - 6) (Triangles)
(Class 10)
In $\triangle \mathrm{DNA}$ and $\triangle \mathrm{BND}$,
$\angle 6=\angle 7$
[Proved above]
$\angle 8=\angle 5$
[Proved above]
$\therefore \triangle \mathrm{DNA} \sim \triangle \mathrm{BND}$
[AA similarity]
$\Rightarrow \frac{A N}{D N}=\frac{D N}{N B} \Rightarrow D N^{2}=A N \times N B$
$\Rightarrow D N^{2}=\mathrm{AN} \times \mathrm{DM}$
$[\because N B=D M]$

Question 3:

In Figure, ABC is a triangle in which $\angle \mathrm{ABC}>90^{\circ}$ and $\mathrm{AD} \perp \mathrm{CB}$ produced. Prove that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} . \mathrm{BD}$.

Answer 3:

In $\triangle \mathrm{ADB}$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}$
In $\triangle \mathrm{ACD}$, by Pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+(\mathrm{DB}+\mathrm{BC})^{2}$
$\Rightarrow A C^{2}=A D^{2}+D B^{2}+B C^{2}+2 D B \times B C$
$\Rightarrow A C^{2}=A B^{2}+B C^{2}+2 D B \times B C$
[From the equation (1)]

Question 4:

In Figure, ABC is a triangle in which $\angle \mathrm{ABC}<90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. Prove that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \cdot \mathrm{BD}$.

Answer 4:

In $\triangle \mathrm{ADB}$, by Pythagoras theorem
$\mathrm{AD}^{2}+\mathrm{DB}^{2}=\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AD} 2=\mathrm{AB} 2-\mathrm{DB} 2$

$\triangle \mathrm{ADC}$ में, by Pythagoras theorem, $\mathrm{AD}^{2}+\mathrm{DC}^{2}=\mathrm{AC}^{2}$
$\Rightarrow \mathrm{AB}^{2}-\mathrm{BD}^{2}+\mathrm{DC}^{2}=\mathrm{AC}^{2}$
[From the equation (1)]
$\Rightarrow \mathrm{AB}^{2}-\mathrm{BD}^{2}+(\mathrm{BC}-\mathrm{BD})^{2}=\mathrm{AC}^{2}$
$\Rightarrow A C^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}+\mathrm{BC}^{2}+\mathrm{BD}^{2}-2 \mathrm{BC} \times \mathrm{BD}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD}$

Question 5:

In Figure, AD is a median of a triangle ABC and $\mathrm{AM} \perp \mathrm{BC}$. Prove that:
(i) $A C^{2}=A D^{2}+B C \cdot D M+\left(\frac{B C}{2}\right)^{2}$
(ii) $A B^{2}=A D^{2}-B C \cdot D M+\left(\frac{B C}{2}\right)^{2}$
(ii) $A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

Answer 5:

(i) In $\triangle \mathrm{AMD}$, by Pythagoras theorem
$\mathrm{AM}^{2}+\mathrm{MD}^{2}=\mathrm{AD}^{2}$
In $\triangle \mathrm{AMC}$, by Pythagoras theorem, $\mathrm{AM}^{2}+\mathrm{MC}^{2}=\mathrm{AC}^{2}$
$\Rightarrow \mathrm{AM}^{2}+(\mathrm{MD}+\mathrm{DC})^{2}=\mathrm{AC}^{2}$
$\Rightarrow\left(\mathrm{AM}^{2}+\mathrm{MD}^{2}\right)+\mathrm{DC}^{2}+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AC}^{2}$
$\Rightarrow \mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AC}^{2}$
[From equation (1)]
$\Rightarrow A D^{2}+\left(\frac{B C}{2}\right)^{2}+2 M D \cdot\left(\frac{B C}{2}\right)=A C^{2} \quad\left[\because D C=\frac{B C}{2}\right]$

$\Rightarrow A D^{2}+\left(\frac{B C}{2}\right)^{2}+M D \cdot B C=A C^{2}$

Mathematics

(Chapter-6) (Triangles)
(Class 10)
(ii) In $\triangle A B M$, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{MB}^{2}$
$=\left(\mathrm{AD}^{2}-\mathrm{DM}^{2}\right)+\mathrm{MB}^{2}$
$=\left(A D^{2}-D M^{2}\right)+(B D-M D)^{2}$
$=A D^{2}-D^{2}+\mathrm{BD}^{2}+\mathrm{MD}^{2}-2 B D \times M D$
$=A D^{2}+B D^{2}-2 B D \times M D$
$=A D^{2}+\left(\frac{B C}{2}\right)^{2}-2\left(\frac{B C}{2}\right) M D=A C^{2} \quad\left[\because B D=\frac{B C}{2}\right]$
$\Rightarrow A D^{2}+\left(\frac{B C}{2}\right)^{2}-B C \cdot M D=A C^{2}$
(iii) In $\triangle A B M$, by Pythagoras theorem, $\mathrm{AM}^{2}+\mathrm{MB}^{2}=\mathrm{AB}^{2}$

In $\triangle \mathrm{AMC}$, by Pythagoras theorem, $\mathrm{AM}^{2}+\mathrm{MC}^{2}=\mathrm{AC}^{2}$
Adding the equations (2) and (3), we have
$2 \mathrm{AM}^{2}+\mathrm{MB}^{2}+\mathrm{MC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$\Rightarrow 2 A M^{2}+(B D-D M)^{2}+(M D+D C)^{2}=A B^{2}+A C^{2}$
$\Rightarrow 2 \mathrm{AM}^{2}+\mathrm{BD}^{2}+\mathrm{DM}^{2}-2 \mathrm{BD} \cdot \mathrm{DM}+\mathrm{MD}^{2}+\mathrm{DC}^{2}+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$\Rightarrow 2 \mathrm{AM}^{2}+2 \mathrm{MD}^{2}+\mathrm{BD}^{2}+\mathrm{DC}^{2}+2 \mathrm{MD}(-\mathrm{BD}+\mathrm{DC})=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$\Rightarrow 2\left(A M^{2}+M D^{2}\right)+\left(\frac{B C}{2}\right)^{2}+\left(\frac{B C}{2}\right)^{2}+2 M D\left(-\frac{B C}{2}+\frac{B C}{2}\right)=A B^{2}+A C^{2}$
$\Rightarrow 2 A D^{2}+\frac{1}{2} B C^{2}=A B^{2}+A C^{2}$

Question 6:

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Answer 6:

In parallelogram ABCD , altitudes AF and DE is drawn on DC and produced BA .
In $\triangle \mathrm{DEA}$, by Pythagoras theorem, $\mathrm{DE}^{2}+\mathrm{EA}^{2}=\mathrm{DA}^{2}$
In $\triangle \mathrm{DEB}$, by Pythagoras theorem, $\mathrm{DE}^{2}+\mathrm{EB}^{2}=\mathrm{DB}^{2}$
$\Rightarrow \mathrm{DE}^{2}+(\mathrm{EA}+\mathrm{AB})^{2}=\mathrm{DB}^{2}$
$\Rightarrow\left(\mathrm{DE}^{2}+\mathrm{EA}^{2}\right)+\mathrm{AB}^{2}+2 \mathrm{EA} \times \mathrm{AB}=\mathrm{DB}^{2}$
$\Rightarrow \mathrm{DA}^{2}+\mathrm{AB}^{2}+2 \mathrm{EA} \times \mathrm{AB}=\mathrm{DB}^{2}$
In $\triangle \mathrm{ADF}$, by Pythagoras theorem, $\mathrm{AD}^{2}=\mathrm{AF}^{2}+\mathrm{FD}^{2}$
In $\triangle \mathrm{AFC}$, by Pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AF}^{2}+\mathrm{FC}^{2}=\mathrm{AF}^{2}+(\mathrm{DC}-\mathrm{FD})^{2}=\mathrm{AF}^{2}+\mathrm{DC}^{2}+\mathrm{FD}^{2}-2 \mathrm{DC} \times \mathrm{FD}$
$=\left(\mathrm{AF}^{2}+\mathrm{FD}^{2}\right)+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{FD}$
$\Rightarrow A C^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{FD}$

ABCD is a parallelogram.
Therefore
$\mathrm{AB}=\mathrm{CD}$
and, $\mathrm{BC}=\mathrm{AD}$
In $\triangle D E A$ and $\triangle A D F$,
$\angle D E A=\angle A F D$
[Each 90°]
$\angle E A D=\angle A D F$
$\mathrm{AD}=\mathrm{AD}$
$\therefore \triangle \mathrm{EAD} \cong \triangle \mathrm{FDA}$
$\Rightarrow \mathrm{EA}=\mathrm{DF}$
[EA || DF]
[Common]
[AAS congruency rule]

Mathematics

(Chapter - 6) (Triangles)
(Class 10)
Adding equations (ii) and (iii), we have
$\mathrm{DA}^{2}+\mathrm{AB}^{2}+2 \mathrm{EA} \times \mathrm{AB}+\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{FD}=\mathrm{DB}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \mathrm{DA}^{2}+\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{EA} \times \mathrm{AB}-2 \mathrm{DC} \times \mathrm{FD}=\mathrm{DB}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \mathrm{BC}^{2}+\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{EA} \times \mathrm{AB}-2 \mathrm{AB} \times \mathrm{EA}=\mathrm{DB}^{2}+\mathrm{AC}^{2} \quad$ [From the equation (iv) and (vi)]
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$

Question 7:

In Figure, two chords AB and CD intersect each other at the point P . Prove that:
(i) $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$
(ii) AP.BP = CP.DP

Answer 7:
Join CB.
(i) In $\triangle \mathrm{APC}$ and $\triangle \mathrm{DPB}$,

$\angle A P C=\angle D P B$
$\angle \mathrm{CAP}=\angle \mathrm{BDP}$
[Vertically Opposite Angles]
[Angles in the same segment]
$\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$
[AA similarity]
(ii) We have already proved that $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$.

We know that the corresponding sides of similar triangles are proportional. So,
$\frac{A P}{D P}=\frac{P C}{P B}=\frac{C A}{B D} \quad \Rightarrow \frac{A P}{D P}=\frac{P C}{P B} \quad \Rightarrow A P . P B=P C . D P$

Question 8:

In Figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
(ii) PA.PB = PC.PD

Answer 8:

(i) In $\triangle \mathrm{PAC}$ and $\triangle \mathrm{PDB}$,
$\angle \mathrm{P}=\angle \mathrm{P}$
[Common]
$\angle \mathrm{PAC}=\angle \mathrm{PDB}$
[The exterior angle of cyclic quadrilateral is equal to opposite interior angle]
$\therefore \triangle \mathrm{PAC} \sim \Delta \mathrm{PDB}$
[AA similarity]

(ii) We know that the corresponding sides of similar triangles are proportional. Therefore,
$\frac{P A}{P D}=\frac{A C}{B D}=\frac{P C}{P B} \quad \Rightarrow \frac{P A}{P D}=\frac{P C}{P B} \quad \Rightarrow P A . P B=P C . D P$

Question 9:

In Figure, D is a point on side BC of $\triangle \mathrm{ABC}$ such that $\frac{B D}{C D}=\frac{A B}{A C}$. Prove that AD is the bisector of $\angle \mathrm{BAC}$.

Answer 9:

Produce BA to P , such that $\mathrm{AP}=\mathrm{AC}$ and join P to C .
Given that:
$\frac{B D}{C D}=\frac{A B}{A C} \quad \Rightarrow \frac{B D}{C D}=\frac{A P}{A C}$
By the converse of Thales theorem, we have
$\mathrm{AD} \| \mathrm{PC} \Rightarrow \angle \mathrm{BAD}=\angle \mathrm{APC} \quad$ [Corresponding angle]
and, $\angle \mathrm{DAC}=\angle \mathrm{ACP}$
[Alternate angle]

Mathematics

(Chapter - 6) (Triangles)
(Class 10)
By construction,
$\mathrm{AP}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{APC}=\angle \mathrm{ACP}$
From the equations (1), (2) and (3), we have
$\angle \mathrm{BAD}=\angle \mathrm{APC}$
$\Rightarrow A D$, bisects angle $B A C$.

Question 10:

Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

Answer 10:

Let AB be the height of rod tip from the surface of water and BC is the horizontal distance between fly to tip of the rod.
Then, the length of the string is AC .
In $\triangle \mathrm{ABC}$, by Pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\Rightarrow \mathrm{AB}^{2}=(1.8 \mathrm{~m})^{2}+(2.4 \mathrm{~m})^{2}$
$\Rightarrow \mathrm{AB}^{2}=(3.24+5.76) \mathrm{m}^{2}$
$\Rightarrow \mathrm{AB}^{2}=9.00 \mathrm{~m}^{2}$
$\Rightarrow A B=\sqrt{9}=3 \mathrm{~m}$
Hence, the length of string, which is out, is 3 m .

If she pulls in the string at the rate of $5 \mathrm{~cm} / \mathrm{s}$, then the distance travelled by fly in 12 seconds $=12 \times 5=60 \mathrm{~cm}=0.6 \mathrm{~m}$
Let, D be the position of fly after 12 seconds.
Hence, AD is the length of string that is out after 12 seconds.
The length of the string pulls in by Nazima $=A D=A C-12$
$=(3.00-0.6) \mathrm{m}$
$=2.4 \mathrm{~m}$

In $\triangle \mathrm{ADB}$,
$\mathrm{AB}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}$
$\Rightarrow(1.8 \mathrm{~m})^{2}+\mathrm{BD}^{2}=(2.4 \mathrm{~m})^{2}$

$\Rightarrow \mathrm{BD}^{2}=(5.76-3.24) \mathrm{m}^{2}=2.52 \mathrm{~m}^{2}$
$\Rightarrow \mathrm{BD}=1.587 \mathrm{~m}$

Horizontal distance travelled by Fly
$=\mathrm{BD}+1.2 \mathrm{~m}$
$=(1.587+1.2) \mathrm{m}$
$=2.787 \mathrm{~m}$
$=2.79 \mathrm{~m}$

