Quadrlaterals

EXERCISE 8.1

Q.1. The angles of a quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.
Sol. Suppose the measures of four angles are $3 x, 5 x, 9 x$ and $13 x$.

$$
\begin{array}{rlrl}
\therefore & \therefore 3 x+5 x+9 x & +13 x=360^{\circ} \quad \text { [Angle sum property of a quadrilateral] } \\
\Rightarrow & & 30 x & =360^{\circ} \\
& \\
\Rightarrow & & \\
\Rightarrow & x & =\frac{360}{30}=12^{\circ} \\
& & & \\
& 3 x & =3 \times 12^{\circ}=36^{\circ} \\
5 x & =5 \times 12^{\circ}=60^{\circ} \\
9 x & =9 \times 12^{\circ}=108^{\circ} \\
13 x & =13 \times 12^{\circ}=156^{\circ}
\end{array}
$$

\therefore the angles of the quadrilateral are $36^{\circ}, 60^{\circ}, 108{ }^{\circ}$ and 156° Ans.
Q.2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
Sol. Given : ABCD is a parallelogram in which $\mathrm{AC}=\mathrm{BD}$.
To Prove : ABCD is a rectangle.
Proof : In $\triangle A B C$ and $\triangle A B D$
$\mathrm{AB}=\mathrm{AB}$
[Common]
$\mathrm{BC}=\mathrm{AD}$
[Opposite sides of a parallelogram]

$$
\begin{aligned}
\mathrm{AC} & =\mathrm{BD} \\
\therefore \triangle \mathrm{ABC} & \cong \triangle \mathrm{BAD} \\
\angle \mathrm{ABC} & =\angle \mathrm{BAD}
\end{aligned}
$$

[Given]

Since, ABCD is a parallelogram, thus, $\angle \mathrm{ABC}+\angle \mathrm{BAD}=180^{\circ}$
[Consecutive interior angles]
$\angle \mathrm{ABC}+\angle \mathrm{ABC}=180^{\circ}$
$\therefore \quad 2 \angle \mathrm{ABC}=180^{\circ} \quad$ [From (i) and (ii)]
$\Rightarrow \quad \angle \mathrm{ABC}=\angle \mathrm{BAD}=90^{\circ}$
This shows that ABCD is a parallelogram one of whose angle is 90°.
Hence, ABCD is a rectangle. Proved.
Q.3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
Sol. Given : A quadrilateral ABCD , in which diagonals AC and BD bisect each other at right angles.
To Prove : ABCD is a rhombus.

Proof : In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{BOC}$
$\mathrm{AO}=\mathrm{OC}$
[Diagonals AC and BD bisect each other]
$\angle \mathrm{AOB}=\angle \mathrm{COB} \quad\left[\right.$ Each $\left.=90^{\circ}\right]$
$\mathrm{BO}=\mathrm{BO} \quad$ [Common]
$\therefore \triangle \mathrm{AOB} \cong \triangle \mathrm{BOC} \quad[\mathrm{SAS}$ congruence]
$\mathrm{AB}=\mathrm{BC} \quad$...(i) $\quad[\mathrm{CPCT}]$
Since, ABCD is a quadrilateral in which

$A B=B C \quad[$ From (i)]
Hence, ABCD is a rhombus.
$[\because$ if the diagonals of a quadrilateral bisect each other, then it is a parallelogram and opposite sides of a parallelogram are equal] Proved.
Q.4. Show that the diagonals of a square are equal and bisect each other at right angles.
Sol. Given : ABCD is a square in which AC and BD are diagonals.
To Prove : $\mathrm{AC}=\mathrm{BD}$ and AC bisects BD at right angles, i.e. $\mathrm{AC} \perp \mathrm{BD}$. $\mathrm{AO}=\mathrm{OC}, \mathrm{OB}=\mathrm{OD}$
Proof : In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$,

$$
\mathrm{AB}=\mathrm{AB} \quad[\text { Common] }
$$

$$
\mathrm{BC}=\mathrm{AD} \quad[\text { Sides of a square }]
$$

$\angle \mathrm{ABC}=\angle \mathrm{BAD}=90^{\circ} \quad$ [Angles of a square]
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{BAD} \quad$ [SAS congruence]
$\Rightarrow \quad \mathrm{AC}=\mathrm{BD}$
[CPCT]
Now in $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,

$$
\begin{array}{rlrl}
\mathrm{AB} & =\mathrm{DC} & \text { [Sides of a square] } \\
\angle \mathrm{AOB} & =\angle \mathrm{COD} & \text { [Vertically opposite angles] } \\
\angle \mathrm{OAB} & =\angle \mathrm{OCD} & \text { [Alternate angles] } \\
\therefore & & {[\mathrm{AAS} \text { congruence] }} \\
& \angle \mathrm{AOB} & \cong \triangle \mathrm{COD} & {[\mathrm{OC}}
\end{array}
$$

Similarly by taking $\triangle \mathrm{AOD}$ and $\triangle \mathrm{BOC}$, we can show that $\mathrm{OB}=\mathrm{OD}$.
In $\triangle \mathrm{ABC}, \angle \mathrm{BAC}+\angle \mathrm{BCA}=90^{\circ} \quad\left[\because \angle \mathrm{B}=90^{\circ}\right]$
$\Rightarrow 2 \angle \mathrm{BAC}=90^{\circ} \quad[\angle \mathrm{BAC}=\angle \mathrm{BCA}$, as $\mathrm{BC}=\mathrm{AD}]$
$\Rightarrow \angle \mathrm{BCA}=45^{\circ}$ or $\angle \mathrm{BCO}=45^{\circ}$
Similarly $\angle \mathrm{CBO}=45^{\circ}$
In $\triangle \mathrm{BCO}$.
$\angle \mathrm{BCO}+\angle \mathrm{CBO}+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow \angle \mathrm{BOC}=90^{\circ}$
$\Rightarrow \mathrm{BO} \perp \mathrm{OC} \Rightarrow \mathrm{BO} \perp \mathrm{AC}$
Hence, $\mathrm{AC}=\mathrm{BD}, \mathrm{AC} \perp \mathrm{BD}, \mathrm{AO}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD} . \quad$ Proved.
Q.5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
Sol. Given : A quadrilateral ABCD, in which diagonals AC and BD are equal and bisect each other at right angles,
To Prove : ABCD is a square.

Proof : Since ABCD is a quadrilateral whose diagonals bisect each other, so it is a parallelogram. Also, its diagonals bisect each other at right angles, therefore, ABCD is a rhombus.
$\Rightarrow \quad \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA} \quad$ [Sides of a rhombus]
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$, we have
$A B=A B$
$\mathrm{BC}=\mathrm{AD}$
$\mathrm{AC}=\mathrm{BD}$
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
$\therefore \quad \angle \mathrm{ABC}=\angle \mathrm{BAD}$
But, $\angle \mathrm{ABC}+\angle \mathrm{BAD}=180^{\circ}$
$\angle \mathrm{ABC}=\angle \mathrm{BAD}=90^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
[Common]
[Sides of a rhombus]
[Given]
[SSS congruence]
[CPCT]
[Consecutive interior angles]
[Opposite angles of a || gm]
$\Rightarrow \mathrm{ABCD}$ is a rhombus whose angles are of 90° each.
Hence, ABCD is a square. Proved.
Q.6. Diagonal $A C$ of a parallelogram $A B C D$ bisects $\angle A$ (see Fig.). Show that
(i) it bisects $\angle C$ also,
(ii) $A B C D$ is a rhombus.

Given : A parallelogram ABCD, in which diagonal AC bisects $\angle \mathrm{A}$, i.e., $\angle \mathrm{DAC}=\angle \mathrm{BAC}$.

To Prove : (i) Diagonal AC bisects

$$
\angle \mathrm{C} \text { i.e., } \angle \mathrm{DCA}=\angle \mathrm{BCA}
$$

(ii) ABCD is a rhomhus.

Proof :

(i) $\quad \angle \mathrm{DAC}=\angle \mathrm{BCA}$
$\angle \mathrm{BAC}=\angle \mathrm{DCA}$
But, $\angle \mathrm{DAC}=\angle \mathrm{BAC}$
$\therefore \quad \angle \mathrm{BCA}=\angle \mathrm{DCA}$
Hence, AC bisects $\angle \mathrm{DCB}$
Or, AC bisects $\angle \mathrm{C}$ Proved.
(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$

$$
\begin{aligned}
& \mathrm{AC}=\mathrm{AC} \\
& \angle \mathrm{BAC}=\angle \mathrm{DAC} \\
& \text { and } \quad \angle \mathrm{BCA}=\angle \mathrm{DAC} \\
& \therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{ADC} \\
& \therefore \quad \mathrm{BC}=\mathrm{DC} \\
& \text { But } \mathrm{AB}=\mathrm{DC} \\
& \therefore \quad \mathrm{AB}=\mathrm{BC}=\mathrm{DC}=\mathrm{AD} \\
& \text { Hence, } \mathrm{ABCD} \text { is a rhombus Proved. } \\
& \text { [} \because \text { opposite angles are equal] } \\
& \text { Q.7. } A B C D \text { is a rhombus. Show that diagonal } A C \text { bisects } \angle A \text { as well as } \angle C \text { and } \\
& \text { diagonal } B D \text { bisects } \angle B \text { as well as } \angle D \text {. }
\end{aligned}
$$

Sol. Given : ABCD is a rhombus, i.e.,
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$.
To Prove : $\quad \angle \mathrm{DAC}=\angle \mathrm{BAC}$,

$$
\angle \mathrm{BCA}=\angle \mathrm{DCA}
$$

$$
\angle \mathrm{ADB}=\angle \mathrm{CDB}, \angle \mathrm{ABD}=\angle \mathrm{CBD}
$$

Proof : In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$, we have

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AD} & \text { [Sides of a rhombus] } \\
\mathrm{AC} & =\mathrm{AC} & {[\text { Common] }} \\
\mathrm{BC} & =\mathrm{CD} & \text { [Sides of a rhombus] } \\
\triangle \mathrm{ABC} & \cong \triangle \mathrm{ADC} & {[\text { [SSS congruence] }}
\end{aligned}
$$

$$
\text { So, } \quad \angle \mathrm{DAC}=\angle \mathrm{BAC}
$$

$$
\angle \mathrm{BCA}=\angle \mathrm{DCA}
$$

Similarly, $\angle \mathrm{ADB}=\angle \mathrm{CDB}$ and $\angle \mathrm{ABD}=\angle \mathrm{CBD}$.
Hence, diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$ and diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$. Proved.
Q.8. $A B C D$ is a rectangle in which diagonal $A C$ bisects $\angle A$ as well as $\angle C$.

Show that :
(i) $A B C D$ is a square (ii) diagonal $B D$ bisects $\angle B$ as well as $\angle D$.

Sol. Given : ABCD is a rectangle in which diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$.
To Prove : (i) $A B C D$ is a square.
(ii) Diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
Proof :
(i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$, we have $\angle \mathrm{BAC}=\angle \mathrm{DAC}$ $\angle \mathrm{BCA}=\angle \mathrm{DCA} \quad$ [Given]

$$
\mathrm{AC}=\mathrm{AC}
$$

$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{ADC} \quad$ [ASA congruence]
$\therefore \quad \mathrm{AB}=\mathrm{AD}$ and $\mathrm{CB}=\mathrm{CD} \quad[\mathrm{CPCT}]$
But, in a rectangle opposite sides are equal,
i.e., $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{BC}=\mathrm{AD}$
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Hence, ABCD is a square Proved.
(ii) In $\triangle A B D$ and $\triangle C D B$, we have

Hence, diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D} \quad$ Proved.
Q.9. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=B Q$ (see Fig.). Show that :
(i) $\triangle A P D \cong \triangle C Q B$
(ii) $A P=C Q$
(iii) $\triangle A Q B \cong \triangle C P D$
(iv) $A Q=C P$
(v) $A P C Q$ is a parallelogram

$$
\begin{aligned}
& A D=C D \\
& \mathrm{AB}=\mathrm{CD} \quad \mathrm{C} \quad \text { [Sides of a square] } \\
& \mathrm{BD}=\mathrm{BD} \quad \text { [Common] } \\
& \therefore \quad \triangle \mathrm{ABD} \cong \triangle \mathrm{CBD} \quad \text { [SSS congruence] } \\
& \text { So, } \angle \mathrm{ABD}=\angle \mathrm{CBD} \quad[\mathrm{ADB}=\angle \mathrm{CDB} \quad[\mathrm{CPCT}]
\end{aligned}
$$

Sol. Given : ABCD is a parallelogram and P and Q are points on diagonal BD such that $\mathrm{DP}=\mathrm{BQ}$.
To Prove : (i) $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$

(iv) $\mathrm{AQ}=\mathrm{CP}$
(v) APCQ is a parallelogram

Proof : (i) In $\triangle \mathrm{APD}$ and $\triangle \mathrm{CQB}$, we have

$$
\begin{array}{rlrl}
& \mathrm{AD} & =\mathrm{BC} & \\
& \mathrm{DP} & =\mathrm{BQ} & \text { [Opposite sides of a } \| \mathrm{gm}] \\
& \angle \mathrm{ADP} & =\angle \mathrm{CBQ} & \\
& \text { [Alternate angles] } \\
\therefore \triangle \mathrm{APD} & \cong \Delta \mathrm{CQB} & & {[\text { SAS congruence }]} \\
\text { (ii) } \therefore \mathrm{AP}=\mathrm{CQ} & & {[\mathrm{CPCT}]}
\end{array}
$$

(iii) In $\triangle \mathrm{AQB}$ and $\triangle \mathrm{CPD}$, we have

$$
\mathrm{AB}=\mathrm{CD} \quad[\text { Opposite sides of a } \| \mathrm{gm}]
$$

$$
\mathrm{DP}=\mathrm{BQ} \quad[\text { Given }]
$$

$$
\angle \mathrm{ABQ}=\angle \mathrm{CDP} \quad[\text { Alternate angles }]
$$

$\therefore \Delta \mathrm{AQB} \cong \Delta \mathrm{CPD} \quad$ [SAS congruence]
(iv) $\therefore \mathrm{AQ}=\mathrm{CP} \quad[\mathrm{CPCT}]$
(v) Since in APCQ, opposite sides are equal, therefore it is a parallelogram. Proved.
Q.10. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal BD (see Fig.). Show that
(i) $\triangle A P B \cong \triangle C Q D$

(ii) $A P=C Q$

Sol. Given : ABCD is a parallelogram and AP and $C Q$ are perpendiculars from vertices A and C on BD .
To Prove : (i) $\triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$
(ii) $\mathrm{AP}=\mathrm{CQ}$

Proof : (i) In $\triangle A P B$ and $\triangle C Q D$, we have

$$
\begin{array}{rlrl}
\angle \mathrm{ABP} & =\angle \mathrm{CDQ} & \text { [Alternate angles] } \\
\mathrm{AB} & =\mathrm{CD}[\mathrm{Opposite} \text { sides of a parallelogram] } \\
\angle \mathrm{APB} & =\angle \mathrm{CQD} & {\left[\text { Each }=90^{\circ}\right]} \\
\therefore \Delta \mathrm{APB} & \cong \Delta \mathrm{CQD} & \text { [ASA congruence] } \\
\text { (ii) } \mathrm{So}, \quad \mathrm{AP} & =\mathrm{CQ} & & {[\mathrm{CPCT}] \text { Proved. }}
\end{array}
$$

Q.11. In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C$
$=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig.). Show that
(i) quadrilateral $A B E D$ is a parallelogram

(ii) quadrilataeral BEFC is a parallelogram
(iii) $A D \| C F$ and $A D=C F$
(iv) quadrilateral ACFD is a parallelogram
(v) $A C=D F$
(vi) $\triangle A B C \equiv \triangle D E F$

Sol. Given : In DABC and DDEF, $\mathrm{AB}=\mathrm{DE}$, $\mathrm{AB}|\mid \mathrm{DE}, \mathrm{BC}=\mathrm{EF}$ and BC$| \mid \mathrm{EF}$. Vertices A, B and C are joined to vertices D, E and F .
To Prove : (i) ABED is a parallelogram

(ii) BEFC is a parallelogram
(iii) $\mathrm{AD} \| \mathrm{CF}$ and $\mathrm{AD}=\mathrm{CF}$
(iv) ACFD is a parallelogram
(v) $\mathrm{AC}=\mathrm{DF}$
(vi) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

Proof : (i) In quadrilateral $A B E D$, we have
$\mathrm{AB}=\mathrm{DE}$ and $\mathrm{AB} \| \mathrm{DE}$. [Given]
$\Rightarrow \mathrm{ABED}$ is a parallelogram.
[One pair of opposite sides is parallel and equal]
(ii) In quadrilateral BEFC , we have
$\mathrm{BC}=\mathrm{EF}$ and $\mathrm{BC} \| \mathrm{EF}$
[Given]
\Rightarrow BEFC is a parallelogram.
[One pair of opposite sides is parallel and equal]
(iii) $\mathrm{BE}=\mathrm{CF}$ and $\mathrm{BE}|\mid \mathrm{BECF}$ [BEFC is parallelogram]
$\mathrm{AD}=\mathrm{BE}$ and $\mathrm{AD} \| \mathrm{BE} \quad$ [ABED is a parallelogram]
$\Rightarrow \mathrm{AD}=\mathrm{CF}$ and $\mathrm{AD}|\mid \mathrm{CF}$
(iv) ACFD is a parallelogram.
[One pair of opposite sides is parallel and equal]
(v) $\mathrm{AC}=\mathrm{DF} \quad$ [Opposite sides of parallelogram ACFD]
(vi) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have

AB	$=\mathrm{DE}$	[Given]
BC	$=\mathrm{EF}$	[Given]
AC	$=\mathrm{DF}$	[Proved above]
$\therefore \triangle \mathrm{ABC}$	$\cong \Delta \mathrm{DEF}$	$[$ [SSS axiom] Proved.

Proved.
Q.12. $A B C D$ is a trapezium in which $A B$
|| $C D$ and $A D=B C$ (see Fig.).
Show that
(i) $\angle A=\angle B$
(ii) $\angle C=\angle D$
(iii) $\triangle A B C \cong \triangle B A D$

(iv) diagonal $A C=$ diagonal $B D$

Sol. Given : In trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$.
To Prove : (i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(iv) diagonal $\mathrm{AC}=$ diagonal BD

Constructions : Join AC and BD. Extend AB and draw a line through C parallel to DA meeting AB produced at E.

(i) $\underset{ }{\text { Since }} \quad \mathrm{AB} \| \mathrm{DC}$
and $\quad \mathrm{AD} \| \mathrm{CE}$
$\Rightarrow \mathrm{ADCE}$ is a parallelogram
[Construction]
[Opposite pairs of sides are parallel

$$
\begin{equation*}
\angle \mathrm{A}+\angle \mathrm{E}=180^{\circ} \tag{iii}
\end{equation*}
$$

[Consecutive interior angles]
$\angle \mathrm{B}+\angle \mathrm{CBE}=180^{\circ} \quad \ldots$ (iv) \quad [Linear pair]
$\mathrm{AD}=\mathrm{CE} \quad \ldots(\mathrm{v})$ [Opposite sides of a \|gm]
$\mathrm{AD}=\mathrm{BC}$
[Given]
$\Rightarrow \quad \mathrm{BC}=\mathrm{CE}$
$\Rightarrow \quad \angle \mathrm{E}=\angle \mathrm{CBE}$
...(vii) [Angles opposite to equal sides]
$\therefore \angle \mathrm{B}+\angle \mathrm{E}=180^{\circ} \quad$...(viii) [From (iv) and (vii)
Now from (iii) and (viii) we have

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{E}=\angle \mathrm{B}+\angle \mathrm{E} \\
& \Rightarrow \begin{aligned}
\angle \mathrm{A} & =\angle \mathrm{B} \quad \text { Proved. } \\
\angle \mathrm{A}+\angle \mathrm{D} & =180^{\circ} \\
\angle \mathrm{B}+\angle \mathrm{C} & =180^{\circ} \quad\left[\begin{array}{l}
\circ \\
\Rightarrow \angle \mathrm{A}+\angle \mathrm{D}
\end{array}\right\} \angle \mathrm{B}+\angle \mathrm{C} \\
\Rightarrow \quad \angle \mathrm{D} & =\angle \mathrm{C} \\
\mathrm{Or} \quad \angle \mathrm{C} & =\angle \mathrm{D} \text { Proved. }
\end{aligned} \quad[\because \angle \mathrm{A}=\angle \mathrm{B}] \\
& \Rightarrow
\end{aligned}
$$

(iii) In $\triangle A B C$ and $\triangle B A D$, we have
$\mathrm{AD}=\mathrm{BC}$ [Given]
$\angle \mathrm{A}=\angle \mathrm{B} \quad$ [Proved]
$\mathrm{AB}=\mathrm{CD} \quad$ [Common]
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(iv) diagonal $\mathrm{AC}=$ diagonal BD
[ASA congruence] [CPCT] Proved.

EXERCISE 8.2

Q.1. $A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. (see Fig.). AC is a diagonal. Show that:

(i) $S R \| A C$ and $S R=\frac{1}{2} A C$
(ii) $P Q=S R$
(iii) $P Q R S$ is a parallelogram.

Given : ABCD is a quadrilateral in which P, Q, R and S are mid-points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA . AC is a diagonal.
To Prove : (i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
(ii) $\mathrm{PQ}=\mathrm{SR}$

(iii) PQRS is a parallelogram

Proof : (i) In $\triangle A B C, P$ is the mid-point of $A B$ and Q is the mid-point of $B C$.
$\therefore \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
[Mid-point theorem]
In $\triangle \mathrm{ADC}, \mathrm{R}$ is the mid-point of CD and S is the mid-point of AD
$\therefore \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
[Mid-point theorem]
(ii) From (1) and (2), we get
$\mathrm{PQ}|\mid \mathrm{SR}$ and $\mathrm{PQ}=\mathrm{SR}$
(iii) Now in quadrilateral PQRS, its one pair of opposite sides PQ and SR is equal and parallel.
\therefore PQRS is a parallelogram. Proved.
Q.2. $A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B$, $B C, C D$ and DA respectively. Show that the quadrilateral $P Q R S$ is a rectangle.
Sol. Given : ABCD is a rhombus in which P, Q, R and S are mid points of sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively :
To Prove : PQRS is a rectangle.
Construction : Join AC, PR and SQ.
Proof : In $\triangle \mathrm{ABC}$
P is mid point of AB [Given]
Q is mid point of BC [Given]

$\Rightarrow \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC} \ldots$ (i) \quad [Mid point theorem]
Similarly, in $\triangle \mathrm{DAC}$,
SR \| AC and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
From (i) and (ii), we have $\mathrm{PQ}|\mid \mathrm{SR}$ and $\mathrm{PQ}=\mathrm{SR}$
$\Rightarrow P Q R S$ is a parallelogram
[One pair of opposite sides is parallel and equal]
Since ABQS is a parallelogram
$\Rightarrow \mathrm{AB}=\mathrm{SQ} \quad$ [Opposite sides of a || gm]
Similarly, since PBCR is a parallelogram.
$\Rightarrow \mathrm{BC}=\mathrm{PR}$
Thus, $\mathrm{SQ}=\mathrm{PR} \quad[\mathrm{AB}=\mathrm{BC}]$
Since $S Q$ and $P R$ are diagonals of parallelogram PQRS, which are equal. $\Rightarrow \mathrm{PQRS}$ is a rectangle. Proved.
Q.3. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C$, $C D$ and $D A$ respectively. Show that the quadrilataral $P Q R S$ is a rhombus.
Sol. Given : A rectangle ABCD in which P, Q, R, S are the mid-points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively, $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP are joined.
To Prove : PQRS is a rhombus.
Construction : Join AC

Proof: In $\triangle \mathrm{ABC}, \mathrm{P}$ and Q are the mid-points of the sides AB and BC .
$\therefore \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC} \quad$...(i) [Mid point theorem]
Similarly, in $\triangle \mathrm{ADC}$,
SR \| AC and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
From (i) and (ii), we get
$\mathrm{PQ} \| \mathrm{SR}$ and $\mathrm{PQ}=\mathrm{SR}$
Now in quadrilateral PQRS, its one pair of opposite sides PQ and SR is parallel and equal
\therefore PQRS is a parallelogram.
Now
$A D=B C$
[From (iii)]
Now $\mathrm{AD}=\mathrm{BC}$
...(iv)
[Opposite sides of a rectangle ABCD]
$\therefore \quad \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC}$
$\Rightarrow \quad \mathrm{AS}=\mathrm{BQ}$
In $\triangle \mathrm{APS}$ and $\triangle \mathrm{BPQ}$

$$
\begin{align*}
\mathrm{AP} & =\mathrm{BP} \\
\mathrm{AS} & =\mathrm{BQ} \\
\angle \mathrm{PAS} & =\angle \mathrm{PBQ} \\
\triangle \mathrm{APS} & \cong \Delta \mathrm{BPQ} \\
\therefore \quad \mathrm{PS} & =\mathrm{PQ} \tag{v}
\end{align*}
$$

From (iii) and (v), we have
PQRS is a rhombus Proved.
Q.4. $A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D$. A line is drawn through E parallel to $A B$ intersecting $B C$ at F (see Fig.). Show that F is the mid-point of $B C$.

Sol. Given : A trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}, \mathrm{E}$ is the mid-point of AD and EF $\|$ AB.
To Prove : F is the mid-point of BC.
Proof: AB || DC and EF || AB
$[\because P$ is the mid-point of $A B]$
[Proved above]
$\left[\right.$ Each $\left.=90^{\circ}\right]$
[SAS axiom]

$\Rightarrow \mathrm{AB}, \mathrm{EF}$ and DC are parallel.
Intercepts made by parallel lines AB, EF and DC on transversal AD are equal.
\therefore Intercepts made by those parallel lines on transversal BC are also equal.
i.e., $B F=F C$
$\Rightarrow F$ is the mid-point of BC.
Q.5. In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively (see Fig.). Show that the line segments AF and EC trisect the diagonal BD.

Sol. Given : A parallelogram ABCD , in which E and F are mid-points of sides $A B$ and $D C$ respectively.
To Prove : $\mathrm{DP}=\mathrm{PQ}=\mathrm{QB}$

Proof : Since E and F are mid-points of $A B$ and DC respectively.
$\Rightarrow \mathrm{AE}=\frac{1}{2} \mathrm{AB}$ and $\mathrm{CF}=\frac{1}{2} \mathrm{DC}$
But, $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{AB} \| \mathrm{DC}$
[Opposite sides of a parallelogram]
$\therefore \mathrm{AE}=\mathrm{CF}$ and $\mathrm{AE} \| \mathrm{CF}$.
$\Rightarrow \mathrm{AECF}$ is a parallelogram.
[One pair of opposite sides is parallel and equal]
In $\triangle \mathrm{BAP}$,
E is the mid-point of AB
EQ \| AP
$\Rightarrow Q$ is mid-point of $P B$
[Converse of mid-point theorem]
$\Rightarrow \quad \mathrm{PQ}=\mathrm{QB}$
Similarly, in $\triangle \mathrm{DQC}$,
P is the mid-point of DQ

$$
\begin{equation*}
\mathrm{DP}=\mathrm{PQ} \tag{iv}
\end{equation*}
$$

From (iii) and (iv), we have
$\mathrm{DP}=\mathrm{PQ}=\mathrm{QB}$ or line segments AF and EC trisect the diagonal BD. Proved.
Q.6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
Sol. Given : ABCD is a quadrilateral in which EG and FH are the line segments joining the mid-points of opposite sides.
To Prove : EG and FH bisect each other.
Construction : Join EF, FG, GH, HE and AC.

Proof : In $\triangle A B C, E$ and F are mid-points of $A B$ and $B C$ respectively.
$\therefore \mathrm{EF}=\frac{1}{2} \mathrm{AC}$ and $\mathrm{EF} \| \mathrm{AC}$
In $\triangle \mathrm{ADC}, \mathrm{H}$ and G are mid-points of AD and CD respectively.
$\therefore \mathrm{HG}=\frac{1}{2} \mathrm{AC}$ and $\mathrm{HG} \| \mathrm{AC}$
From (i) and (ii), we get
$\mathrm{EF}=\mathrm{HG}$ and $\mathrm{EF} \| \mathrm{HG}$
\therefore EFGH is a parallelogram.
[\because a quadrilateral is a parallelogram if its one pair of opposite sides is equal and parallel]
Now, EG and FH are diagonals of the parallelogram EFGH.
\therefore EG and FH bisect each other.
[Diagonal of a parallelogram bisect each other] Proved.
Q.7. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to BC intersects $A C$ at D. Show that
(i) D is the mid-point of $A C$.
(ii) $M D \perp A C$
(iii) $C M=M A=\frac{1}{2} A B$

Sol. Given : A triangle ABC , in which $\angle \mathrm{C}=90^{\circ}$ and M is the mid-point of AB and BC \| DM.
To Prove : (i) D is the mid-point of AC [Given]
(ii) $\mathrm{DM} \perp \mathrm{BC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$

Construction : Join CM.
Proof : (i) In $\triangle \mathrm{ABC}$,
M is the mid-point of $A B$.
[Given]
BC || DM
[Given]
D is the mid-point of AC
[Converse of mid-point theorem] Proved.
(ii)
$\angle \mathrm{ADM}=\angle \mathrm{ACB} \quad[\because$ Coresponding angles $]$
But $\angle \mathrm{ACB}=90^{\circ}$
[Given]
$\therefore \quad \angle \mathrm{ADM}=90^{\circ}$
But $\angle \mathrm{ADM}+\angle \mathrm{CDM}=180^{\circ} \quad$ [Linear pair]
$\therefore \quad \angle \mathrm{CDM}=90^{\circ}$
Hence, MD $\perp \mathrm{AC}$ Proved.
(iii) $\mathrm{AD}=\mathrm{DC}$
$[\because \mathrm{D}$ is the mid-point of AC$]$
Now, in $\triangle \mathrm{ADM}$ and $\triangle \mathrm{CMD}$, we have

$$
\begin{array}{rlr}
\angle \mathrm{ADM} & =\angle \mathrm{CDM} & {\left[\text { Each }=90^{\circ}\right]} \\
\mathrm{AD} & =\mathrm{DC} & {[\text { From (1)] }} \\
\mathrm{DM} & =\mathrm{DM} & {[\text { Common] }} \\
\therefore \quad \triangle \mathrm{ADM} & \cong \Delta \mathrm{CMD} & {[\text { SAS congruence }]} \\
\Rightarrow \quad \mathrm{CM} & =\mathrm{MA} & \ldots(2) \quad[\mathrm{CPCT}]
\end{array}
$$

Since M is mid-point of $A B$,

$$
\begin{equation*}
\therefore \quad \mathrm{MA}=\frac{1}{2} \mathrm{AB} \tag{3}
\end{equation*}
$$

Hence, $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$ Proved. [From (2) and (3)]

