Chapter-1
 Real Number

 Exercise No: 1.1

 Exercise No: 1.1}

Question 1:

For some integer m, every even integer is of the form:
(A) m
(B) $\mathrm{m}+1$
(C) 2 m
(D) $\mathbf{2 m}+\mathbf{1}$

Solution:

(C) 2 m

Integers which are divisible by 2 are called even integers.
So, every even integer must be a multiple of 2 . So, we can conclude that, for any integer m , Where, $\mathrm{m}=1,2,3,4 \ldots \mathrm{n}$, even integer is in the form of $2 \times \mathrm{m}=2 \mathrm{~m}$.

Question 2:

For some integer q, every odd integer is of the form

(A) \mathbf{q}
(B) $\mathbf{q}+1$
(C) $\mathbf{2 q}$
(D) $2 q+1$

Solution:

(D) $2 \mathrm{q}+1$

Integers which are not divisible by 2 are called odd integers.
And integer which is a multiple of 2 is an even integer, if 1 is added to any integer which is multiplied by 2 , it gives an odd integer.

So, we can say that, for any integer ' q ', every odd integer is of the form $2 q+1$.

Question 3:

$\mathbf{n}^{2}-1$ is divisible by 8 , if \mathbf{n} is
(A) an integer
(B) a natural number
(C) an odd integer
(D) an even integer

Solution:

(C) an odd integer

Let $\mathrm{a}=\mathrm{n}^{2}-1$

In the above equation, n can be even or n can be odd.
Let us say that n is even integer.
So, If $\mathrm{n}=$ even i.e., $\mathrm{n}=2 \mathrm{x}$, where x is an integer,

We get,

$$
\begin{aligned}
& a=(2 x)^{2}-1 \\
& a=4 x^{2}-1
\end{aligned}
$$

Let, $\mathrm{x}=0$,
$\mathrm{a}=4(0)^{2}-1$
$=0-1$
$=-1$
$\mathrm{a}=-1$ is not divisible by 8 .

Let us say that $\mathrm{n}=$ odd:
When $\mathrm{n}=$ odd i.e.
$\mathrm{n}=2 \mathrm{x}+1$, where x is an integer,
We have,

$$
\begin{aligned}
& a=(2 x+1)^{2}-1 \\
& a=4 x^{2}+4 x+1-1 \\
& a=4 x^{2}+4 x \\
& a=4 x(x+1)
\end{aligned}
$$

At $\mathrm{x}=0$,
$\mathrm{a}=4(0)(0+1)$
$\mathrm{a}=0$ which is divisible by 8 .
So, we can conclude that, $\mathrm{n}^{2}-1$ is divisible by 8 when n is an odd integer.

Question 4:

If the HCF of 65 and 117 is expressible in the form $65 m-117$, then the value of m is

(A) 4
(B) 2
(C) 1
(D) 3

Solution:

(B) 2

If we find the HCF of 65 and 117 , we get,
$117=1 \times 65+52$
$65=1 \times 52+13$
$52=4 \times 13+0$
The HCF of 65 and 117 is 13 .

Putting value in the question, we get
$65 m-117=13$
$65 \mathrm{~m}=117+13$
$65 \mathrm{~m}=130$
$\therefore \mathrm{m}=\frac{130}{65}$
$\mathrm{m}=2$

Question 5:

The largest number which divides 70 and 125, leaving remainders 5 and 8, respectively, is
(A) 13
(B) 65
(C) 875
(D) 1750

Solution:

(A) 13

We have to find the largest number which divides 70 and 125 , leaving remainders 5 and 8 .
So, we can write it as,
The largest number which divides ($70-5$), and ($125-8$), as 5 and 8 are remainder,
Ultimately we have to find the Highest Common Factor of 65 and 117
On solving,
Multiples of $65=1,5,13,65$
Multiples of $117=1,3,9,13,39,117$

Common multiple $=1,13$
So, HCF= 13
Therefore, 13 is the number which divides 70 and 125 , leaving remainders 5 and 8 .

Question 6:

If two positive integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{3} ; x, y$ are prime numbers, then $\operatorname{HCF}(a, b)$ is
(A) xy
(B) $x y^{2}$
(C) $x^{3} y^{3}$
(D) $x^{2} y^{2}$

Solution:

(B) $x y^{2}$

To find the HCF of a and b, we have to see the common terms in a and b, on solving, we get, $\mathrm{HCF}=x y^{2}$

Question7:

If two positive integers p and q can be expressed as $p=a^{\mathbf{2}}$ and $q=a^{\mathbf{3}} \mathbf{b}$; a, b being prime numbers, then $\operatorname{LCM}(p, q)$ is
(A)ab
(B) $\mathbf{a}^{2} \mathbf{b}^{\mathbf{2}}$
(C) $a^{3} b^{2}$
(D) $\mathbf{a}^{3} \mathbf{b}^{3}$

Solution:
(C) $a^{3} b^{2}$
$\mathrm{p}=\mathrm{ab}^{2}$
$q=a^{3} b$
To find LCM we see the highest powers of each number.
So, $\operatorname{LCM}=a^{3} b^{2}$

Question 8:

The product of a non-zero rational and an irrational number is
(A) always irrational
(B) always rational
(C) rational or irrational
(D) one

Solution:

(A) always irrational

Product of a non-zero rational and an irrational number is irrational.

Question 9:

The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(A) 10
(B) 100
(C) 504
(D) 2520

Solution:

(D) 2520

We have to find the LCM of numbers from 1 to 10 .
We will first see the multiples of numbers from $1-10$,
$1=1,2=2,3=3$
$4=2 \times 2,5=5,6=2 \times 3,7=7$
$8=2 \times 2 \times 2,9=3 \times 3,10=2 \times 5$
LCM of all numbers 1 to $10=1 \times 2 \times 3 \times 2 \times 5 \times 7 \times 2 \times 3$

$$
=2520
$$

Question10:

The decimal expansion of the rational number $\frac{14587}{1250}$ will terminate after:
(A) One decimal place
(B) two decimal places
(C) Three decimal places
(D) four decimal places

Solution:

(D) Four decimal places

On dividing we get,
$\frac{14587}{1250}=11.6696$

Exercise No: 1.2

Question 1:

Write whether every positive integer can be of the from $(4 q+2)$, where q is an integer. Justify your answer.

Solution 1:

'No'
We know that,
Dividend $=$ divisor \times quotient + remainder
According to Euclid's division lemma,
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$
If, $b=4$ then,
$\mathrm{a}=4 \mathrm{q}+\mathrm{r}$
So,
$\mathrm{r}=0,1,2,3($ as r is positive and less than 4)
We get,
$4 \mathrm{q}, 4 \mathrm{q}+1,4 \mathrm{q}+2$ and $4 \mathrm{q}+3$ respectively.
So, every positive integer cannot be only in the form of $4 q+2$.

Question 2:

"The product of two consecutive positive integers is divisible by 2 ". Is this statement true or false? Give reasons.

Solution 2:

This statement is true.
For any two consecutive numbers one will be even and the other will be odd. Let $n,(n+1)$. So, their product is always multiple of 2 .

Hence, the product of two consecutive positive integers is divisible by 2 .

Question 3.

"The product of three consecutive positive integers is divisible by 6". Is this

statement true or false? Justify your answer.

Solution:

The statement is true.
Three consecutive positive integers are $n,(n+1),(n+2)$.
In those 3 consecutive integers, one will be even and other will be divisible by 3 .
Therefore, the product of three will be divisible by 6 ,
For e.g. 16, 17, 18
Here 16 is even, and 18 is divisible by 3 .
So, $16 \times 17 \times 18$ is divisible by 6 .

Question 4.

Write whether the square of any positive integer can be of the form of (3m +2), where m is a natural number. Justify your answer.

Solution:

No, the square of any positive integer cannot be written in the form $3 m+2$ where m is a natural number

Explanation:

By Euclid's division lemma, we have
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$, where b, q and r are positive integers,
For $\mathrm{b}=3$
$\mathrm{a}=3(\mathrm{q})+\mathrm{r}$,

For $\mathrm{r}=0,1,2,3$
So, $3 q+0,3 q+1,3 q+2,3 q+3$ are positive integers,

According to question, the square of any positive integer can be written as,
$(3 q)^{2}=9 q^{2}$

$$
=3\left(3 q^{2}\right)=3 \mathrm{~m}\left(\text { where } 3 q^{2}=\mathrm{m}\right)
$$

$(3 q+1)^{2}=(3 q+1)^{2}$

$$
\begin{aligned}
& =9 q^{2}+1+6 q \\
& =3\left(3 q^{2}+2 q\right)+1 \\
& =3 m+1\left(\text { Where, } m=3 q^{2}+2 q\right) \\
(3 q+2)^{2} & =(3 q+2)^{2} \\
& =9 q^{2}+4+12 q \\
& =3\left(3 q^{2}+4 q\right)+4 \\
& =3 m+4\left(\text { Where, } m=3 q^{2}+2 q\right) \\
(3 q+3)^{2} & =(3 q+3)^{2} \\
& =9 q^{2}+9+18 q \\
& =3\left(3 q^{2}+6 q\right)+9 \\
& =3 m+9\left(\text { Where, } m=3 q^{2}+2 q\right)
\end{aligned}
$$

So the square of any positive integer cannot be written in the form $3 \mathrm{~m}+2$.

Question 5 :

A positive integer is of the form $(3 q+1)$, q being a natural number. Can you write its square in any form other than $(3 m+1)$ i.e., $\mathbf{3 m}$ or $(3 m+2)$ for some integer m? Justify your answer.

Solution 5:

No. $(3 q+1)^{2}$ cannot be expressed in any other form other than $3 m+1$.
Explanation:
Consider the positive integer $3 \mathrm{q}+1$, so,

$$
\begin{aligned}
(3 q+1)^{2} & =9 q^{2}+6 q+1 \\
& =3\left(3 q^{2}+2 q\right)+1 \\
& =3 m+1,\left(\text { where } m \text { is an integer }=3 q^{2}+2 q\right)
\end{aligned}
$$

Hence, $(3 q+1)^{2}$ cannot be expressed in any other form other than $3 m+1$.

Question 6.

The numbers 525 and 3000 are both divisible only by $3,5,15,25$ and 75, what is HCF of $\mathbf{(3 0 0 0}, 525)$? Justify your answer.

Solution 6 :

The numbers 525 and 3000 both are divisible only by 3, 5, 15, 25 and 75 , So, highest common factors out of $3,5,15,25$ and 75 is 75

So, HCF of $(525,3000)$ is 75 .
Justification:

$$
\begin{aligned}
525 & =5 \times 5 \times 3 \times 7 \\
& =3 \times 5^{2} \times 7^{1} \\
3000 & =2^{3} \times 5^{3} \times 3^{1} \\
& =2^{3} \times 3^{1} \times 5^{3}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{HCF} & =3^{1} \times 5^{2} \\
& =75
\end{aligned}
$$

Hence, justified.

Question 7.

Explain why $3 \times 5 \times 7+7$ is a composite number.

Solution 7:

A number which is not prime is composite.
$3 \times 5 \times 7+7=7[3 \times 5+1]$
$=7[15+1]$
$=7 \times 16$
So, it have factors $=7 \times 2 \times 2 \times 2 \times 2$
As the factors are other than one and itself, so, the number is not prime.
Hence, the number $(3 \times 5 \times 7+7)$ is composite.

Question 8.

Can two numbers have 18 as their HCF and 380 as their LCM? Give reasons.

Solution 8:

380 and 18 are not the LCM and HCF of any two numbers.
We know that,
$\operatorname{HCF}(\mathrm{x}, \mathrm{y}) \times \operatorname{LCM}(\mathrm{x}, \mathrm{y})=(\mathrm{x} \times \mathrm{y})$

So, 18 must be factor of 380 .
But, 380 is not divisible by 18 .
Hence, 380 and 18 are not the LCM and HCF of any two numbers.

Question 9.

Without actually performing the long division, find if $\frac{987}{10500}$ will have terminating or non-terminating (repeating) decimal expansion. Give reasons for your answer.

Solution 9:

The denominator has prime factors only in 2 and 5 so, the number is terminating decimal. On solving we get,
$\frac{987}{10500}=0.094$

Question 10.

A rational number in its decimal expansion is 327.7081. What can you say about the prime factors of q, when this number is expressed in the form p/q? Give reasons.

Solution:

327.7081 is terminating decimal in the form of
$\frac{p}{q}=\frac{3277081}{10000}$
$\mathrm{q}=2^{4} \times 5^{4}$
As, q has only multiples of 2 and 5 so it is terminating decimal.

Exercise No: 1.3

Question 1.

Show that the square of any positive integer is either of the form $\mathbf{4 q}$ or $\mathbf{4 q}+$ 1 for some integer q.

Solution:

By Euclid's division lemma,

$$
\begin{equation*}
\mathrm{a}=4 \mathrm{~m}+\mathrm{r} \tag{i}
\end{equation*}
$$

Where $\mathrm{r}=0 \leq \mathrm{r}<4$
or
$\mathrm{r}=0,1,2,3$
When $\mathrm{r}=0, \mathrm{a}=4 \mathrm{~m}$ [From (i)]

When $r=0$, we get,
$\mathrm{a}=4 \mathrm{k}$

$$
\begin{aligned}
\mathrm{a}^{2} & =16 \mathrm{~m}^{2} \\
& =4\left(4 \mathrm{~m}^{2}\right) \\
& =4 \mathrm{q}, \text { where } \mathrm{q}=4 \mathrm{~m}^{2}
\end{aligned}
$$

When $\mathrm{r}=1$, we get,

$$
\begin{aligned}
\mathrm{a} & =4 \mathrm{~m}+1 \\
\mathrm{a}^{2} & =(4 \mathrm{~m}+1)^{2} \\
& =16 \mathrm{~m}^{2}+1+8 \mathrm{~m} \\
& =4(4 \mathrm{~m}+2)+1 \\
& =4 \mathrm{q}+1, \text { where } \mathrm{q}=\mathrm{m}(4 \mathrm{~m}+2)
\end{aligned}
$$

When $\mathrm{r}=2$, we get, $\mathrm{a}=4 \mathrm{~m}+2$

$$
\begin{aligned}
\mathrm{a}^{2} & =(4 \mathrm{~m}+2)^{2} \\
& =16 \mathrm{~m}^{2}+4+16 \mathrm{~m} \\
& =4\left(4 \mathrm{~m}^{2}+4 \mathrm{~m}+1\right) \\
& =4 \mathrm{q}, \text { where } \mathrm{q}=4 \mathrm{~m}^{2}+4 \mathrm{~m}+1
\end{aligned}
$$

When $r=3$, we get,

$$
\begin{aligned}
a & =4 m+3 \\
a^{2} & =(4 m+3)^{2} \\
& =16 \mathrm{~m} 2+9+24 m \\
& =4(4 m 2+6 m+2)+1 \\
& =4 q+1, \text { where } q=4 k 2+6 k+2
\end{aligned}
$$

Hence, the square of any positive integer is either of the form $4 q$ or $4 q+1$ for some integer q.

Question 2.

Show that the cube of any positive integer is of the form $\mathbf{4 m}, \mathbf{4 m}+1$ or $\mathbf{4 m}$ +3 for some integer m.

Solution:

Let x be any positive integer and $\mathrm{b}=4$.
Using Euclid Algorithm,
$\mathrm{x}=\mathrm{bq}+\mathrm{r}$
$x=4 q+r$
The possible values of r are,
$r=0,1,2,3$

If $\mathrm{r}=0$,
$x=4 q+0$
$x=4 q$
Taking cubes on LHS and RHS,
$x^{3}=(4 q)^{3}$
$x^{3}=4\left(16 q^{3}\right)$
$x^{3}=4 m \quad\left[\right.$ where $\left.m=16 q^{3}\right]$

If $\mathrm{r}=1$,
$x=4 q+1$
Taking cubes on LHS and RHS,

$$
\begin{aligned}
& x^{3}=(4 q+1)^{3} \\
& x^{3}=64 q^{3}+1^{3}+3 \times 4 q \times 1(4 q+1) \\
& x^{3}=64 q^{3}+1+48 q^{2}+12 q \\
& x^{3}=4\left(16 q^{3}+12 q^{2}+3 q\right)+1 \\
& x^{3}=4 m+1 \quad\left[\text { where } m=16 q^{3}+12 q^{2}+3 q\right]
\end{aligned}
$$

If $\mathrm{r}=2$,
$x=4 q+2$
Taking cubes on LHS and RHS,
We have,
$x^{3}=(4 q+2)^{3}$
$x^{3}=64 q^{3}+2^{3}+3 \times 4 q \times 2(4 q+2)$
$x^{3}=64 q^{3}+8+96 q^{2}+48 q$
$x^{3}=4\left(16 q^{3}+2+24 q^{2}+12 q\right)$
$x^{3}=4 m \quad\left[\right.$ here $\left.m=16 q^{3}+2+24 q^{2}+12 q\right]$

If $\mathrm{r}=3$,
$x=4 q+3$
Taking cubes on LHS and RHS,
We have,
$x^{3}=(4 q+3)^{3}$
$\mathrm{x}^{3}=64 \mathrm{q}^{3}+27+3 \times 4 \mathrm{q} \times 3(4 \mathrm{q}+3)$
$x^{3}=64 q^{3}+24+3+144 q^{2}+108 q$
$x^{3}=4\left(16 q^{3}+36 q^{2}+27 q+6\right)+3$
$x^{3}=4 m+3\left[\right.$ where $\left.m=16 q^{3}+36 q^{2}+27 q+6\right]$
So, the cube of any positive integer is in the form of $4 m, 4 m+1$ or $4 m+3$.

Question 3.

Show that the square of any positive integer cannot be of the form $5 q+2$ or $\mathbf{5 q}+\mathbf{3}$ for any integer q.

Solution.

Let the positive integer $=\mathrm{x}$
Using Euclid algorithm,
$\mathrm{x}=\mathrm{bm}+\mathrm{r}$

According to the question, $\mathrm{b}=5$
$\mathrm{x}=5 \mathrm{~m}+\mathrm{r}$
So, $r=0,1,2,3,4$
For $r=0, x=5 m$.
For $\quad r=1, x=5 m+1$.
For $\quad r=2, x=5 m+2$.
For $\quad r=3, x=5 m+3$.
For $r=4, x=5 m+4$.

Now, When $\mathrm{x}=5 \mathrm{~m}$

$$
\begin{aligned}
\mathrm{x}^{2} & =(5 \mathrm{~m})^{2} \\
& =25 \mathrm{~m}^{2} \\
\mathrm{x}^{2} & =5\left(5 \mathrm{~m}^{2}\right) \\
& =5 \mathrm{q}, \text { where } \mathrm{q}=5 \mathrm{~m}^{2}
\end{aligned}
$$

When $\mathrm{x}=5 \mathrm{~m}+1$

$$
\begin{aligned}
x^{2} & =(5 m+1)^{2} \\
& =25 m^{2}+10 m+1 \\
x^{2} & =5\left(5 m^{2}+2 m\right)+1 \\
& =5 q+1, \text { where } q=5 m^{2}+2 m
\end{aligned}
$$

When $\mathrm{x}=5 \mathrm{~m}+2$
$x^{2}=(5 m+2)^{2}$
$x^{2}=25 m^{2}+20 m+4$
$x^{2}=5\left(5 m^{2}+4 m\right)+4$
$x^{2}=5 q+4$ where $q=5 m^{2}+4 m$

When $\mathrm{x}=5 \mathrm{~m}+3$

$$
\begin{aligned}
x^{2} & =(5 m+3)^{2} \\
& =25 m^{2}+30 m+9 \\
x^{2} & =5\left(5 m^{2}+6 m+1\right)+4 \\
x^{2} & =5 q+4 \text { where } q=5 m^{2}+6 m+1
\end{aligned}
$$

When $\mathrm{x}=5 \mathrm{~m}+4$
$\mathrm{x}^{2}=(5 \mathrm{~m}+4)^{2}$
$=25 \mathrm{~m}^{2}+40 \mathrm{~m}+16$
$x^{2}=5\left(5 m^{2}+8 m+3\right)+1$
$\mathrm{x}^{2}=5 \mathrm{q}+1$ where $\mathrm{q}=5 \mathrm{~m}^{2}+8 \mathrm{~m}+3$
So, square of any positive integer cannot be of the form $5 q+2$ or $5 q+3$.

Question 4.

Show that the square of any positive integer cannot be of the form $\mathbf{6 m}+2$ or $\mathbf{6 m}+\mathbf{5}$ for any integer m.

Solution:

Let the positive integer $=\mathrm{x}$
Using Euclid's algorithm,
$\mathrm{x}=6 \mathrm{q}+\mathrm{r}$, where $0 \leq \mathrm{r}<6$
$x^{2}=(6 q+r)^{2}$
$=36 q^{2}+r^{2}+12 q r$
$x^{2}=6\left(6 q^{2}+2 q r\right)+r^{2}$
Here, $0<\mathrm{r}<6$

If $r=0$, we get
$x^{2}=6\left(6 q^{2}\right)$

$$
=6 \mathrm{~m},
$$

(Here, $m=6 q^{2}$).

When $\mathrm{r}=1$, we get
$x^{2}=6\left(6 q^{2}+2 q\right)+1$

$$
=6 \mathrm{~m}+1,
$$

Here, $m=\left(6 q^{2}+2 q\right)$

If $r=2$, we get

$$
\begin{aligned}
x^{2} & =6\left(6 q^{2}+4 q\right)+4 \\
& =6 m+4,
\end{aligned}
$$

Here, $m=\left(6 q^{2}+4 q\right)$.

If $r=3$, we get
$x^{2}=6\left(6 q^{2}+6 q\right)+9$

$$
=6\left(6 q^{2}+6 a\right)+6+3
$$

$$
x^{2}=6\left(6 q^{2}+6 q+1\right)+3
$$

$$
=6 \mathrm{~m}+3,
$$

Here, $m=(6 q+6 q+1)$

If $r=4$, we get

$$
\begin{aligned}
x^{2} & =6\left(6 q^{2}+8 q\right)+16 \\
& =6\left(6 q^{2}+8 q\right)+12+4 \\
x^{2} & =6\left(6 q^{2}+8 q+2\right)+4 \\
& =6 m+4,
\end{aligned}
$$

Here, $m=\left(6 q^{2}+8 q+2\right)$

If $r=5$, we get

$$
\begin{aligned}
x^{2} & =6\left(6 q^{2}+10 q\right)+25 \\
& =6\left(6 q^{2}+10 q\right)+24+1 \\
x^{2} & =6\left(6 q^{2}+10 q+4\right)+1 \\
& =6 m+1,
\end{aligned}
$$

Here, $m=\left(6 q^{2}+10 q+1\right)$.
So, the square of any positive integer cannot be of the form $6 m+2$ or $6 m+5$ for any integer m .

Question 5.

Show that the square of any odd integer is of the form $\mathbf{4 q}+\mathbf{1}$, for some integer q.

Solution:
Let c be any odd integer and $\mathrm{d}=4$.
Using Euclid's algorithm,
$\mathrm{c}=4 \mathrm{~m}+\mathrm{r}$
and
$\mathrm{r}=0,1,2,3$ as, $0 \leq \mathrm{r}<4$.
Therefore,
$\mathrm{c}=4 \mathrm{~m}, 4 \mathrm{~m}+1,4 \mathrm{~m}+2,4 \mathrm{~m}+3$
So, c can be $4 \mathrm{~m}+1$ or $4 \mathrm{~m}+3$
c cannot be 4 m or $4 \mathrm{~m}+2$, as they are even integer
Now,

$$
\begin{aligned}
(4 \mathrm{~m}+1)^{2} & =16 \mathrm{~m}^{2}+8 \mathrm{~m}+1 \\
& =4\left(4 \mathrm{~m}^{2}+2 \mathrm{~m}\right)+1 \\
& =4 \mathrm{q}+1, \text { where } \mathrm{q}=4 \mathrm{~m}^{2}+2 \mathrm{~m} \\
(4 \mathrm{~m}+3)^{2} & =16 \mathrm{~m}^{2}+24 \mathrm{~m}+9 \\
& =4\left(4 \mathrm{~m}^{2}+6 \mathrm{~m}+2\right)+1 \\
& =4 \mathrm{q}+1, \text { where } \mathrm{q}=4 \mathrm{~m}^{2}+6 \mathrm{~m}+2
\end{aligned}
$$

Thus we can conclude that square of any odd integer is of the form $4 q+1$, for some integer q.

Question 6.

If \mathbf{n} is an odd integer, then show that $\mathbf{n}^{\mathbf{2}} \mathbf{- 1}$ is divisible by 8.

Solution:

Let
$\mathrm{x}=\mathrm{n}^{2}-1$
As n is odd number so,
$\mathrm{n}=1,3,5,7$
If $\mathrm{n}=1$

$$
\begin{aligned}
& x=1^{2}-1 \\
&=0, \text { which is divisible by } 8 . \\
& \text { If } n=3 \\
& x=3^{2}-1 \\
&=9-1 \\
&=8, \text { which is also divisible by } 8 . \\
& \text { If } n=5, \\
& x=5^{2}-1 \\
&=25-1 \\
&=24 \\
&=8 \times 3, \text { which is divisible by } 8 .
\end{aligned}
$$

Therefore, $\mathrm{n}^{2}-1$ is divisible by 8 when n is odd.

Question 7.

Prove that, if x and y, both are odd positive integers, then $\left(x^{2}+y^{2}\right)$ is even but not divisible by 4.

Solution:

Let the two odd positive numbers x and y be $2 \mathrm{~m}+1$ and $2 \mathrm{n}+1$ respectively.
So,

$$
\begin{aligned}
x^{2}+y^{2} & =(2 m+1)^{2}+(2 n+1)^{2} \\
& =4 m^{2}+4 m+1+4 n^{2}+4 n+1 \\
& =4 m^{2}+4 n^{2}+4 m+4 n+2 \\
& =4\left(m^{2}+n^{2}+m+n\right)+2
\end{aligned}
$$

In the above expression we see that the sum of square is even, but the number is not divisible by 4 . Therefore, we can say that if x and y are odd positive integer, then $x^{2}+y^{2}$ is even but not divisible by four.

Question 8.

Use Euclid's division algorithm to find HCF of 441, 567 and 693.
Solution.
Let $\mathrm{p}=693$ and $\mathrm{q}=567$

Using Euclid's division lemma,
$\mathrm{p}=\mathrm{qm}+\mathrm{r}$
$693=567 \times 1+126$
$567=126 \times 4+63$
$126=63 \times 2+0$
So, HCF $(693$ and 567 $)=63$.
Further,
Taking 441 and $\mathrm{HCF}=63$
Using Euclid's algorithm,
$\mathrm{c}=\mathrm{dm}+\mathrm{r}$
$\mathrm{c}=441$ and,
$\mathrm{d}=63$
$441=63 \times 7+0$
So, HCF of $(693,567,441)=63$.

Question 9.

Using Euclid's division algorithm, find the largest number that divides

1251, 9377 and 15628 leaving remainders, 1, 2, and 3 respectively.

Solution.

According to question 1, 2, and 3 are the remainders when the largest number divides 1251, 9377 and 15628 respectively.

So, we have to find HCF of $(1251-1),(9377-2)$ and $(15628-3)$
That are,
1250, 9375, 15625
For HCF of 1250, 9375, 15625
Let $\mathrm{p}=15625$,

$$
q=9375
$$

Using Euclid's algorithm, $\mathrm{p}=\mathrm{qm}+\mathrm{r}$
$15625=9375 \times 1+6250$
$9375=6250 \times 1+3125$
$6250=3125 \times 2+0$
Therefore,
$\operatorname{HCF}(15625,9375)=3125$
Let $\mathrm{a}=1250$ and

$$
\mathrm{b}=3125
$$

By Euclid's division algorithm, $b=a m+r$
$3125=1250 \times 2+625$
$1250=625 \times 2+0$
Therefore, the HCF of $(15625,1250$ and 9375$)$ is 625.

Question 10.

Prove that $(\sqrt{3}+\sqrt{5})$ is irrational.

Solution:

Let us consider $(\sqrt{3}+\sqrt{5})$ is a rational number that can be written as
$(\sqrt{3}+\sqrt{5})=x$
$(\sqrt{3}+\sqrt{5})=x$
$\sqrt{5}=x-\sqrt{3}$
Squaring both sides,

$$
\begin{aligned}
(\sqrt{5})^{2} & =(x-\sqrt{3})^{2} \\
5 & =\left(x^{2}-2 x \sqrt{3}+3\right) \\
\sqrt{3} & =\frac{x^{2}+3-5}{2 x} \\
\sqrt{3} & =\frac{x^{2}-2}{2 x}
\end{aligned}
$$

From the above expression, RHS comes out to be rational but we know that $\operatorname{LHS}=\sqrt{3}$ is irrational, which contradicts our fact. So, $(\sqrt{3}+\sqrt{5})$ is irrational.

Question 11.

Show that 12^{n} cannot end with the digit 0 or 5 for any natural number n.

Solution:

Number ending at 0 or 5 must be divisible by 5 .
So,
$(12)^{\mathrm{n}}=(2 \times 2 \times 3)^{\mathrm{n}}$

$$
=2^{2 \mathrm{n}} \times 3^{\mathrm{n}}
$$

$(12)^{\mathrm{n}}$ does not have 5 as its factor. So, 12^{n} can never end with 5 and zero.

Question 12.

On a morning walk, three persons, step off together and their steps measure $40 \mathrm{~cm}, 42 \mathrm{~cm}$ and 45 cm respectively. What is the minimum distance each should walk, so that each can cover the same distance in complete steps?

Solution:

The minimum distance $=$ LCM of covered steps.
$40=2^{3} \times 5$
$42=2 \times 3 \times 7$
$45=3^{2} \times 5$
LCM of $(40,42,45)=2^{3} \times 3^{2} \times 5 \times 7$

$$
=2520 \mathrm{~cm}
$$

Hence, the minimum distance each should walk is 2520 cm .

Question 13.

Write the denominator of rational number $\frac{257}{5000}$ in the form of $\mathbf{2}^{\mathbf{m}} \times \mathbf{5}^{\mathbf{n}}$, where \mathbf{m}, \mathbf{n} are non-negative integers. Hence, write its decimal expansion, without actual division.

Solution:

We have, denominator of the rational number $\frac{257}{5000}=5000$.
Therefore,
$5000=2^{3} \times 5^{4}$
It is of the form $2^{\mathrm{m}} \times 5^{\mathrm{n}}$
Here $\mathrm{m}=3$ and $\mathrm{n}=4$
So,
$\frac{257}{5000}=\frac{257 \times 2}{5000 \times 2}$
$=0.0514$

Question 14.

Prove that $(\sqrt{p}+\sqrt{q})$ is irrational, where \mathbf{p} and \mathbf{q} are primes.

Solution:

Let us take $(\sqrt{p}+\sqrt{q})=$ rational and can be represented as $(\sqrt{p}+\sqrt{q})=\mathrm{x}$
$(\sqrt{p}+\sqrt{q})=x$
$\sqrt{p}=x-\sqrt{q}$
Squaring both sides,

$$
\begin{aligned}
(\sqrt{p})^{2} & =(x-\sqrt{q})^{2} \\
p & =\left(x^{2}-2 x \sqrt{q}+q\right) \\
\sqrt{q} & =\frac{x^{2}+q-p}{2 x}
\end{aligned}
$$

As q is prime so \sqrt{q} is no rational but in above solution we had $\sqrt{q}=$ rational because $\mathrm{a}, \mathrm{p}, \mathrm{q}$ are non-zero integers which contradicts our fact.

So, $(\sqrt{p}+\sqrt{q})$ is irrational.

Exercise No: 1.4

Question 1.

Show that the cube of a positive integer of the form $\mathbf{6 q}+\mathrm{r}, \mathrm{q}$ is an integer and $r=0,1,2,3,4,5$ is also of the form $\mathbf{6 m}+r$.

Solution:

We have,
$6 \mathrm{q}+\mathrm{r}$ is a positive integer, where q is an integer and $\mathrm{r}=0,1,2,3,4,5$
So, the positive integers are of the form $6 q, 6 q+1,6 q+2,6 q+3,6 q+4$ and $6 q+5$.
Cube of these integers will be:
Taking 6q,

$$
\begin{aligned}
(6 q)^{3} & =216 q^{3} \\
& =6(36 q)^{3}+0 \\
& =6 m+0,\left(m=(36 q)^{3}\right)
\end{aligned}
$$

Taking $6 \mathrm{q}+1$,

$$
\begin{aligned}
(6 q+1)^{3} & =216 q^{3}+108 q^{2}+18 q+1 \\
& =6\left(36 q^{3}+18 q^{2}+3 q\right)+1 \\
& =6 m+1,\left(m=36 q^{3}+18 q^{2}+3 q\right)
\end{aligned}
$$

Taking $6 \mathrm{q}+2$,

$$
\begin{aligned}
(6 q+2)^{3} & =216 q^{3}+216 q^{2}+72 q+8 \\
& =6\left(36 q^{3}+36 q^{2}+12 q+1\right)+2 \\
& =6 m+2,\left(m=36 q^{3}+36 q^{2}+12 q+1\right)
\end{aligned}
$$

Taking $6 \mathrm{q}+3$,

$$
\begin{aligned}
(6 q+3)^{3} & =216 q^{3}+324 q^{2}+162 q+27 \\
& =6\left(36 q^{3}+54 q^{2}+27 q+4\right)+3 \\
& =6 m+3,\left(m=36 q^{3}+54 q^{2}+27 q+4\right)
\end{aligned}
$$

Taking $6 \mathrm{q}+4$,

$$
\begin{aligned}
(6 q+4)^{3} & =216 q^{3}+432 q^{2}+288 q+64 \\
& =6\left(36 q^{3}+72 q^{2}+48 q+10\right)+4 \\
& =6 m+4,\left(\text { where } m \text { is an integer }=36 q^{3}+72 q^{2}+48 q+10\right)
\end{aligned}
$$

Taking $6 \mathrm{q}+5$,

$$
\begin{aligned}
(6 q+5)^{3} & =216 q^{3}+540 q^{2}+450 q+125 \\
& =6\left(36 q^{3}+90 q^{2}+75 q+20\right)+5 \\
& =6 m+5\left(m=36 q^{3}+90 q^{2}+75 q+20\right)
\end{aligned}
$$

Therefore, the cube of a positive integer of the form $6 q+r, q$ is an integer and $r=0,1,2,3$, 4,5 is also of the form $6 m+r$.
2. Prove that one and only one out of $n, n+2$ and $n+4$ is divisible by $\mathbf{3}$, where \mathbf{n} is any positive integer.

Solution:

Using Euclid's Algorithm,
Let the positive integer $=\mathrm{n}$ and $\mathrm{b}=3$.
$\mathrm{n}=3 \mathrm{q}+\mathrm{r}$, where q is the quotient and r is the remainder.
Remainders can be 0,1 and 2
So, n can be $3 q, 3 q+1,3 q+2$
For $\mathrm{n}=3 \mathrm{q}$

$$
\begin{aligned}
& \mathrm{n}+2=3 \mathrm{q}+2 \\
& \mathrm{n}+4=3 \mathrm{q}+4
\end{aligned}
$$

In this case n is only divisible by 3 .

$$
\begin{aligned}
\text { For } \mathrm{n} & =3 \mathrm{q}+1 \\
\mathrm{n}+2 & =3 \mathrm{q}+3
\end{aligned}
$$

In this case $n+2$ is divisible by 3 .
For $\mathrm{n}=3 \mathrm{q}+2$

$$
\begin{aligned}
\mathrm{n}+2 & =3 \mathrm{q}+4 \\
\mathrm{n}+4 & =3 \mathrm{q}+2+4 \\
& =3 \mathrm{q}+6
\end{aligned}
$$

In this case $\mathrm{n}+4$ is divisible by 3 .
Therefore, we can say that one and only one out of $n, n+2$ and $n+4$ is divisible by 3 .

Question 3.

Prove that one of any three consecutive positive integers must be divisible by 3.

Solution:

Let the three consecutive number be $\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$.
By Euclid's algorithm, we have
$\mathrm{n}=3 \mathrm{q}+\mathrm{r}$
Where q is quotient and r is remainder
The values of r can $\mathrm{be}=0,1,2$.
For $\mathrm{r}=0$,
$\mathrm{n}=3 \mathrm{q}$
$n+1=3 q+1$
$\mathrm{n}+2=3 \mathrm{q}+2$
So, here n is divisible by 3 .

Now, For r = 1,
$\mathrm{n}=3 \mathrm{q}+1$
$n+1=3 q+2$
$\mathrm{n}+2=3 \mathrm{q}+3$
So, here $\mathrm{n}+2$ is divisible by 3 .

For $\mathrm{r}=2$,
$\mathrm{n}=3 \mathrm{q}+2$
$n+1=3 q+3$
$\mathrm{n}+2=3 \mathrm{q}+4$
So, here $\mathrm{n}+1$ is divisible by 3 .
Therefore one of any three consecutive positive integers must be divisible by 3 .

Question 4.

For any positive integer n, prove that $\mathbf{n}^{\mathbf{3}}-\mathbf{n}$ is divisible by 6 .

Solution:

Let $\mathrm{x}=\mathrm{n}^{3}-\mathrm{n}$
$\mathrm{x}=\mathrm{n}\left(\mathrm{n}^{2}-1\right)$
$\mathrm{x}=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}+1)$
$(\mathrm{n}-1), \mathrm{n},(\mathrm{n}+1)$ are consecutive integers so out of three consecutive numbers at least one will be even.

So, we can say that x is divisible by 2 .
Sum of number $=(n-1)+n+(n+1)$

$$
\begin{aligned}
& =\mathrm{n}-1+\mathrm{n}+\mathrm{n}+1 \\
& =3 \mathrm{n}
\end{aligned}
$$

Here, the sum of three consecutive numbers is divisible by 3 , so one of them is divisible by 3 . So, out of n, $(\mathrm{n}-1),(\mathrm{n}+1)$, one is divisible by 2 and one is divisible by 3 and
$\mathrm{x}=(\mathrm{n}-1) \times \mathrm{n} \times(\mathrm{n}+1)$
Hence, out of three factors of x, one is divisible by 2 and one is divisible by 3 .
Therefore, x is divisible by 6 or $\mathrm{n}^{3}-\mathrm{n}$ is divisible by 6 .

Question 5.

Show that one and only one out of $n,(n+4),(n+8),(n+12),(n+16)$ is divisible by 5 , where n is any positive integer.
[Hint: Any positive integer can be written in the form $5 q,(5 q+1),(5 q+2)$, $(5 q+3),(5 q+4)]$

Solution:

If a number n is divided by 5 then let the quotient is q and remainder is r . Then by Euclid's algorithm,
$\mathrm{n}=5 \mathrm{q}+\mathrm{r}$, where $\mathrm{n}, \mathrm{q}, \mathrm{r}$ are positive integers and $0 \leq \mathrm{r}<5$.
For, $\mathrm{r}=0$,

$$
\begin{aligned}
\mathrm{n} & =5 \mathrm{q}+0 \\
& =5 \mathrm{q}
\end{aligned}
$$

So, n is divisible by 5 .
For, $\mathrm{r}=1$,
$\mathrm{n}=5 \mathrm{q}+1$

$$
\begin{aligned}
\mathrm{n}+4 & =(5 \mathrm{q}+1)+4 \\
& =5 \mathrm{q}+5 \\
& =5(\mathrm{q}+1) \text { divisible by } 5 .
\end{aligned}
$$

We can say that $(n+4)$ is divisible by 5 .

$$
\begin{aligned}
& \text { For } \mathrm{r}=2 \text {, } \\
& \mathrm{n}=5 \mathrm{q}+2 \\
& (\mathrm{n}+8)=(5 \mathrm{q}+2)+8 \\
& =5 \mathrm{q}+10=5(\mathrm{q}+2) \\
& =5 \mathrm{~m} \text { is divisible by } 5 \text {. }
\end{aligned}
$$

We can say that, $(\mathrm{n}+8)$ is divisible by 5 .

$$
\begin{aligned}
& \text { For, } \mathrm{r}=3 \\
& \begin{aligned}
\mathrm{n}=5 \mathrm{q} & +3 \\
\mathrm{n}+12 & =(5 \mathrm{q}+3)+12 \\
& =5 \mathrm{q}+15 \\
& =5(\mathrm{q}+3)=5 \mathrm{~m} \text { is divisible by } 5 .
\end{aligned}
\end{aligned}
$$

We can say that, $(\mathrm{n}+12)$ is divisible by 5 .
For, $r=4$,
$\mathrm{n}=5 \mathrm{q}+4$
$n+16=(5 q+4)+16$

$$
=5 q+20=5(q+4)
$$

$(\mathrm{n}+16)=5 \mathrm{~m}$ is divisible by 5 .
Therefore, $n,(n+4),(n+8),(n+12)$ and $(n+16)$ are divisible by 5 .

