Chapter 6

Triangles

Exercise No. 6.1

Multiple Choice Questions:

Choose the correct answer from the given four options:

1. In figure, if $\angle \mathrm{BAC}=\mathbf{9 0 ^ { \circ }}$ and $\mathrm{AD} \perp \mathrm{BC}$. Then,

If the lengths of the diagonals of rhombus are 16 cm and 12 cm . Then, the length of the sides of the rhombus is
(A) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{BC}^{2}$
(B) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{BC}^{2}$
(C) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2}$
(D) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{AD}^{2}$

Solution:

(C) $\mathrm{BD} . \mathrm{CD}=\mathrm{AD}^{2}$

In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,
We have,

$$
\begin{aligned}
\angle \mathrm{D}=\angle \mathrm{D} & =90^{\circ} \\
\angle \mathrm{DBA} & =\angle \mathrm{DAC}
\end{aligned}
$$

($\because \mathrm{AD} \perp \mathrm{BC}$)
$\left[\right.$ each angle $\left.=90^{\circ}-\angle \mathrm{C}\right]$

From AAA similarity rule,
$\triangle \mathrm{ADB} \sim \triangle \mathrm{ADC}$
Therefore,

$$
\frac{B D}{A D}=\frac{A D}{C D}
$$

$\mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2}$
2. If the lengths of the diagonals of rhombus are 16 cm and 12 cm . Then, the length of the sides of the rhombus is
(A) 9 cm
(B) 10 cm
(C) 8 cm
(D) 20 cm

Solution:

(B) 10 cm

We have,
A rhombus is a simple quadrilateral whose four sides are of same length and diagonals are perpendicular bisector of each other.

Now,
$\mathrm{AC}=16 \mathrm{~cm}$ and
$\mathrm{BD}=12 \mathrm{~cm}$
$\angle \mathrm{AOB}=90^{\circ}$
AC and BD bisects each other
$\mathrm{AO}=\frac{1}{2} \mathrm{AC}$
$\mathrm{BO}=\frac{1}{2} \mathrm{BD}$
So,
$\mathrm{AO}=8 \mathrm{~cm}$
$\mathrm{BO}=6 \mathrm{~cm}$
In right angled $\triangle \mathrm{AOB}$,
By Pythagoras theorem,
We have,
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$

$$
\begin{aligned}
\mathrm{AB}^{2} & =8^{2}+6^{2} \\
& =64+36 \\
& =100 \\
\mathrm{AB} & =\sqrt{ } 100 \\
& =10 \mathrm{~cm}
\end{aligned}
$$

As the four sides of a rhombus are equal.
So, one side of rhombus $=10 \mathrm{~cm}$.
3. If $\triangle \mathrm{ABC} \sim \triangle E D F$ and $\triangle \mathrm{ABC}$ is not similar to $\triangle \mathrm{DEF}$, then which of the following is not true?
(A) $\mathbf{B C} \cdot \mathbf{E F}=\mathbf{A C} \cdot \mathbf{F D}$
(B) $\mathbf{A B} \cdot \mathbf{E F}=\mathbf{A C} \cdot \mathbf{D E}$
(C) $\mathbf{B C} \cdot \mathbf{D E}=\mathbf{A B} \cdot \mathbf{E F}$
(D) $\mathbf{B C} \cdot \mathbf{D E}=\mathbf{A B} \cdot \mathbf{F D}$

Solution:

(C) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF}$

If sides of one triangle are proportional to the side of the other triangle, and the corresponding angles are also equal, then the triangles are similar by SSS similarity.

So, $\triangle \mathrm{ABC} \sim \Delta \mathrm{EDF}$
By similarity rule,
$\frac{A B}{E D}=\frac{B C}{D F}=\frac{A C}{E F}$
At first we take,
$\frac{A B}{E D}=\frac{B C}{D F}$
$\frac{A B}{E D}=\frac{B C}{D F}$
$\mathrm{AB} \cdot \mathrm{DF}=\mathrm{ED} \cdot \mathrm{BC}$
Hence, option (D) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{FD}$ is true
Now taking,
$\frac{B C}{D F}=\frac{A C}{E F}$, we get
$\mathrm{BC} \cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DF}$
Hence, option (A) BC $\cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{FD}$ is true
Now if,
$\frac{A B}{E D}=\frac{A C}{E F}$, we get,
AB.EF = ED.AC
Hence, option (B) $\mathrm{AB} \cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE}$ is true.
4. If in two triangles $A B C$ and $P Q R, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
(A) $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}$
(B) $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$
(C) $\triangle \mathrm{CBA} \sim \triangle \mathrm{PQR}$
(D) $\triangle \mathrm{BCA} \sim \triangle \mathrm{PQR}$

Solution:

(A) $\Delta \mathrm{PQR} \sim \Delta \mathrm{CAB}$

We have, from $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}}$
If sides of one triangle are proportional to the side of the other triangle, and their corresponding angles are also equal, then both the triangles are similar by SSS similarity.

So, we can say that, $\Delta \mathrm{PQR} \sim \Delta \mathrm{CAB}$
5. In fig. 6.3, two line segments $A C$ and $B D$ intersect each other at the point P such that $P A=6 \mathrm{~cm}, P B=3 \mathrm{~cm}, P C=2.5 \mathrm{~cm}, P D=5 \mathrm{~cm}$, $\angle \mathrm{APB}=50^{\circ}$ and $\angle \mathrm{CDP}=30^{\circ}$. Then, $\angle \mathrm{PBA}$ is equal to

(A) 50°
(B) 30°
(C) 60°
(D) 100°

Solution:

(D) 100°

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{CPD}$,
$\angle \mathrm{APB}=\angle \mathrm{CPD}=50^{\circ}$
(vertically opposite angles)
$\frac{A P}{P D}=\frac{6}{5}$
And,
$\frac{B P}{C P}=\frac{3}{2.5}$
$\frac{B P}{C P}=\frac{6}{5}$
From equations (i) and (ii),
$\frac{A P}{P D}=\frac{B P}{C P}$
Therefore,
$\Delta \mathrm{APB} \sim \Delta \mathrm{DPC}$
$\angle \mathrm{A}=\angle \mathrm{D}=30^{\circ} \quad$ [Corresponding angles of similar triangles]
As,
Sum of angles of a triangle $=180^{\circ}$
From $\triangle \mathrm{APB}$,

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{APB}=180^{\circ} \\
& 30^{\circ}+\angle \mathrm{B}+50^{\circ}=180^{\circ} \\
& \angle \mathrm{B}=180^{\circ}-\left(50^{\circ}+30^{\circ}\right) \\
& \angle \mathrm{B}=180-80^{\circ} \\
&=100^{\circ}
\end{aligned}
$$

So,
$\angle \mathrm{PBA}=100^{\circ}$
6. If in two triangles DEF and $\mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q}$ and $\angle \mathrm{R}=\angle \mathrm{E}$, then which of the following is not true?
(A) $\frac{E F}{P R}=\frac{D F}{P Q}$
(B) $\frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}}$
(C) $\frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}}$
(D) $\frac{\mathrm{EF}}{\mathrm{RP}}=\frac{\mathrm{DE}}{\mathrm{QR}}$

Solution:

(B)

We have,

In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$,
$\angle \mathrm{D}=\angle \mathrm{Q}$,
$\angle \mathrm{R}=\angle \mathrm{E}$
$\Delta \mathrm{DEF} \sim \Delta \mathrm{QRP}$
$\angle \mathrm{F}=\angle \mathrm{P}$
$\frac{D F}{Q P}=\frac{E D}{R Q}=\frac{F E}{P R}$
7. In triangles ABC and $\mathrm{DEF}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{F}=\angle \mathrm{C}$ and $\mathrm{AB}=3 \mathrm{DE}$. Then, the two triangles are
(A) Congruent but not similar
(B) Similar but not congruent
(C) Neither congruent nor similar
(D) Congruent as well as similar

Solution:

(B)

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,
$\angle B=\angle E$,
$\angle \mathrm{F}=\angle \mathrm{C}$ and
$\mathrm{AB}=3 \mathrm{DE}$

We know that, if in two triangles corresponding two angles are same, then they are similar by AA similarity criterion.
But,
$\mathrm{AB} \neq \mathrm{DE}$
Therefore $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are not congruent.
8. It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, with $\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{1}{3}$. Then, $\frac{\operatorname{ar}(\mathrm{PRQ})}{\operatorname{ar}(\mathrm{BCA})}$ is equal to
(A) 9
(B) 3
(C) $\frac{1}{3}$
(D) $\frac{1}{9}$

Solution:

(A)

We have,
$\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{1}{3}$
We know that, the ratio of the areas of two similar triangles is equal to square of the ratio of their corresponding sides.

Therefore,

$$
\begin{aligned}
& \frac{\operatorname{ar}(\mathrm{PRQ})}{\operatorname{ar}(\mathrm{BCA})}=\frac{Q R^{2}}{B C^{2}} \\
& \frac{Q R^{2}}{B C^{2}}=\frac{3^{2}}{1^{2}} \\
& =9
\end{aligned}
$$

9. It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{DF}=7.5 \mathrm{~cm}$. Then, the following is true:
(A) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=50^{\circ}$
(B) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=100^{\circ}$
(C) $\mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ}$
(D) $\mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ}$

Solution:

We have,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$,
$\angle \mathrm{A}=\angle \mathrm{D}=30^{\circ}$,
$\angle \mathrm{C}=\angle \mathrm{E}=50^{\circ}$

$$
\begin{aligned}
\angle \mathrm{B} & =\angle \mathrm{F} \\
& =180^{\circ}-\left(50^{\circ}+30^{\circ}\right) \\
& =100^{\circ}
\end{aligned}
$$

Now,

$$
\frac{A B}{D F}=\frac{A C}{D E}
$$

$\frac{5}{7.5}=\frac{8}{D E}$
$\mathrm{DE}=12 \mathrm{~cm}$
10. If in triangles ABC and $\mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}}$, then they will be similar when
(A) $\angle \mathrm{B}=\angle \mathrm{E}$
(B) $\angle \mathrm{A}=\angle \mathrm{D}$
(C) $\angle \mathrm{B}=\angle \mathrm{D}$
(D) $\angle \mathrm{A}=\angle \mathrm{F}$

Solution:

Given, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EDF}$,
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}}$
Therefore,
$\Delta \mathrm{ABC} \sim \triangle \mathrm{EDF}$ if, $\angle \mathrm{B}=\angle \mathrm{D}$ [By SAS similarity criterion]
11. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{QRP}$, and $\mathrm{BC}=15 \mathrm{~cm}$, then PR is equal to
(A) 10 cm
(B) 12 cm
(C) $\frac{20}{3} \mathrm{~cm}$
(D) 8 cm

Solution:

In given question,

We know that the ratio of area of two similar triangles is equal to the ratio of square of their corresponding sides.

$$
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(Q R P)}=\frac{(B C)^{2}}{(R P)^{2}} A l s o, \frac{\operatorname{ar}(A B C)}{\operatorname{ar}(Q R P)}=\frac{9}{4}
$$

Therefore,

$$
\begin{aligned}
\frac{(B C)^{2}}{(R P)^{2}} & =\frac{9}{4} \\
\frac{(15)^{2}}{(R P)^{2}} & =\frac{9}{4} \\
R P & =10 \mathrm{~cm}
\end{aligned}
$$

12. If \mathbf{S} is a point on side $P Q$ of a $\triangle P Q R$ such that $P S=\mathbf{Q S}=\mathbf{R S}$, then

(A) $\mathrm{PR} \cdot \mathrm{QR}=\mathrm{RS}^{2}$
(B) $\mathrm{QS}^{2}+\mathrm{RS}^{2}=\mathrm{QR}^{2}$
(C) $\mathrm{PR}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2}$
(D) $\quad \mathrm{PS}^{2}+\mathrm{RS}^{2}=\mathrm{PR}^{2}$

Solution:

In given question,

In $\triangle \mathrm{PQR}$,
$\mathrm{PS}=\mathrm{QS}=\mathrm{RS}$
(i)

Now,
In $\triangle \mathrm{PSR}$,
PS = RS
(By eqn (i))
$\angle 1=\angle 2$
[Angles opposite to equal sides are equal]
Also, in $\triangle \mathrm{RSQ}$,

$$
\begin{equation*}
\mathrm{RS}=\mathrm{SQ} \tag{iii}
\end{equation*}
$$

$\angle 3=\angle 4$
[angles opposite to equal sides are equal]

We know that, in $\triangle \mathrm{PQR}$, sum of angles $=180^{\circ}$

$$
\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{P}=180^{\circ}
$$

$\angle 2+\angle 4+\angle 1+\angle 3=180^{\circ}$
$\angle 1+\angle 3+\angle 1+\angle 3=180^{\circ}$
$2(\angle 1+\angle 3)=180^{\circ}$

$$
=90^{\circ}
$$

So, $\quad \angle \mathrm{R}=90^{\circ}$
In $\triangle \mathrm{PQR}$, by Pythagoras theorem,

$$
\mathrm{PR}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2}
$$

Exercise No. 6.2

Short Answer Questions with Reasoning:

Question:

1. Is the triangle with sides $25 \mathrm{~cm}, 5 \mathrm{~cm}$ and 24 cm a right triangle? Give reason for your answer.

Solution:

It is not true.
Taking,
$\mathrm{a}=25 \mathrm{~cm}$,
$\mathrm{b}=5 \mathrm{~cm}$ and
$\mathrm{c}=24 \mathrm{~cm}$

Now,

$$
\begin{aligned}
\mathrm{b}^{2}+\mathrm{c}^{2} & =(5)^{2}+(24)^{2} \\
& =25+576 \\
& =601 \\
& \neq(25)^{2}
\end{aligned}
$$

Therefore, given sides do not make a right triangle because it does not satisfy the property of Pythagoras theorem.
2. It is given that $\triangle D E F \sim \triangle R P Q$. Is it true to say that $\angle D=\angle R$ and $\angle F=$ $\angle P$? Why?

Solution:

It is not true
We know that, if two triangles are similar, then their corresponding angles are equal.
$\angle \mathrm{D}=\angle \mathrm{R}$,
$\angle \mathrm{E}=\angle \mathrm{P}$ and
$\angle \mathrm{F}=\mathrm{Q}$
3. A and B are respectively the points on the sides $P Q$ and $P R$ of a $\triangle P Q R$ such that $P Q=12.5 \mathrm{~cm}, P A=5 \mathrm{~cm}, B R=\mathbf{6 c m}$ and $P B=\mathbf{4 c m}$. Is $A B \| Q R$? Give reason for your answer.

Solution:

It is correct.
Given,
$\mathrm{PQ}=12.5 \mathrm{~cm}$,
$\mathrm{PA}=5 \mathrm{~cm}$,
$B R=6 \mathrm{~cm}$ and
$\mathrm{PB}=4 \mathrm{~cm}$
Also,

$$
\begin{aligned}
\frac{P B}{B R} & =\frac{4}{6} \\
& =\frac{2}{3}
\end{aligned}
$$

So, $\mathrm{QA}=\mathrm{QP}-\mathrm{PA}$

$$
=12.5-5
$$

$$
=7.5 \mathrm{~cm}
$$

$\frac{P A}{A Q}=\frac{5}{7.5}$

$$
=\frac{2}{3}
$$

Therefore,
$\frac{P A}{A Q}=\frac{P B}{B R}$
So by converse of basic proportionality theorem, $\mathrm{AB} \| \mathrm{QR}$.
4. In figure, $B D$ and $C E$ intersect each other at the point P. Is $\triangle P B C \sim$ \triangle PDE? Why?

Solution:

It is correct.
In $\triangle \mathrm{PBC}$ and $\triangle \mathrm{PDE}$, $\angle \mathrm{BPC}=\angle \mathrm{EPD}$

$$
\begin{aligned}
\frac{P B}{P D} & =\frac{5}{10} \\
& =\frac{1}{2} \\
\frac{P C}{P E} & =\frac{6}{12} \\
& =\frac{1}{2}
\end{aligned}
$$

So,
$\frac{P B}{P D}=\frac{P C}{P E}$
As, one angle of $\triangle \mathrm{PBC}$ is equal to one angle of $\triangle \mathrm{PDE}$ and the sides including these angles are proportional, so both triangles are similar.

So, $\triangle \mathrm{PBC} \sim \Delta \mathrm{PDE}$, by SAS similarity criterion.
5. In $\triangle P Q R$ and $\triangle M S T, \angle P=55^{\circ}, \angle Q=25^{\circ}, \angle M=100^{\circ}$ and $\angle S=25^{\circ}$. Is $\Delta Q P R \sim \Delta T S M ? ~ W h y ?$

Solution:

It is not true.
As, the sum of three angles of a triangle is 180°.
In $\triangle P Q R$,

$$
\begin{aligned}
\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R} & =180^{\circ} \\
55^{\circ}+25^{\circ}+\angle \mathrm{R} & =180^{\circ} \\
\angle \mathrm{R} & =180^{\circ}-\left(55^{\circ}+25^{\circ}\right) \\
& =180^{\circ}-80^{\circ}=100^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{TSM}$,

$$
\begin{aligned}
\angle \mathrm{T}+\angle \mathrm{S}+\angle \mathrm{M} & =180^{\circ} \\
\angle \mathrm{T}+\angle 25^{\circ}+100^{\circ} & =180^{\circ} \\
\angle \mathrm{T} & =180^{\circ}-\left(25^{\circ}+100^{\circ}\right) \\
& =180^{\circ}-125^{\circ}
\end{aligned}
$$

$$
=55^{\circ}
$$

So,
In $\triangle \mathrm{PQR}$ and $\Delta \mathrm{TSM}$,

```
\(\angle \mathrm{P}=\angle \mathrm{T}\),
\(\angle \mathrm{Q}=\angle \mathrm{S}\) and
\(\angle \mathrm{R}=\angle \mathrm{M}\)
\(\angle \mathrm{PQR}=\angle \mathrm{TSM} \quad[\mathrm{As}\), all corresponding angles are equal]
```

Therefore,
$\Delta \mathrm{QPR}$ is not similar to $\Delta \mathrm{TSM}$, because correct correspondence is $\quad \mathrm{P} \leftrightarrow \mathrm{T}, \mathrm{Q} \leftrightarrow \mathrm{S}$ and $\mathrm{R} \leftrightarrow$ M.

6. Is the following statement true? Why?
 "Two quadrilaterals are similar, if their corresponding angles are equal".

Solution:

It is not true.
Two quadrilaterals are similar if their corresponding angles are equal and corresponding sides must also be proportional.
7. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?

Solution:

Yes, It is true.
The corresponding two sides and the perimeters of two triangles are proportional, then the third side of both triangles will also in proportion.
8. If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangle, can you say that the two triangles will be similar? Why?

Solution:

It is false.
Let two right angled triangles be $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$

Where,
$\angle \mathrm{A}=\angle \mathrm{P}=90^{\circ}$ and
$\angle \mathrm{B}=\angle \mathrm{Q}=$ acute angle
So, by AA similarity criterion, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
9. The ratio of the corresponding altitudes of two similar triangles is $\frac{3}{5}$. Is it correct to say that ratio of their areas is $\frac{6}{5} \boldsymbol{?}$ Why?

Solution:

It is false.
Ratio of corresponding altitudes of two triangles having areas A1 and A2 respectively is $\frac{3}{5}$.
Using the property of area of two similar triangles,

$$
\begin{aligned}
\frac{A_{1}}{A_{2}} & =\left(\frac{3}{5}\right)^{2} \\
\frac{6}{5} & \neq \frac{9}{25}
\end{aligned}
$$

So, the given statement is not correct.
10. D is a point on side $Q R$ of $\triangle P Q R$ such that $P D \perp Q R$. Will it be correct to say that $\triangle P Q D \sim \triangle R P D$? Why?

Solution:

No, it is false statement.
In given $\triangle P Q D$ and $\triangle R P D$,
$P D=P D$
$\angle \mathrm{PDQ}=\angle \mathrm{PDR}$

Also, no other sides or angles are equal, so we can say that $\triangle \mathrm{PQD}$ is not similar to $\triangle \mathrm{RPD}$.
But if $\angle \mathrm{P}=90^{\circ}$, then
$\angle \mathrm{DPQ}=\angle \mathrm{PRD}$
[each equal to $90^{\circ}-\angle \mathrm{Q}$ and by ASA similarity criterion, $\triangle \mathrm{PQD} \sim \triangle \mathrm{RPD}$]

11. In Fig. 6.5, if $\angle \mathrm{D}=\angle C$, then is it true that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$? Why?

Solution:

True
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ACB}$,
$\angle \mathrm{A}=\angle \mathrm{A}$
$\angle \mathrm{D}=\angle \mathrm{C}$ [given]
$\triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$
[common angle]
[using AA similarity criterion]
12. Is it true to say that if in two triangles, an angle of one triangle is equal to an angle of another triangle and two sides of one triangle are proportional to the two sides of the other triangle, then the triangles are similar? Give reasons for your answer.

Solution:

False
As, according to SAS similarity criterion, if one angle of a triangle is equal to an angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.
In the above question, one angle and two sides of two triangles are equal but these sides does not includes equal angle, so given statement is not true.

Exercise No. 6.3

Short Answer Questions:

Question:

1. In a $\triangle P Q R, P R^{2}-P Q^{2}=Q^{2}$ and M is a point on side $P R$ such that $Q M$ \perp PR.
Prove that:
$\mathbf{Q M}^{2}=\mathbf{P M} \times \mathbf{M R}$.

Solution:

In $\triangle \mathrm{PQR}$,
$\mathrm{PR}^{2}=\mathrm{QR}^{2}$ and
QM \perp PR

Using Pythagoras theorem, we have,
$\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
$\triangle \mathrm{PQR}$ is right angled triangle at Q .
From $\triangle \mathrm{QMR}$ and $\triangle \mathrm{PMQ}$, we get,
$\angle \mathrm{M}=\angle \mathrm{M}$
$\angle \mathrm{MQR}=\angle \mathrm{QPM} \quad\left[\right.$ each $\left.90^{\circ}-\angle \mathrm{R}\right]$
So, using the AAA similarity criteria,
We have,
$\Delta \mathrm{QMR} \sim \Delta \mathrm{PMQ}$
Also,
Area of triangles $=\frac{1}{2} \times$ base \times height
So, by property of area of similar triangles,
$\frac{\operatorname{ar}(Q M R)}{\operatorname{ar}(P M Q)}=\frac{Q M^{2}}{P M^{2}}$
$\frac{\operatorname{ar}(Q M R)}{\operatorname{ar}(P M Q)}=\frac{\frac{1}{2} R M \times Q M}{\frac{1}{2} P M \times Q M}$
So,
$\frac{Q M^{2}}{P M^{2}}=\frac{\frac{1}{2} R M \times Q M}{\frac{1}{2} P M \times Q M}$
$\mathrm{QM}^{2}=\mathrm{PM} \times \mathrm{RM}$
Hence proved.
2. Find the value of x for which $D E \| A B$ in given figure.

Solution:

As given in the question,
$D E \| A B$
Using basic proportionality theorem,
$\frac{C D}{A D}=\frac{C E}{B E}$

If a line is drawn parallel to one side of a triangle such that it intersects the other sides at distinct points, then, the other two sides are divided in the same ratio.

Therefore, we can conclude that, the line drawn is equal to the third side of the triangle.

$$
\begin{aligned}
\frac{x+3}{3 x+19} & =\frac{x}{3 x+4} \\
(\mathrm{x}+3)(3 \mathrm{x}+4) & =\mathrm{x}(3 \mathrm{x}+19) \\
3 \mathrm{x}^{2}+4 \mathrm{x}+9 \mathrm{x}+12 & =3 \mathrm{x}^{2}+19 \mathrm{x} \\
19 \mathrm{x}-13 \mathrm{x} & =12 \\
6 \mathrm{x} & =12 \\
\mathrm{x} & =2
\end{aligned}
$$

3. In figure, if $\angle 1=\angle 2$ and $\Delta \mathrm{NSQ} \cong \triangle M T R$, then prove that $\triangle P T S \sim$ $\Delta P R Q$.

Solution:

As given in the question,
$\Delta \mathrm{NSQ} \cong \Delta \mathrm{MTR}$

$$
\angle 1=\angle 2
$$

As,
$\Delta \mathrm{NSQ}=\Delta \mathrm{MTR}$
So,
$S Q=T R$
Also,
$\angle 1=\angle 2$ so,
$\mathrm{PT}=\mathrm{PS}$
[As, sides opposite to equal angles are also equal]
Using Equation (i) and (ii).

$$
\frac{P S}{S Q}=\frac{P T}{T R}
$$

So, ST \| QR
By converse of basic proportionality theorem, If a line is drawn parallel to one side of a triangle to intersect the other sides in distinct points, the other two sides are divided in the same ratio.
$\angle 1=\mathrm{PQR}$ and $\angle 2=\angle \mathrm{PRQ}$
Now, In $\triangle \mathrm{PTS}$ and $\triangle \mathrm{PRQ}$.

$$
\begin{aligned}
& \angle \mathrm{P}=\angle \mathrm{P} \\
& \angle 1=\angle \mathrm{PQR} \\
& \angle 2=\angle \mathrm{PRQ} \\
& \Delta \mathrm{PTS}-\triangle \mathrm{PRQ}
\end{aligned}
$$

[Common angles]
(proved)
(proved)
[By AAA similarity criteria]
Hence proved.

4. Diagonals of a trapezium PQRS intersect each other at the point $0, P Q \|$ $R S$ and $P Q=3$ RS. Find the ratio of the areas of $\triangle P O Q$ and Δ ROS.

Solution:

As given in the question,
$P Q R S$ is a trapezium in which $P Q \| R S$ and $P Q=3 R S$
$\frac{P Q}{R S}=\frac{3}{1}$

In $\triangle \mathrm{POQ}$ and $\triangle \mathrm{ROS}$,
$\angle \mathrm{SOR}=\angle \mathrm{QOP}$
$\angle S R P=\angle R P Q$
$\triangle \mathrm{POQ} \sim \triangle \mathrm{ROS}$
[vertically opposite angles] [alternate angles]
[by AAA similarity criterion]

Using property of area of similar triangle,

$$
\begin{aligned}
& \frac{\operatorname{ar}(P O Q)}{\operatorname{ar}(S O R)}=\frac{P Q^{2}}{R S^{2}} \\
& \begin{aligned}
\frac{P Q^{2}}{R S^{2}} & =\left(\frac{P Q}{R S}\right)^{2} \\
& =\left(\frac{3}{1}\right)^{2} \\
& =9
\end{aligned}
\end{aligned}
$$

So, the required ratio $=9: 1$.

5. In figure, if $\mathrm{AB} \mid \boldsymbol{D C}$ and AC, PQ intersect each other at the point \mathbf{O}. Prove that OA.CQ = OC.AP.

Solution:

As given in the question,
$A C$ and $P Q$ intersect each other at the point O and $A B \| D C$.
Using $\triangle \mathrm{AOP}$ and $\triangle \mathrm{COQ}$,
$\angle A O P=\angle C O Q$
[as they are vertically opposite angles]
$\angle \mathrm{APO}=\angle \mathrm{CQO}$ [since, $\mathrm{AB} \| \mathrm{DC}$ and PQ is transversal, Angles are alternate angles]

So,
$\triangle \mathrm{AOP} \sim \Delta \mathrm{COQ}$
[using AAA similarity criterion]
As, corresponding sides are proportional
We have,
$\frac{O A}{O C}=\frac{A P}{C Q}$
$\mathrm{OA} \times \mathrm{CQ}=\mathrm{OC} \times \mathrm{AP}$
Hence Proved!!!

6. Find the altitude of an equilateral triangle of side 8 cm .

Solution:

Taking ABC be an equilateral triangle of side 8 cm .
$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=8 \mathrm{~cm}$
(sides of an equilateral triangle is equal)

Draw altitude AD which is perpendicular to BC .
Then, D is the mid-point of BC.
$\mathrm{BD}=\mathrm{CD}=\frac{1}{2}$
$\mathrm{BC}=\frac{8}{2}$

$$
=4 \mathrm{~cm}
$$

Now,
Using Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
(8) $2=A D^{2}+(4)^{2}$
$64=\mathrm{AD}^{2}+16$

$$
\begin{aligned}
\mathrm{AD} & =\sqrt{ } 48 \\
& =4 \sqrt{ } 3 \mathrm{~cm} .
\end{aligned}
$$

Therefore, altitude of an equilateral triangle is $4 \sqrt{3} \mathrm{~cm}$.
7. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6, \mathrm{EF}=9 \mathrm{~cm}$ and $\mathrm{FD}=12 \mathrm{~cm}$, then find the perimeter of $\triangle \mathrm{ABC}$.

Solution:

As given in the question,
$\mathrm{AB}=4 \mathrm{~cm}$,
$\mathrm{DE}=6 \mathrm{~cm}$
$\mathrm{EF}=9 \mathrm{~cm}$
$\mathrm{FD}=12 \mathrm{~cm}$
Also,
$\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$
We have,
$\frac{A B}{E D}=\frac{B C}{E F}=\frac{A C}{D F}$

$$
\frac{4}{6}=\frac{B C}{9}=\frac{A C}{12}
$$

Now,

$$
\frac{4}{6}=\frac{B C}{9}
$$

$B C=6 \mathrm{~cm}$
Similarily,
$\frac{A C}{12}=\frac{4}{6}$
$A C=8 \mathrm{~cm}$

$$
\text { Perimeter of } \begin{aligned}
\triangle \mathrm{ABC} & =\mathrm{AB}+\mathrm{BC}+\mathrm{AC} \\
& =4+6+8=18 \mathrm{~cm}
\end{aligned}
$$

So, the perimeter of the triangle is 18 cm .
8. In Fig. 6.11, if $\mathbf{D E} \| \mathbf{B C}$, find the ratio of ar(ADE) and $\operatorname{ar}(\mathrm{DECB})$.

Solution:

We have,
DE || BC,
$\mathrm{DE}=6 \mathrm{~cm}$ and
$\mathrm{BC}=12 \mathrm{~cm}$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$,
$\angle \mathrm{ABC}=\angle \mathrm{ADE}$
[corresponding angle]
and
$\angle \mathrm{A}=\angle \mathrm{A}$
[common side]
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$

$$
\begin{aligned}
\frac{\operatorname{ar}(A D E)}{\operatorname{ar}(A B C)} & =\frac{D E^{2}}{B C^{2}} \\
& =\frac{6^{2}}{12^{2}} \\
& =\frac{1}{4}
\end{aligned}
$$

Taking,
$\operatorname{ar}(\triangle \mathrm{ADE})=\mathrm{k}$, then
$\operatorname{ar}(\triangle \mathrm{ABC})=4 \mathrm{k}$
Now,
$\operatorname{ar}(\triangle \mathrm{ECB})=\operatorname{ar}(\mathrm{ABC})-\operatorname{ar}(\mathrm{ADE})$

$$
=4 \mathrm{k}-\mathrm{k}=3 \mathrm{k}
$$

So,
Required ratio $=\operatorname{ar}(\mathrm{ADE}): \operatorname{ar}(\mathrm{DECB})$

$$
\begin{aligned}
& =\mathrm{k}: 3 \mathrm{k} \\
& =1: 3
\end{aligned}
$$

9. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and P and Q are points on $A D$ and $B C$, respectively such that $P Q \| D C$. If $P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm}$ andQC $=15 \mathrm{~cm}$, find $A D$.

Solution:

We have, a trapezium $A B C D$ in which $A B \| D C . P$ and Q are points on $A D$ and $B C$, respectively such that $\mathrm{PQ} \| \mathrm{DC}$.

So, AB \| PQ || DC.

In $\triangle A B D, \mathrm{PO} \| \mathrm{AB}$
$\frac{D P}{A P}=\frac{D O}{O B}$

In $\triangle B D C, O Q \| D C$
$\frac{B Q}{Q C}=\frac{O B}{O D}$
or,
$\frac{Q C}{B Q}=\frac{D O}{O B}$

So, from(i) and (ii),
$\frac{D P}{A P}=\frac{Q C}{B Q}$
$\frac{18}{A P}=\frac{15}{35}$
$\mathrm{AP}=42 \mathrm{~cm}$.
Also;

$$
\begin{aligned}
\mathrm{AD} & =\mathrm{AP}+\mathrm{PD} \\
& =42+18=60
\end{aligned}
$$

So,
$A D=60 \mathrm{~cm}$
10. Corresponding sides of two similar triangles are in the ratio of $2: 3$. If the area of the smaller triangle is $48 \mathrm{~cm}^{2}$, find the area of the larger triangle.

Solution:

According to the question,
Ratio of corresponding sides of two similar triangles is $2: 3$ or $\frac{2}{3}$
Area of smaller triangle $=48 \mathrm{~cm}^{2}$
Using the property of area of two similar triangles,
Ratio of area of both triangles $=(\text { Ratio of their corresponding sides })^{2}$
$\frac{\operatorname{ar}(\text { smaller triangle })}{\operatorname{ar}(\text { larger triangle })}=\left(\frac{2}{3}\right)^{2}$
$\frac{48}{\operatorname{ar}(\text { larger triangle })}=\left(\frac{2}{3}\right)^{2}$
$\operatorname{ar}($ larger triangle $)=108 \mathrm{~cm}^{2}$
11. In a triangle $P Q R$, N is a point on $P R$ such that $Q N \perp P R$. If $P N \cdot N R=Q N^{2}$, prove that $\angle \mathrm{PQR}=90^{\circ}$.

Solution:

We have,
In $\triangle \mathrm{PQR}, \mathrm{N}$ is a point on PR , such that $\mathrm{QN} \perp \mathrm{PR}$ and PN .
$\mathrm{NR}=\mathrm{QN}^{2}$
To prove: $\angle \mathrm{PQR}=90^{\circ}$
Proof:
We have, $\mathrm{PN} . \mathrm{NR}=\mathrm{QN}^{2}$
$\mathrm{PN} . \mathrm{NR}=\mathrm{QN} . \mathrm{QN}$
So,
$\frac{P N}{Q N}=\frac{Q N}{N R}$


```
Also,
\(\angle \mathrm{PNQ}=\angle \mathrm{RNQ}\) [each equal to \(90^{\circ}\) ]
\(\Delta \mathrm{QNP} \sim \Delta \mathrm{RNQ}\)
```

[by SAS similarity criterion]
So we can say, $\triangle \mathrm{QNP}$ and $\triangle \mathrm{RNQ}$ are equiangular.
$\angle \mathrm{PQN}=\angle \mathrm{QRN}$
$\angle \mathrm{RQN}=\angle \mathrm{QPN}$
On adding both sides,
$\angle \mathrm{PQN}+\angle \mathrm{RQN}=\angle \mathrm{QRN}+\angle \mathrm{QPN}$
$\angle \mathrm{PQR}=\angle \mathrm{QRN}+\angle \mathrm{QPN}$

We have, sum of angles of a triangle is 180°
In $\triangle P Q R$,
$\angle \mathrm{PQR}+\angle \mathrm{QPR}+\angle \mathrm{QRP}=180^{\circ}$
$\angle \mathrm{PQR}+\angle \mathrm{QPN}+\angle \mathrm{QRN}=180^{\circ}$
$[\because \angle \mathrm{QPR}=\angle \mathrm{QPN}$ and $\angle \mathrm{QRP}=\angle \mathrm{QRN}]$

$$
\begin{gathered}
\angle \mathrm{PQR}+\angle \mathrm{PQR}=180^{\circ}[\text { using Eq. (ii) }] \\
2 \angle \mathrm{PQR}=180^{\circ} \\
\angle \mathrm{PQR}=90^{\circ}
\end{gathered}
$$

Hence proved.

12. Areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$. If the length of a side of the larger triangle is 20 cm , find the length of the corresponding side of the smaller triangle.

Solution:

We have,
Area of smaller triangle $=36 \mathrm{~cm}^{2}$
Area of larger triangle $=100 \mathrm{~cm}^{2}$
And, length of a side of the larger triangle $=20 \mathrm{~cm}$
Let length of the corresponding side of the smaller triangle $=\mathrm{xcm}$ By property of area of similar triangles,
$\frac{\operatorname{ar}(\text { larger triangle })}{\operatorname{ar}(\text { smaller triangle })}=\frac{(\text { side of larger triangle })^{2}}{(\text { side of smaller triangle })^{2}}$

$$
\begin{aligned}
& \frac{100}{36}=\frac{20^{2}}{x^{2}} \\
& x=12 \mathrm{~cm}
\end{aligned}
$$

13. In the given fig., if $\angle A C B=\angle C D A, A C=8 \mathbf{c m}$ and $A D=\mathbf{3 c m}$, find $B D$.

Solution:

We have,
AC $=8 \mathrm{~cm}$,
$\mathrm{AD}=3 \mathrm{~cm}$
$\angle \mathrm{ACB}=\angle \mathrm{CDA}$
In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}=\angle \mathrm{A}$
$\angle \mathrm{ADC}=\angle \mathrm{ACB}$
So,
$\triangle \mathrm{ADC} \sim \triangle \mathrm{ACB}$
[By AA similarity criterion]
$\frac{A C}{A D}=\frac{A B}{A C}$
$\frac{8}{3}=\frac{A B}{8}$
$A B=\frac{64}{3} \mathrm{~cm}$
Also,
$A B=B D+A D$
$\frac{64}{3}=B D+3$
$B D=\frac{55}{3} \mathrm{~cm}$
14. A 15 meters high tower casts a shadow 24 meters long at a certain time and at the same time, a telephone pole casts a shadow 16 meters long. Find the height of the telephone pole.

Solution:

Taking $\mathrm{BC}=15 \mathrm{~m}$ be the tower and its shadow AB is 24 m .
Let $\angle \mathrm{CAB}=\theta$.
Again, let $\mathrm{EF}=\mathrm{h}$ be a telephone pole and its shadow $\mathrm{DE}=16 \mathrm{~m}$.
At the same time $\angle E D F=\theta$.
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ both are right angled triangles.

In $\triangle A B C$ and $\triangle D E F$,
$\angle C A B=\angle E D F$
$\angle B=\angle E$

So, by AA rule,
$\triangle A B C \sim \triangle D E F$
$\frac{A B}{D E}=\frac{B C}{E F}$
$\frac{24}{16}=\frac{15}{h}$
$h=10$

Hence, the height of the point on the wall where the top of the ladder reaches is 8 m .
15. Foot of a 10 m long ladder leaning against a vertical wall is $\mathbf{6} \mathbf{m}$ away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.

Solution:

Let AB be a vertical wall and $\mathrm{AC}=10 \mathrm{~m}$ is a ladder.
The top of the ladder reached to A and distance of ladder from the base of the wall BC is 6 m .

In right angled $\triangle \mathrm{ABC}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$(10)^{2}=\mathrm{AB}^{2}+(6)^{2}$
$100=\mathrm{AB}^{2}+36$
$\mathrm{AB}^{2}=100-36=64$
$\mathrm{AB}=8 \mathrm{~m}$
Therefore, the height of the point on th wall where the top of the ladder reaches is 8 m .

Exercise No. 6.4

Long Answer Questions:

Question:

1. In Fig., if $\angle A=\angle C, A B=6 \mathrm{~cm}, B P=15 \mathrm{~cm}, A P=12 \mathrm{~cm}$ and $C P=4 \mathrm{~cm}$, then find the lengths of $P D$ and $C D$.

Solution:

We have,
$\angle \mathrm{A}=\angle \mathrm{C}$,
$\mathrm{AB}=6 \mathrm{~cm}$,
$\mathrm{BP}=15 \mathrm{~cm}$,
$\mathrm{AP}=12 \mathrm{~cm}$ and
$\mathrm{CP}=4 \mathrm{~cm}$

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{CPD}$,
$\angle A=\angle C$
$\angle \mathrm{APB}=\angle \mathrm{CPD}$
[given]
$\Delta \mathrm{APB} \sim \Delta \mathrm{CPD}$
$\frac{A P}{C P}=\frac{P B}{P D}=\frac{A B}{C D}$
$\frac{12}{4}=\frac{15}{P D}=\frac{6}{C D}$
So,
$\frac{12}{4}=\frac{15}{P D}$
$P D=5 \mathrm{~cm}$
Also,
$\frac{12}{4}=\frac{6}{C D}$
$C D=2 \mathrm{~cm}$

Therefore, length of PD is 5 cm and length of CD is 2 cm .
2. It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{EDF}$ such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=15$ cm and $\mathrm{DE}=12 \mathrm{~cm}$. Find the lengths of the remaining sides of the triangles.

Solution:

We have,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$, so the corresponding sides of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EDF}$ are in the same ratio $\frac{A B}{E D}=\frac{A C}{E F}=\frac{B C}{D F}$

Also, we have,
$\mathrm{AB}=5 \mathrm{~cm}$,
$\mathrm{AC}=7 \mathrm{~cm}$,
$\mathrm{DF}=15 \mathrm{~cm}$ and
$\mathrm{DE}=12 \mathrm{~cm}$
Putting value in $\frac{A B}{E D}=\frac{A C}{E F}=\frac{B C}{D F}$,
$\frac{5}{12}=\frac{7}{E F}=\frac{B C}{15}$
So,
$\frac{5}{12}=\frac{7}{E F}$
$E F=16.8 \mathrm{~cm}$
Also,
$\frac{5}{12}=\frac{B C}{15}$
$B C=6.25 \mathrm{~cm}$

So, lengths of the remaining sides of the triangles are $\mathrm{EF}=16.8 \mathrm{~cm}$ and

$$
\mathrm{BC}=6.25 \mathrm{~cm} .
$$

3. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides, then the two sides are divided in the same ratio.

Solution:

Let us take $\triangle \mathrm{ABC}$ in which a line DE parallel to BC intersects AB at D and AC at E .
To prove: DE divides the two sides in the same ratio.
$\frac{A D}{D B}=\frac{A E}{E C}$

Construction:
Join BE and CD
$E F \perp A B$
$D G \perp A C$
Proof:

$$
\begin{align*}
\frac{\operatorname{ar}(A D E)}{\operatorname{ar}(B D E)} & =\frac{\frac{1}{2} \times A D \times E F}{\frac{1}{2} \times D B \times E F} \\
& =\frac{A D}{D B} \tag{i}
\end{align*}
$$

Also,

$$
\begin{align*}
\frac{\operatorname{ar}(A D E)}{\operatorname{ar}(D E C)} & =\frac{\frac{1}{2} \times A E \times G D}{\frac{1}{2} \times E C \times G D} \\
& =\frac{A E}{E C} \tag{ii}
\end{align*}
$$

As,
$\triangle \mathrm{BDE}$ and $\triangle \mathrm{DEC}$ lie between the same parallel lines DE and BC and on the same base DE So,
$\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{DEC})$
From Eqs. (i), (ii) and (iii),
$\frac{A D}{D B}=\frac{A E}{E C}$
Hence proved!!!

4. In Fig., if PQRS is a parallelogram and $\mathrm{AB}|\mid \mathrm{PS}$, then prove that $\mathrm{OC} \| \mathrm{SR}$.

Solution:

We have,
PQRS is a parallelogram, so $\mathrm{PQ} \| \mathrm{SR}$ and $\mathrm{PS} \| \mathrm{QR}$.
Also
AB || PS.
To prove: OC || SR
Proof: In $\triangle \mathrm{OPS}$ and $\triangle \mathrm{OAB}, \mathrm{PS}| | \mathrm{AB}$
$\angle \mathrm{POS}=\angle \mathrm{AOB}$
$\angle \mathrm{OSP}=\angle \mathrm{OBA}$
$\triangle \mathrm{OPS} \sim \triangle \mathrm{OAB}$
[common angle] [corresponding angles] [by AA similarity criterion]
Then $\frac{P S}{A B}=\frac{O S}{O B}$

In $\triangle \mathrm{CQE}$ and $\triangle \mathrm{CAB}, \mathrm{QR}\|\mathrm{PS}\| \mathrm{AB}$
$\angle \mathrm{QCR}=\angle \mathrm{ACB}$
[common angle]
$\angle \mathrm{CRQ}=\angle \mathrm{CBA}$
[corresponding angles]
So,
$\Delta \mathrm{CQR} \sim \Delta \mathrm{CAB}$
$\frac{Q R}{A B}=\frac{C R}{O B}$
$\frac{P S}{A B}=\frac{C R}{O B}$
($P S=Q R$, opposite sides of parallelogram)

From (i) and (ii),
$\frac{O S}{O B}=\frac{C R}{C B}$
or,
$\frac{O B}{O S}=\frac{C B}{C R}$
Subtracting 1 from both sides, we get,
$\frac{O B}{O S}-1=\frac{C B}{C R}-1$
$\frac{O B-O S}{O S}=\frac{C B-C R}{C R}$
$\frac{B S}{O S}=\frac{B R}{C R}$
By using converse of basic proportionality theorem, $\mathrm{SR} \| \mathrm{OC}$.
Hence proved
5. A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.

Solution:

Taking AC be the ladder of length 5 m and $\mathrm{BC}=4 \mathrm{~m}$ be the height of the wall, which ladder is placed.

If the foot of the ladder is moved 1.6 m towards the wall so, $\mathrm{AD}=1.6 \mathrm{~m}$, then the ladder is slide upward i.e., $\mathrm{CE}=\mathrm{x}$ m.

In right angled $\triangle \mathrm{ABC}$,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
[using Pythagoras theorem]
$(5)^{2}=(\mathrm{AB})^{2}+(4)^{2}$
$\mathrm{AB}^{2}=25-16$

$$
=9
$$

$A B=3 m$
Now,
$\mathrm{DB}=\mathrm{AB}-\mathrm{AD}$

$$
\begin{aligned}
& =3-1.6 \\
& =1.4 \mathrm{~m}
\end{aligned}
$$

In right angled $\triangle \mathrm{EBD}$,
$\mathrm{ED}^{2}=\mathrm{EB}^{2}+\mathrm{BD}^{2}$
$(5)^{2}=(E B)^{2}+(1.4)^{2}$
[using Pythagoras theorem]
$[\because \mathrm{BD}=1.4 \mathrm{~m}]$
$25=(E B)^{2}+1.96$
$(E B)^{2}=25-1.96$
$=23.04$
$\mathrm{EB}=4.8$
Now,
$\mathrm{EC}=\mathrm{EB}-\mathrm{BC}$

$$
=4.8-4
$$

$$
=0.8
$$

Therefore, the top of the ladder would slide upwards on the wall at distance is 0.8 m .
6. For going to a city B from city A, there is a route via city C such that $\mathrm{AC} \perp \mathrm{CB}, \mathrm{AC}=2 \mathrm{xkm}$ and $\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.

Solution:

We have,
$\mathrm{AC} \perp \mathrm{CB}$,
$\mathrm{AC}=2 \mathrm{xkm}$,
$\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$ and $\mathrm{AB}=26 \mathrm{~km}$
On drawing the figure, we get the right angle $\triangle \mathrm{ACB}$ right angled at C .

Now,
In $\triangle \mathrm{ACB}$, by Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
$(26)^{2}=(2 x)^{2}+\{2(x+7)\}^{2}$
$676=4 x^{2}+4\left(x^{2}+49+11 x\right)$
$676=4 x^{2}+4 x^{2}+196+56 x$
$676=8 x^{2}+56 x+196$
$8 x^{2}+56 x-480=0$

On dividing by 8 , we get,

$$
\begin{aligned}
x^{2}+7 x-60 & =0 \\
x^{2}+12 x-5 x-60 & =0 \\
x(x+12)-5(x+12) & =0 \\
(x+12)(x-5) & =0 \\
x & =-12 \\
x & =5
\end{aligned}
$$

As, distance cannot be negative.
$\mathrm{x}=5$

$$
[\because x \neq 12]
$$

Now,
$\mathrm{AC}=2 \mathrm{x}$
$=10 \mathrm{~km}$ and
$\mathrm{BC}=2(\mathrm{x}+7)$
$=2(5+7)$
$=24 \mathrm{~km}$
The distance covered to reach city B from city A via city $C=A C+B C$

$$
\begin{aligned}
& =10+24 \\
& =34 \mathrm{~km}
\end{aligned}
$$

Distance covered to reach city B from city A after the construction of the highway is $\mathrm{BA}=26 \mathrm{~km}$
So, the required saved distance is $34-26=8 \mathrm{~km}$.

7. A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.

Solution:

Let $\mathrm{BC}=18 \mathrm{~m}$ be the flag pole and its shadow be $\mathrm{AB}=9.6 \mathrm{~m}$.
The distance of the top of the pole, C from the far end which is A of the shadow is AC

In right angled $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& \mathrm{AC}^{2}=(9.6)^{2}+(18)^{2} \\
& \mathrm{AC}^{2}=92.16+324 \\
& \mathrm{AC}^{2}=416.16 \\
& \mathrm{AC}=20.4 \mathrm{~m}
\end{aligned}
$$

So, the required distance is 20.4 m .

8. A street light bulb is fixed on a pole 6 m above the level of the street. If a woman of height 1.5 m casts a shadow of 3 m , find how far she is away from the base of the pole.

Solution:

Taking A be the position of the street bulb fixed on a pole $\mathrm{AB}=6 \mathrm{~m}$ and $\mathrm{CD}=1.5 \mathrm{~m}$ be the height of a woman and her shadow be $\mathrm{ED}=3 \mathrm{~m}$. And distance between pole and woman be x m.

In this question, woman and pole both are standing vertically
So,
CD \| AB
In $\triangle \mathrm{CDE}$ and $\triangle \mathrm{ABE}$,
$\angle \mathrm{E}=\angle \mathrm{E}$
$\angle \mathrm{ABE}=\angle \mathrm{CDE}$
[common angle]
$\triangle \mathrm{CDE} \sim \triangle \mathrm{ABE}$
[each equal to 90°]
[by AA similarity criterion]

Then,

$$
\begin{aligned}
& \frac{E D}{E B}=\frac{C D}{A B} \\
& \frac{3}{3+x}=\frac{1.5}{6}
\end{aligned}
$$

$$
\begin{aligned}
3 \times 6 & =1.5(3+\mathrm{x}) \\
18 & =1.5 \times 3+1.5 \mathrm{x} \\
1.5 \mathrm{x} & =18-4.5 \\
\mathrm{x} & =9 \mathrm{~m}
\end{aligned}
$$

So, she is at the distance of 9 m from the base of the pole.
9. In Fig., $A B C$ is a triangle right angled at B and $B D \perp A C$. If $A D=\mathbf{4 c m}$, andCD $=5 \mathrm{~cm}$, find $B D$ and $A B$.

Solution:

Given,
$\triangle \mathrm{ABC}$ in which $\angle \mathrm{B}=90^{\circ}$ and
$\mathrm{BD} \perp \mathrm{AC}$
Also, $\mathrm{AD}=4 \mathrm{~cm}$ and
$\mathrm{CD}=5 \mathrm{~cm}$
In $\triangle \mathrm{DBA}$ and $\triangle \mathrm{DCB}$,
$\angle \mathrm{ADB}=\angle \mathrm{CDB}$
[each equal to 90°]
and
$\angle \mathrm{BAD}=\angle \mathrm{DBC}$
$\triangle \mathrm{DBA} \sim \triangle \mathrm{DCB}$
[each equal to $90^{\circ}-\angle \mathrm{C}$] ;
[by AA similarity criterion]
So,

$$
\begin{aligned}
& \frac{D B}{D A}=\frac{D C}{D B} \\
& D B^{2}=D A \times D C \\
&=4 \times 5 \\
& D B=2 \sqrt{5} \mathrm{~cm} \\
& \text { In } \Delta B D C \\
& B C^{2}=B D^{2}+C D^{2} \text { (Using pythagoras theorem) } \\
&=(2 \sqrt{5})^{2}+5^{2} \\
&=3 \sqrt{5} \\
& A l s o \\
& \Delta D B A \sim \Delta D B C \\
& \frac{D B}{D C}=\frac{B A}{B C} \\
& \frac{(2 \sqrt{5})}{5}=\frac{B A}{(3 \sqrt{5})} \\
& A B=6 \mathrm{~cm}
\end{aligned}
$$

10. In Fig., $P Q R$ is a right triangle right angled at Q and $Q S \perp P R$. If $P Q=6$ cm and $P S=4 \mathrm{~cm}$, find $Q S, R S$ and $Q R$.

Solution:

We have,
In $\triangle \mathrm{PQR}$,
$\angle \mathrm{Q}=90^{\circ}$,
$\mathrm{QS} \perp \mathrm{PR}$ and
$P Q=6 \mathrm{~cm}$,
$\mathrm{PS}=4 \mathrm{~cm}$

In $\Delta \mathrm{SQP}$ and $\Delta \mathrm{SRQ}$,
$\angle \mathrm{PSQ}=\angle \mathrm{RSQ}$
[each equal to 90°]
$\angle S P Q=\angle S Q R$
[each equal to $90^{\circ}-\angle R$]
$\Delta \mathrm{SQP} \sim \Delta \mathrm{SRQ}$ [By AA similarity criterion]
Then, $\frac{S Q}{P S}=\frac{S R}{S Q}$
$\mathrm{SQ}^{2}=\mathrm{PS} \times \mathrm{SR}$
In right angled $\triangle \mathrm{PSQ}$,
$\mathrm{PQ}^{2}=\mathrm{PS}^{2}+\mathrm{QS}^{2} \quad$ [using Pythagoras theorem]
$(6)^{2}=(4)^{2} .+\mathrm{QS}^{2}$
$36=16+\mathrm{QS}^{2}$
$\mathrm{QS}^{2}=36-16$

$$
=20
$$

QS. $=2 \sqrt{5} \mathrm{~cm}$
From eqn (i),
Putting value of PS and QS we get,
$\mathrm{RS}=5 \mathrm{~cm}$
Now, In QSR,
$\mathrm{QR}^{2}=\mathrm{QS}^{2}+\mathrm{SR}^{2}$
So, putting value of QS and SR we get,
$\mathrm{QR}=3 \sqrt{5} \mathrm{~cm}$
11. In $\triangle \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR . If $\mathrm{PQ}=\boldsymbol{a}, \mathrm{PR}=\boldsymbol{b}, \mathrm{QD}=\boldsymbol{c}$ and $\mathbf{D R}=\boldsymbol{d}$, prove that $(a+b)(a-b)=(c+d)(c-d)$.

Solution:

Given:
In $\triangle \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QR}$,
$P Q=a$,
$\mathrm{PR}=\mathrm{b}$,
$\mathrm{QD}=\mathrm{c}$ and
DR $=\mathrm{d}$

To prove: $(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})=(\mathrm{c}+\mathrm{d})(\mathrm{c}-\mathrm{d})$
Proof:
In right angled $\triangle \mathrm{PDQ}$,
$\mathrm{PQ}^{2}=\mathrm{PD}^{2}+\mathrm{QD}^{2}$
[using Pythagoras theorem]
$\mathrm{a}^{2}=\mathrm{PD}^{2}+\mathrm{c}^{2}$

$$
\begin{equation*}
\mathrm{PD}^{2}=\mathrm{a}^{2}-\mathrm{c}^{2} \tag{i}
\end{equation*}
$$

In right angled $\triangle \mathrm{PDR}$,

$$
\begin{align*}
\mathrm{PR}^{2} & =\mathrm{PD}^{2}+\mathrm{DR}^{2} \\
\mathrm{~b}^{2} & =\mathrm{PD}^{2}+\mathrm{d}^{2} \\
\mathrm{PD}^{2} & =\mathrm{b}^{2}-\mathrm{d}^{2} \tag{ii}
\end{align*}
$$

[using Pythagoras theorem]

From Eqs. (i) and (ii)
$a^{2}-c^{2}=b^{2}-d^{2}$
$\mathrm{a}^{2}-\mathrm{b}^{2}=\mathrm{c}^{2}-\mathrm{d}^{2}$
$(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=(\mathrm{c}-\mathrm{d})(\mathrm{c}+\mathrm{d})$
Hence proved.
12. In a quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=90^{\circ}$. Prove that $\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
[Hint: Produce AB and DC to meet at E.]

Solution:

Given:
Quadrilateral ABCD,
$\angle \mathrm{A}+\angle \mathrm{D}=90^{\circ}$
To prove: $\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
Construct: Produce AB and CD to meet at E
Also join AC and BD

Proof:
In $\triangle \mathrm{AED}$,
$\angle \mathrm{A}+\angle \mathrm{D}=90^{\circ}$
$\angle \mathrm{E}=180^{\circ}-(\angle \mathrm{A}+\angle \mathrm{D})$
$=90^{\circ} \quad$ [sum of angles of a triangle $=180^{\circ}$]
So, by Pythagoras theorem,
$\mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2}$
In $\triangle \mathrm{BEC}$, by Pythagoras theorem,
$\mathrm{BC}^{2}=\mathrm{BE}^{2}+\mathrm{EC}^{2}$
Adding both equations, we get
$\mathrm{AD}^{2}+\mathrm{BC}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2}+\mathrm{BE}^{2}+\mathrm{CE}^{2}$
In $\triangle \mathrm{AEC}$, by Pythagoras theorem,
$A C^{2}=\mathrm{AE}^{2}+\mathrm{CE}^{2}$
In $\triangle B E D$, by Pythagoras theorem,
$\mathrm{BD}^{2}=\mathrm{BE}^{2}+\mathrm{DE}^{2}$
Adding both equations, we get
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AE}^{2}+\mathrm{CE}^{2}+\mathrm{BE}^{2}+\mathrm{DE}^{2}$
From Eqs. (i) and (ii)
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
Hence proved.
13. In Fig., $l|\mid \mathrm{m}$ and line segments AB, CD and EF are concurrent at point
P.

Prove that

$\frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}}$

Solution:

We have, $1 \| \mathrm{m}$ and line segments AB, CD and EF are concurrent at point P
To Prove,
$\frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}}$
In $\triangle \mathrm{APC}$ and $\triangle \mathrm{BPD}$,
$\mathrm{APC}=\mathrm{BPD}$ (vertically opposite angles)
$\mathrm{PAC}=\mathrm{PBD}$ (Alternate angles)
so,
$\triangle \mathrm{APC}: \triangle \mathrm{BPD}$ (By AA Similarity)
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{PC}}{\mathrm{PD}}$
Now,
In $\triangle \mathrm{APE}$ and $\triangle \mathrm{BPF}$,
$\mathrm{APE}=\mathrm{BPF}$ (vertically opposite angles)
$\mathrm{PAE}=\mathrm{PBF}$ (Alternate angles)
so,
$\triangle \mathrm{APE}: \triangle \mathrm{BPF}$ (By AA Similarity)
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{PE}}{\mathrm{PF}}$

Now,
In $\triangle \mathrm{PEC}$ and $\triangle \mathrm{PFD}$,
$\mathrm{APC}=\mathrm{BPD}$ (vertically opposite angles)
$\mathrm{PAC}=\mathrm{PBD}$ (Alternate angles)
so,
$\triangle \mathrm{PEC}: \triangle \mathrm{PDF}$ (By AA Similarity)
$\frac{\mathrm{PC}}{\mathrm{PD}}=\frac{\mathrm{PE}}{\mathrm{PF}}=\frac{\mathrm{EC}}{\mathrm{FD}}$
So, from above equations,
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{PE}}{\mathrm{PF}}=\frac{\mathrm{EC}}{\mathrm{FD}}=\frac{\mathrm{AE}}{\mathrm{BF}}$
$\frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{EC}}{\mathrm{FD}}$
Hence proved!!
14. In Fig., $\mathrm{PA}, \mathrm{QB}, \mathrm{RC}$ and SD are all perpendiculars to a line $l, \mathrm{AB}=6$ $\mathrm{cm}, B C=9 \mathrm{~cm}, C D=12 \mathrm{~cm}$ and $S P=36 \mathrm{~cm}$. Find $P Q, Q R$ and RS.

Solution:

We have,

$$
\begin{aligned}
& \mathrm{AB}=6 \mathrm{~cm}, \\
& \mathrm{BC}=9 \mathrm{~cm}, \\
& \mathrm{CD}=12 \mathrm{~cm} \text { and } \\
& \mathrm{SP}=36 \mathrm{~cm}
\end{aligned}
$$

Also, $\mathrm{PA}, \mathrm{QB}, \mathrm{RC}$ and SD are all perpendiculars to line 1 ,
PA \| QB \| RC \| SD
Using Basic proportionality theorem,

$$
\begin{aligned}
\mathrm{PQ}: \mathrm{QR}: \mathrm{RS} & =\mathrm{AB}: \mathrm{BC}: \mathrm{CD} \\
& =6: 9: 12
\end{aligned}
$$

Taking,
$P Q=6 x$,
$\mathrm{QR}=9 \mathrm{x}$ and
$R S=12 x$
As,
Length of PS $=36 \mathrm{~cm}$

$$
\begin{array}{r}
\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}=36 \\
6 \mathrm{x}+9 \mathrm{x}+12 \mathrm{x}=36 \\
27 \mathrm{x}=36 \\
\mathrm{x}=\frac{4}{3}
\end{array}
$$

Now,

$$
\begin{aligned}
\mathrm{PQ} & =6 \mathrm{x} \\
& =6 \times \frac{4}{3} \\
& =8 \mathrm{~cm}
\end{aligned}
$$

$$
\mathrm{QR}=9 \mathrm{x}
$$

$$
\begin{aligned}
& =9 \times \frac{4}{3} \\
& =12 \mathrm{~cm} \\
\text { RS } & =12 \mathrm{x} \\
& =12 \times \frac{4}{3} \\
& =16 \mathrm{~cm}
\end{aligned}
$$

15. O is the point of intersection of the diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$. Through O, a line segment $P Q$ is drawn parallel to $A B$ meeting $A D$ in P and $B C$ in Q. Prove that $P O=Q O$.

Solution:

Given ABCD is a trapezium. Diagonals AC and BD are intersect at O . PQ || AB || DC

To prove: $\mathrm{PO}=\mathrm{QO}$

Proof:
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{POD}$, PO || AB

$$
\text { [as, } \mathrm{PQ} \| \mathrm{AB}]
$$

$$
\begin{aligned}
\angle \mathrm{D} & =\angle \mathrm{D} \\
\angle \mathrm{ABD} & =\angle \mathrm{POD} \\
\triangle \mathrm{ABD} & \sim \triangle \mathrm{POD}
\end{aligned}
$$

[common angle]
[corresponding angles]
[by AA similarity criterion]

Then,

$$
\begin{equation*}
\frac{O P}{A D}=\frac{P D}{A D} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{OQC}, \mathrm{OQ} \| \mathrm{AB}$

$$
\angle \mathrm{C}=\angle \mathrm{C}
$$

$\angle \mathrm{B} \mathrm{AC}=\angle \mathrm{QOC}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{OQC}$
[common angle]
[corresponding angles]
[by AA similarity criterion]
$\frac{O Q}{A B}=\frac{Q C}{B C}$

Also, In $\triangle \mathrm{ADC}, \mathrm{OP} \| \mathrm{DC}$
$\frac{A P}{P D}=\frac{O A}{O C}$

In $\triangle \mathrm{ABC}, \mathrm{OQ} \| A B$
$\frac{B Q}{Q C}=\frac{O A}{O C}$

Therefore,
$\frac{A P}{P D}=\frac{B Q}{Q C}$

Adding 1on both sides,
$\frac{A P}{P D}+1=\frac{B Q}{Q C}+1$
$\frac{A P+P D}{P D}=\frac{B Q+Q C}{Q C}$
$\frac{A D}{P D}=\frac{B C}{Q C}$
or,
$\frac{P D}{A D}=\frac{Q C}{B C}$

Also,
$\frac{O P}{A B}=\frac{Q C}{B C}$ and $\frac{O P}{A B}=\frac{O Q}{A B}$
Therefore,
$O P=O Q$
16. In Fig., line segment $D F$ intersect the side $A C$ of a triangle $A B C$ at the point E such that E is the mid-point of $C A$ and $\angle A E F=\angle A F E$. Prove that $\frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}}$
[Hint: Take point G on AB such that CG || DF.]

Solution:

Given $\triangle \mathrm{ABC}, \mathrm{E}$ is the mid-point of CA and $\angle \mathrm{AEF}=\angle \mathrm{AFE}$
To prove: $\frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}}$
Construction: Take a point G on AB such that $\mathrm{CG} \| \mathrm{DF}$
Proof: As, E is the mid-point of CA

$\mathrm{CE}=\mathrm{AE}$
In $\triangle \mathrm{ACG}, \mathrm{CG} \| \mathrm{EF}$ and E is mid-point of CA
So, $\mathrm{CE}=\mathrm{GF}$
... (ii) [by mid-point theorem]

Now, in $\triangle \mathrm{BCG}$ and $\triangle \mathrm{BDF}, \mathrm{CG} \| \mathrm{DF}$
$\frac{B C}{C D}=\frac{B G}{G F}$
$\frac{B C}{C D}=\frac{B F-G F}{G F}$
$\frac{B C}{C D}=\frac{B F}{G F}-1$
$\frac{B C}{C D}+1=\frac{B F}{C E}$
(from(ii))
$\frac{B C+C D}{C D}=\frac{B F}{C E}$
$\frac{B D}{C D}=\frac{B F}{C E}$
17. Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.

Solution:

ABC is a right triangle, right angled at B in which
$A B=y$,
$B C=x$
We will draw three semi-circles are drawn on the sides AB, BC and AC , respectively with diameters AB, BC and AC , respectively.

Again,
Taking area of circles with diameters AB, BC and AC are respectively $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3}
To prove: $\mathrm{A}_{3}=\mathrm{A}_{1}+\mathrm{A}_{2}$
Proof :
In $\triangle \mathrm{ABC}$, by Pythagoras theorem,

$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=y^{2}+x^{2}$
$A C=\sqrt{y^{2}+x^{2}}$
Also, area of semicircle drawnon $A C=\frac{\pi r^{2}}{2}$

$$
=\frac{\pi}{2}\left(\frac{A C}{2}\right)^{2}
$$

$A_{3}=\frac{\pi\left(y^{2}+x^{2}\right)}{8}$
Now,
area of semicircle drawn on $A B=\frac{\pi r^{2}}{2}$

$$
=\frac{\pi}{2}\left(\frac{A B}{2}\right)^{2}
$$

$A_{1}=\frac{\pi\left(y^{2}\right)}{8}$
Now,
area of semicircle drawn on $B C=\frac{\pi r^{2}}{2}$

$$
=\frac{\pi}{2}\left(\frac{B C}{2}\right)^{2}
$$

$A_{2}=\frac{\pi\left(x^{2}\right)}{8}$
From above equations, we see that,
$A_{3}=A_{1}+A_{2}$

Hence Proved!!!
18. Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.

Solution:

BAC is a right triangle in which $\angle \mathrm{A}$ is right angle and
$A C=y$,
$\mathrm{AB}=\mathrm{x}$

Now we draw three equilateral triangles on the three sides of $\triangle \mathrm{ABC}$,
$\triangle \mathrm{AEC}$,
$\triangle \mathrm{AFB}$ and
$\Delta \mathrm{CBD}$
Let us assume area of triangles made on AC, AB and BC are $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} respectively. We need to prove that,
$\mathrm{A}_{3}=\mathrm{A}_{1}+\mathrm{A}_{2}$

Proof :
In $\triangle \mathrm{CAB}$, using Pythagoras theorem,
$\mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}$
$B C^{2}=y^{2}+x^{2}$
$B C=\sqrt{y^{2}}+x^{2}$
Also Area of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$
Now we calculate the area $\mathrm{A}_{1}, \mathrm{~A}_{2}$, and A_{3} respectively

$$
\begin{aligned}
\operatorname{ar}(\triangle A E C) & =A_{1} \\
A_{1} & =\frac{\sqrt{3}}{4} A C^{2} \\
A_{1} & =\frac{\sqrt{3}}{4} y^{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\operatorname{ar}(\triangle A F B) & =A_{2} \\
A_{2} & =\frac{\sqrt{3}}{4} A B^{2} \\
A_{2} & =\frac{\sqrt{3}}{4} x^{2}
\end{aligned}
$$

$$
\operatorname{ar}(\triangle C B D)=A_{3}
$$

$$
\begin{aligned}
& A_{3}=\frac{\sqrt{3}}{4} C B^{2} \\
& A_{3}=\frac{\sqrt{3}}{4}\left(y^{2}+x^{2}\right) \\
& A_{3}=\frac{\sqrt{3}}{4} x^{2}+\frac{\sqrt{3}}{4} y^{2} \\
& A_{3}=A_{1}+A_{2}
\end{aligned}
$$

Hence Proved!!

