Chapter 8

Quadrilateral

Exercise No. 8.1

Multiple Choice Questions:

Write the correct answer in each of the following:

1. Three angles of a quadrilateral are $75^{\circ}, 90^{\circ}$ and 75°. The fourth angle is
(A) 90°
(B) 95°
(C) 105°
(D) $\mathbf{1 2 0}^{\mathbf{o}}$

Solution:
Fourth angle of the quadrilateral $=360^{\circ}-\left(75^{\circ}+90^{\circ}+75^{\circ}\right)$

$$
\begin{aligned}
& =360^{\circ}-240^{\circ} \\
& =120^{\circ}
\end{aligned}
$$

Hence, the correct option is (D).
2. A diagonal of a rectangle is inclined to one side of the rectangle at $\mathbf{2 5}^{\circ}$. The acute angle between the diagonals is
(A) 55°
(B) 50°
(C) 40°
(D) 25°

Solution:

Let $A B C D$ is a rectangle in which diagonal $A C$ is inclined to one side $A B$ of the rectangle at an angle of 25°.

Now, $\mathrm{AC}=\mathrm{BD}$ [Diagonal of a rectangle are equal]
$\frac{1}{2} A C=\frac{1}{2} B D$
$\mathrm{OA}=\mathrm{OD}$
In triangle AOB ,
$\mathrm{OA}=\mathrm{OD}$

Now, $\angle O B A=\angle O A B=25^{\circ}$
And, $\angle A O D=180^{\circ}-130^{\circ}=50^{\circ}$
Hence, the acute angle between the diagonal is 50°.
Therefore, the correct option is (B).
3. ABCD is a rhombus such that $\angle \mathrm{ACB}=40^{\circ}$. Then $\angle \mathrm{ADB}$ is
(A) 40°
(B) 45°
(C) 50°
(D) 60°

Solution:

Given:
ABCD is a rhombus such that $\angle \mathrm{ACB}=40^{\circ}$.

The diagonal of a rhombus bisect each other at right angles.
In right triangle BOC ,

$$
\begin{aligned}
\angle O B C & =180^{\circ}-(\angle B O C+\angle B C O) \\
& =180^{\circ}-\left(90^{\circ}+40^{\circ}\right) \\
& =50^{\circ}
\end{aligned}
$$

So, $\angle D B C=\angle O B C=50^{\circ}$
Now, $\angle A D B=\angle D B C \quad$ [Alt. int. $\angle s$]
So, $\angle A D B=50^{\circ} \quad\left[\angle D B C=50^{\circ}\right]$
Hence, the correct option is (C).
4. The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if
(A) PQRS is a rectangle
(B) PQRS is a parallelogram
(C) Diagonals of PQRS are perpendicular
(D) Diagonals of PQRS are equal.

Solution:

If diagonals of PQRS are perpendicular.
Hence, the correct option is (C).
5. The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rhombus, if
(A) PQRS is a rhombus
(B) PQRS is a parallelogram
(C) Diagonals of PQRS are perpendicular
(D) Diagonals of PQRS are equal.

Solution:

If diagonal of PQRS are equal.
Hence, the correct option is (D).
6. If angles A, B, C and D of the quadrilateral $A B C D$, taken in order, are in the ratio 3:7:6:4, then ABCD is a
(A) rhombus
(B) Parallelogram
(C) Trapezium
(D) Kite

Solution:

Given in the question, ratio of angles of quadrilateral ABCD is $3: 7: 6: 4$.
Let the angles of quadrilateral ABCD be $3 \mathrm{x}, 7 \mathrm{x}, 6 \mathrm{x}$ and 4 x respectively. So,
$3 x+7 x+6 x+4 x=360^{\circ} \quad$ [Sum of the all angles of a quadrilateral is 360°.
$20 x=360^{\circ}$

$$
x=\frac{360^{\circ}}{20}
$$

$$
x=18^{\circ}
$$

So, angles of the quadrilateral are:

$$
\begin{aligned}
& \angle A=3 \times 18^{\circ}=54^{\circ} \\
& \angle B=7 \times 18^{\circ}=126^{\circ} \\
& \angle C=6 \times 18^{\circ}=108^{\circ} \\
& \angle D=4 \times 18^{\circ}=72^{\circ}
\end{aligned}
$$

See the figure, $\angle B C E=180^{\circ}-\angle B C D$
[Linear
pair
axiom]
$\angle B C E=180^{\circ}-108^{\circ}=72^{\circ}$
$\angle B C E=\angle A D C=72^{\circ}$

Now, $\mathrm{BC} \| \mathrm{AD}$ [The corresponding angles are equal.]
The sum of co interior angles is:
$\angle A+\angle B=126^{\circ}+54^{\circ}=180^{\circ}$
And $\angle C+\angle D=108^{\circ}+72^{\circ}=180^{\circ}$
Hence, ABCD is a trapezium.
7. If bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ of a quadrilateral ABCD intersect each other at P, of $\angle \angle \mathrm{B}$ and $\angle \mathrm{C}$ at Q , of $\angle \mathrm{C}$ and $\angle \mathrm{D}$ at R and of $\angle \mathrm{D}$ and $\angle \mathrm{A}$ at S , then PQRS is a
(A) rectangle
(B) rhombus
(C) parallelogram
(D) quadrilateral whose opposite angles are supplementary

Solution:

$P Q R S$ is a quadrilateral whose opposite angles are supplementary.

Hence, the correct option is (D).
8. If APB and CQD are two parallel lines, then the bisectors of the angles APQ, BPQ, CQP and PQD form
(A) a square
(B) a rhombus
(C) a rectangle

(D) any other parallelogram

Solution:
PNQM is a rectangle.

Hence, the correct option is (C).
9. The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is
(A) a rhombus
(B) a rectangle
(C) a square
(D) any parallelogram

Solution:
The figure will be a rectangle.
Hence, the correct option is (B).
10. D and E are the mid-points of the sides $A B$ and $A C$ of $\triangle A B C$ and O is any point on side $B C$. O is joined to A. If P and Q are the mid-points of $O B$ and $O C$ respectively, then $D E Q P$ is
(A) a square
(B) a rectangle
(C) a rhombus
(D) a parallelogram

Solution:
According to the question, the line segment joining the mid-points of any two sides of a triangle of a triangle is parallel to the third side and is half of it. So,

Now,
$D E=\frac{1}{2} B C$ and $\mathrm{DE}|\mid \mathrm{BC}$
Similarly, $D P=\frac{1}{2} A O$ and $\mathrm{DP} \| \mathrm{AO}$
And, $E Q=\frac{1}{2} A O$ and $\mathrm{EQ} \| \mathrm{AO}$
$\mathrm{DP}=\mathrm{EQ}\left[\right.$ Each $\left.=\frac{1}{2} A O\right]$
And $\mathrm{DP} \| \mathrm{EQ}[$ Since, $\mathrm{DP} \| \mathrm{AO}$ and $\mathrm{EQ} \| \mathrm{AO}]$
Now, DEQP is quadrilateral in which one pair of its opposite sides is equal and parallel.
Hence, quadrilateral DEQP is a parallelogram. The correct option is (D).
11. The figure formed by joining the mid-points of the sides of a quadrilateral ABCD , taken in order, is a square only if,
(A) ABCD is a rhombus
(B) diagonals of $A B C D$ are equal
(C) diagonals of ABCD are equal and perpendicular
(D) diagonals of $A B C D$ are perpendicular.

Solution:

If diagonals of ABCD are equal and perpendicular.
Hence, the correct option is (C).
12. The diagonals $A C$ and $B D$ of a parallelogram $A B C D$ intersect each other at the point O. If $\angle \mathrm{DAC}=32^{\circ}$ and $\angle \mathrm{AOB}=70^{\circ}$, then $\angle \mathrm{DBC}$ is equal to
(A) 24°
(B) 86°
(C) 38°
(D) 32°

Solution:
According to the question,

AD is parallel to BC and AC cuts it. So,
$\angle D A C=\angle A C B$ [Alt. int. $\angle s$]
$\angle D A C=32^{\circ} \quad$ [Given]
So, $\angle A C B=32^{\circ}$
Produce Co to A in triangle AOB. So,
Ext. $\angle B O A=\angle O C B+\angle O B C$ [By exterior angle theorem]
$70^{\circ}=32^{\circ}+\angle O B C$
$\angle O B C=70^{\circ}-32^{\circ}=38^{\circ}$
Hence, $\angle D B C=38^{\circ}$. The correct option is (C).
13. Which of the following is not true for a parallelogram?
(A) opposite sides are equal
(B) opposite angles are equal
(C) opposite angles are bisected by the diagonals
(D) diagonals bisect each other.

Solution:

Opposite angles are bisected by the diagonals. That not true for the parallelogram. Hence, the correct option is (C).
14. D and E are the mid-points of the sides $A B$ and $A C$ respectively of $\triangle A B C$. $D E$ is produced to F. To prove that CF is equal and parallel to $D A$, we need an additional information which is
(A) $\angle \angle \mathrm{DAE}=\angle \mathrm{EFC}$
(B) $\mathbf{A E}=\mathbf{E F}$
(C) $\mathbf{D E}=\mathbf{E F}$
(D) $\angle \mathrm{ADE}=\angle \mathrm{ECF}$

Solution:

According to the question, we need $\mathrm{DE}=\mathrm{EF}$

Hence, the correct option is (C).

Exercise No. 8.2

Short Answer Questions with Reasoning:

1. Diagonals $A C$ and $B D$ of a parallelogram $A B C D$ intersect each other at O. If $O A=3 \mathrm{~cm}$ and $O D=2 \mathrm{~cm}$, determine the lengths of $A C$ and $B D$.

Solution:

As we know that the diagonal of a parallelogram bisect each other. So,
$\mathrm{AC}=2 \times \mathrm{OA}=2 \times 3 \mathrm{~cm}=6 \mathrm{~cm}$
And, $\mathrm{BD}=2 \mathrm{OD}=2 \times 2 \mathrm{~cm}=4 \mathrm{~cm}$
Therefore, lengths of AC and BD are 6 cm and 4 cm respectively.
2. Diagonals of a parallelogram are perpendicular to each other. Is this statement true? Give reason for your answer.

Solution:

The given statement is not true because diagonal of a parallelogram bisect each other.
3. Can the angles $110^{\circ}, 80^{\circ}, 70^{\circ}$ and 95° be the angles of a quadrilateral? Why or why not?

Solution:

We know that, sum of the angles of a quadrilateral is always 360°.
Sum of these angles $=110^{\circ}+80^{\circ}+70^{\circ}+95^{\circ}=355^{\circ}$ that is not equal to 360°.
Hence, $110^{\circ}, 80^{\circ}, 70^{\circ}$ and 95° can't be the angle of a quadrilateral.
4. In quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$. What special name can be given to this quadrilateral?

Solution:

Given:

In quadrilateral $\mathrm{ABCD}, \angle A+\angle D=180^{\circ}$.
We know that the sum of the two consecutive angle is 180°. So, pair of opposite side AB and CD are parallel.
Since, the quadrilateral ABCD is trapezium.
Hence, special name can be given to this quadrilateral is trapezium.

5. All the angles of a quadrilateral are equal. What special name is given to this quadrilateral?

Solution:

Given:

All the angles of a quadrilateral are equal.
We know that, the sum of angles of a quadrilateral is 360°. Since, each angle is $\frac{360^{\circ}}{4}=90^{\circ}$.
Hence, special name is given to this quadrilateral is rectangle.
6. Diagonals of a rectangle are equal and perpendicular. Is this statement true? Give reason for your answer.

Solution:

We know that diagonal of a rectangle need not to be perpendicular.
Hence, the given statement is false.
7. Can all the four angles of a quadrilateral be obtuse angles? Give reason for your answer.

Solution:

We know that sum of four angles of a quadrilateral is always equal to 360°.
Now, if all the four angles of a quadrilateral be obtuse angles then sum of four angle will be more than 360°.
Hence, the given statement is false.
8. In $\triangle \mathrm{ABC}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=7 \mathrm{~cm}$. If D and E are respectively the mid-points of $A B$ and $B C$, determine the length of $D E$.

Solution:

Given:

In $\triangle \mathrm{ABC}$,
$\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=7 \mathrm{~cm}$
According to the question, D and E are respectively the mid-points of AB and BC . So, using mid-point theorem,

$$
\begin{aligned}
D E & =\frac{1}{2} A C \\
& =\frac{1}{2} \times 7 \mathrm{~cm} \\
& =3.5 \mathrm{~cm}
\end{aligned}
$$

9. In Fig., it is given that BDEF and FDCE are parallelograms. Can you say that $\mathrm{BD}=\mathrm{CD}$? Why or why not?

Solution:

BDEF is a parallelogram. [Given]
So, $\mathrm{BD}=\mathrm{EF} \quad \ldots$ (I) [Opposite side of a parallelogram]
FDCE is a parallelogram. [Given]
So, CD = EF
Now, from equation (I) and (II), get:
$B D=C D$
10. In Fig., ABCD and AEFG are two parallelograms. If $\angle \mathrm{C}=55^{\circ}$, determine $\angle \mathrm{F}$.

Solution:
We know that opposite angle of parallelogram are equal.
ABCD is a parallelogram. So,
$\angle A=\angle C$
Now, $\angle C=55^{\circ} \quad$ [Given]
In parallelogram AEFG,
$\angle F=\angle A=55^{\circ}$
Hence, $\angle F=55^{\circ}$.

11. Can all the angles of a quadrilateral be acute angles? Give reason for your answer.

Solution:

We know that an acute angle is less than 90° and the sum of angles of quadrilateral is always 360°.
Hence, all the angle of a quadrilateral can't be acute angle because sum of four angles of a quadrilateral will be less than 360°.
12. Can all the angles of a quadrilateral be right angles? Give reason for your answer.

Solution:

We know that sum of angles of quadrilateral is always 360°. Since, all the angles of a quadrilateral can be right angle, which is true because $90^{\circ} \times 4=360^{\circ}$.
13. Diagonals of a quadrilateral ABCD bisect each other. If $\angle \mathrm{A}=35^{\circ}$, determine $\angle B$.

Solution:

Given:
Diagonals of a quadrilateral ABCD bisect each other.
So, ABCD is a parallelogram.
Now, $\angle A+\angle B=180^{\circ}$ [Adjacent angles of a parallelogram are supplementary]
Since,

$$
\begin{aligned}
35^{\circ}+\angle B & =180^{\circ} \\
\angle B & =180^{\circ}-35^{\circ} \\
\angle B & =145^{\circ}
\end{aligned}
$$

14. Opposite angles of a quadrilateral ABCD are equal. If $\mathrm{AB}=4 \mathrm{~cm}$, determine CD.

Solution:

Given:
Opposite angles of a quadrilateral ABCD are equal.
So, that is a parallelogram.
Now, ABCD is a parallelogram.
So, $\mathrm{AB}=\mathrm{CD}$. [Opposite of a parallelogram are equal]
$\mathrm{AB}=4 \mathrm{~cm}$ [Given]
Therefore, $\mathrm{CD}=4 \mathrm{~cm}$.

Exercise No. 8.3

Short Answer Questions:

1. One angle of a quadrilateral is of $\mathbf{1 0 8}^{\circ}$ and the remaining three angles are equal. Find each of the three equal angles.

Solution:

We know that the sum of all the angles in a quadrilateral is 360°.
According to the question, the remaining three angles are equal. So, let it is x .
Now,

$$
\begin{aligned}
108^{\circ}+x+x+x & =360^{\circ} \\
3 x & =360^{\circ}-108^{\circ} \\
3 x & =252^{\circ} \\
x & =84^{\circ}
\end{aligned}
$$

Hence, each of the three equal angles is 84°.

2. $\mathbf{A B C D}$ is a trapezium in which $\mathbf{A B} \| \mathbf{D C}$ and $\angle A=\angle B=45^{\circ}$. Find angles \mathbf{C} and D of the trapezium.

Solution:
Given:
ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and $\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$.

Now, $\mathrm{AB} \| \mathrm{DC}$ and AD is transversal.
So, $\angle A+\angle D=180^{\circ}$ [sum of interior angles on the side of the transversal is 180°] $45^{\circ}+\angle D=180^{\circ}$
$\angle D=180^{\circ}-45^{\circ}$
$\angle D=135^{\circ}$
Similarly, $\angle B+\angle C=180^{\circ}$
$45^{\circ}+\angle C=180^{\circ}$
$\angle C=180^{\circ}-45^{\circ}$
$\angle C=135^{\circ}$
Therefore, $\angle A=\angle B=45^{\circ}$ and $\angle C=\angle D=135^{\circ}$.
3. The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°. Find the angles of the parallelogram.

Solution:

In quadrilateral DPBQ:

$$
\begin{aligned}
\angle 1+\angle 2+\angle B+\angle 3 & =360^{\circ} \quad \text { [Angle sum property of quadrilateral] } \\
60^{\circ}+90^{\circ}+\angle B+90^{\circ} & =360^{\circ} \\
\angle B+240^{\circ} & =360^{\circ} \\
\angle B & =360^{\circ}-240^{\circ} \\
\angle B & =120^{\circ}
\end{aligned}
$$

Since, $\angle A D C=\angle B=120^{\circ} \quad$ [Opposite angles of a parallelogram are equal]
$\angle A+\angle B=180^{\circ} \quad$ [Sum of consecutive interior angle is 180°]
$\angle A+120^{\circ}=180^{\circ}$
$\angle A=180^{\circ}-120^{\circ}$
$\angle A=60^{\circ}$
So, $\angle C=\angle A=60^{\circ}$ [Opposite angle of a parallelogram are equal]

4. $A B C D$ is a rhombus in which altitude from D to side $A B$ bisects $A B$. Find the angles of the rhombus.

Solution:

See the below figure, in triangle APD and triangle BPD,

$\mathrm{AP}=\mathrm{BP} \quad$ [Given]
$\angle 1=\angle 2 \quad$ [Each equal to 90°]
$\mathrm{PD}=\mathrm{PD} \quad$ [Common side]

So, by SAS criterion of congruence,

$$
\begin{aligned}
& \triangle A P D \cong \triangle B P D \\
& \angle A=\angle 3 \\
& \angle 3=\angle 4 \\
& \angle A=\angle 3=\angle 4
\end{aligned}
$$

[CPCT]
[Diagonal bisect opposite angles of a rhombus]

Now, AD||BC
So, $\angle A+\angle A B C=180^{\circ} \quad$ [Sum of consecutive interior angles is 180°]

$$
\begin{aligned}
\angle A+\angle 3+\angle 4 & =180^{\circ} \\
\angle A+\angle A+\angle A & =180^{\circ} \\
3 \angle A & =180^{\circ} \\
\angle A & =\frac{180^{\circ}}{3} \\
\angle A & =60^{\circ}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\angle A B C & =\angle 3+\angle 4 \\
& =60^{\circ}+60^{\circ} \\
\angle A B C & =120^{\circ} \\
\angle A D C & =\angle A B C=120^{\circ}
\end{aligned}
$$

[Opposite angles of a rhombus are equal]

5. E and F are points on diagonal $A C$ of a parallelogram $A B C D$ such that $\mathrm{AE}=\mathrm{CF}$. Show that BFDE is a parallelogram.

Solution:

Given:
E and F are points on diagonal AC of a parallelogram ABCD such that $\mathrm{AE}=\mathrm{CF}$.

To prove that BFDE is parallelogram,
Proof: ABCD is a parallelogram.
$\mathrm{OD}=\mathrm{OB} \quad \ldots$ (I) [Diagonals of parallelogram bisect each other]
$\mathrm{OA}=\mathrm{OC} \quad \ldots$ (II) [Diagonals of parallelogram bisect each other]
$\mathrm{AE}=\mathrm{EF} \quad \ldots$ (III)[Given]
Subtracting equation (III) from equation (II), get:
$\mathrm{OA}-\mathrm{AE}=\mathrm{OC}-\mathrm{CF}$
$\mathrm{OE}=\mathrm{OF} \quad \ldots$ (IV)
Now, BFDE is parallelogram. [Since, $\mathrm{OD}=\mathrm{OB}$ and $\mathrm{OE}=\mathrm{OF}$]

Hence, proved.
6. E is the mid-point of the side $A D$ of the trapezium $A B C D$ with $A B \| D C$. A line through E drawn parallel to $A B$ intersect $B C$ at F. Show that F is the mid-point of BC. [Hint: Join AC]

Solution:

Given
E is the mid-point of the side $A D$ of the trapezium $A B C D$ with $A B \| D C$. Also, $E F \| A B$.

To prove that F is the mid-point of BC .
Construction: Join AC which intersect EF at O.
Proof: In triangle ADC, E is the midpoint of AD and $\mathrm{EF} \| \mathrm{DC}$. \quad [Since, $\mathrm{EF} \| \mathrm{AB}$ and $\mathrm{DC}|\mid \mathrm{AB}$. So, AB$||\mathrm{EF}| \mid \mathrm{DC}]$
O is the mid-point of $A C$ and $O F \| A B$.
Now, OF bisect BC. [Converse of mid-point theorem]
Or F is the mid-point of BC .
Hence, proved.
7. Through A, B and C, lines $R Q, P R$ and $Q P$ have been drawn, respectively parallel to sides $B C, C A$ and $A B$ of a $\triangle A B C$ as shown in Fig. Show that $\mathrm{BC}=\frac{1}{2} \mathrm{QR}$.

Solution:

Given in the question, Triangle $A B C$ and $P Q R$ in which $A B\|Q P, B C\| R Q$ and $C A \| P R$.

To prove that $B C=\frac{1}{2} Q R$
Proof: In quadrilateral BCAR, $\mathrm{BR} \| \mathrm{CA}$ and $\mathrm{BC} \| \mathrm{RA}$
So, quadrilateral, BCAR is a parallelogram.
$\mathrm{BC}=\mathrm{AR} \ldots$ (I)
Now, in quadrilateral $\mathrm{BCQA}, \mathrm{BC} \| \mathrm{AQ}$ and $\mathrm{AB} \| \mathrm{QC}$
So, quadrilateral $B C Q A$ is a parallelogram,
$\mathrm{BC}=\mathrm{AQ} \ldots$ (II)
Now, adding equation (I) and (II), get:
$2 B C=A R+A Q$
$2 \mathrm{BC}=\mathrm{RQ}$
$\mathrm{BC}=\frac{1}{2} \mathrm{QR}$
Now, BEDF is a quadrilateral, in which $\angle \mathrm{BED}=\angle \mathrm{BFD}=90^{\circ}$
$\angle \mathrm{FSE}=360^{\circ}-(\angle \mathrm{FDE}+\angle \mathrm{BED}+\angle \mathrm{BFD})=360^{\circ}-\left(60^{\circ}+90^{\circ}+90^{\circ}\right)$
$=360^{\circ}-240^{\circ}$
$=120^{\circ}$

8. D, E and F are the mid-points of the sides $B C, C A$ and $A B$, respectively of an equilateral triangle ABC . Show that $\triangle \mathrm{DEF}$ is also an equilateral triangle.

Solution:

Given in the question, D, E and F are the mid-points of the sides BC, CA and AB , respectively of an equilateral $\triangle \mathrm{ABC}$.
To proof that $\triangle \mathrm{DEF}$ is an equilateral triangle.

Proof: In $\triangle A B C, E$ and F are the mid-points of $A C$ and $A B$ respectively, then $E F \| B C$. So, $E F=\frac{1}{2} B C$
DF || AC, DE \| AB
$\mathrm{DE}=\frac{1}{2} \mathrm{AB}$ and $\mathrm{FD}=\frac{1}{2} \mathrm{AC}[\mathrm{By}$ mid-point theorem $]$.
Now, $\triangle \mathrm{ABC}$ is an equilateral triangle.
$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
$\frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{CA}$ [Dividing by 2 in the above equation]
So, $\mathrm{DE}=\mathrm{EF}=\mathrm{FD} \quad[$ From Equation. (I) and (II)]
Since, all sides of ADEF are equal.
Hence, $\triangle \mathrm{DEF}$ is an equilateral triangle.
Hence proved.
9. Points P and Q have been taken on opposite sides $A B$ and $C D$, respectively of a parallelogram $A B C D$ such that $A P=C Q$. Show that $A C$ and $P Q$ bisect each other.

Solution:

Given in the question, points P and Q have been taken on opposite sides $A B$ and $C D$, respectively of a parallelogram $A B C D$ such that $A P=C Q$.

In triangle AOP and triangle COQ:
$\mathrm{AP}=\mathrm{CQ} \quad$ [Given]
$\angle 1=\angle 2 \quad$ [Alternate interior angles]
$\angle 3=\angle 4 \quad$ [Vertically opposite angles]
$\triangle A O P \cong \triangle C O Q$ [By AAS Congruence rule]
$\mathrm{So}, \mathrm{OA}=\mathrm{OC}$ and $\mathrm{OP}=\mathrm{OQ} \quad[\mathrm{CPCT}]$
Hence, AC and PQ bisect each other.
10. In Fig., P is the mid-point of side $B C$ of a parallelogram $A B C D$ such that $\angle B A P=\angle D A P$. Prove that $A D=2 C D$.

Solution:

Given in the question, in a parallelogram $\mathrm{ABCD}, \mathrm{P}$ is a mid-point of BC such that $\angle B A P=\angle D A P$.
To prove that $\mathrm{AD}=2 \mathrm{CD}$
Proof: ABCD is a parallelogram.
So, $\mathrm{AD} \| \mathrm{BC}$ and AB is transversal, then:
$\angle A+\angle B=180^{\circ}$
[Sum of cointerior angles is 180°]
$\angle B=180^{\circ}-\angle A$
Now, in triangle ABP ,
$\angle P A B+\angle B+\angle B P A=180^{\circ} \quad$ [By angle sum property of a triangle]
$\frac{1}{2} \angle A+180^{\circ}-\angle A+\angle B P A=180^{\circ} \quad$ [From equation (I)]
$\angle B P A-\frac{\angle A}{2}=0$
$\angle B P A=\frac{\angle A}{2}$
$\angle B P A=\angle B P A$
$\mathrm{AB}=\mathrm{BP} \quad$ [Opposite sides of equal angles are equal]
In above equation multiplying both side by 2 , get:
$2 \mathrm{AB}=2 \mathrm{BP}$
$2 \mathrm{AB}=\mathrm{BC} \quad[\mathrm{P}$ is the mid-point of BC$]$
$2 \mathrm{CD}=\mathrm{AD} \quad[\mathrm{ABCD}$ is a parallelogram, then $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{AD}]$

