Mathematics

(Chapter - 15) (Statistics)
 (Class - IX)

EXERCISE 15.1

Q.1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Sol. Total number of balls played by the batswoman $=30$, Boundaries hit $=6$
No. of balls in which she did not hit any boundary $=30-6=24$
$\therefore \mathrm{P}($ she did not hit a boundary $)=\frac{\text { No. of balls in which she did not hit any boundary }}{\text { Total number of balls played }}=\frac{24}{30}=\frac{4}{5}$
Q.2. 1500 families with 2 children were selected randomly, and the following data were recorded. :

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having
(i) 2 girls
(ii) 1 girl
(iii) No girl

Also check whether the sum of these probabilities is 1 .
Sol. (i) P (a family having 2 girls $)=\frac{\text { No. of families having } 2 \text { girls }}{\text { Total no. of families }}=\frac{475}{1500}=\frac{19}{60}$
(ii) $\mathrm{P}($ a family having 1 girl $)=\frac{\text { No. of families having } 1 \text { girl }}{\text { Total no. of families }}=\frac{814}{1500}=\frac{407}{750}$
(iii) $\mathrm{P}($ a family having no girl $)=\frac{\text { No. of families having no girl }}{\text { Total no. of families }}=\frac{211}{1500}$

Sum of the probabilities in all three cases $=\frac{19}{60}+\frac{407}{750}+\frac{211}{1500}=\frac{475+814+211}{1500}=\frac{1500}{1500}=1$
Q.3. In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained. Find the probability that a student of the class was born in August.

Sol. Total number of students considered $=40$
No. of students born in August $=6$
$\therefore \mathrm{P}($ a student was born in August $)=\frac{\text { No. of students born in August }}{\text { Total no. of students considered }}=\frac{6}{40}=\frac{3}{20}$
Q.4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Sol. Total number of tosses $=200$
No. of times 2 heads occur $=72$
$\therefore \mathrm{P}(2$ heads coming up $)=\frac{\text { No. of times } 2 \text { heads occur }}{\text { Total no. of tosses }}=\frac{72}{200}=\frac{9}{25}$
Q.5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below :

Monthly income in (Rs)	Vehicles per family				
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	Above 2	
Less than 7000	10	160	25	0	
$7000-10000$	0	305	27	2	
$10000-13000$	1	535	29	1	
$13000-16000$	2	469	59	25	
16000 or more	1	579	82	88	

Suppose a family is chosen. Find the probability that the family chosen is
(i) earning Rs 10000-13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000-16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.

Sol. Total no. of families considered $=2400$
(i) P (a family earning Rs $10000-13000$ per month and owning exactly 2 vehicles)

$$
=\frac{\text { No. of families earning Rs } 10000-13000 \text { per month and owning } 2 \text { vehicles }}{\text { Total no. of families }}=\frac{29}{2400}
$$

(ii) P (a family earning Rs 16000 or more per month and owning exactly 1 vehicle)
$=\frac{\text { No. of families earning Rs } 16000 \text { or more per month and owning } 1 \text { vehicle }}{\text { Total no. of families }}=\frac{579}{2400}=\frac{193}{800}$
(iii) P (a family earning less than Rs 7000 per month and does not own any vehicle)

$$
\begin{aligned}
& =\frac{\text { No. of families earning less than Rs } 7000 \text { per month and does not own any vehicle }}{\text { Total no. of families }} \\
& =\frac{10}{2400}=\frac{1}{240}
\end{aligned}
$$

(iv) P (a family earning Rs 13000 - 16000 per month and owing more than 2 vehicles)

$$
\begin{aligned}
& =\frac{\text { No. of families earning Rs } 13000-16000 \text { per month and owning more than } 2 \text { vehicles }}{\text { Total no. of families }} \\
& =\frac{25}{2400}=\frac{1}{96}
\end{aligned}
$$

(v) P (a family owning 0 vehicle or 1 vehicle)

$$
=\mathrm{P}(\text { a family not owning more than } 1 \text { vehicle })
$$

$$
=\frac{10+0+1+2+1+160+305+535+469+579}{2400}=\frac{2062}{2400}=\frac{1031}{1200}
$$

Q.6. Following table shows the performance of two sections of students in Mathematics test of 100 marks.

Marks	Number of students
$0-20$	7
$20-30$	10
$30-40$	10
$40-50$	20
$50-60$	20
$60-70$	15
$70-$ above	8
Total	$\mathbf{9 0}$

(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Sol. (i) Total no. of students $=90$

$$
\begin{aligned}
\text { P (a student obtained less than } 20 \%) & =\frac{\text { No. of students who obtained less than } 20 \%}{\text { Total no. of students }} \\
& =\frac{7}{90}
\end{aligned}
$$

(ii) P (a student obtained 60 marks or above)

$$
=\frac{\text { No. of students who obtained } 60 \text { marks or more }}{\text { Total number of students }}=\begin{gathered}
15+8 \\
90
\end{gathered}=\frac{23}{90}
$$

Q.7. To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65

Find the probability that a student chosen at random
(i) likes statistics,
(ii) does not like it.

Sol. (i) $\mathrm{P}($ a student likes statistics $)=\frac{\text { No. of students who like statistics }}{\text { Total no. of students }}=\frac{135}{200}=\frac{27}{40}$
(ii) P (a student does not like statistics) $=\frac{\text { No. of students who do not like statistics }}{\text { Total no. of students }}$

$$
=\frac{65}{200}=\frac{13}{40}
$$

Q.8. The distance (in km) of 40 engineers from their residence to their place of work were found as follows :

5	3	10	2	25	11	13	7	12	31
19	10	12	17	18	11	32	17	16	2
7	9	7	8	3	5	12	15	18	3
12	14	2	9	6	15	15	7	6	12

What is the empirical probability that an engineer lives:
(i) less than 7 km from her place of work?
(ii) more than or equal to 7 km from her place of work?
(iii) within $\frac{1}{2}$ km from her place of work?

Sol. Total no. of engineers $=40$
Let us arrange the data in ascending order as follows:
$2,2,3,3,3,5,5,6,6,7,7,7,7,8,9,9,10,10,11,11,12,12,12,12,12,13,14,15,15,15,16$, 17, 17, 18, 18, 19, 20, 25, 31, 32.
(i) P (an engineer lives less than 7 km from her place of work)

$$
=\frac{\text { No. of engineers who live less than } 7 \mathrm{~km} \text { from their place of work }}{\text { Total no. of engineers }}=\frac{9}{40}
$$

(ii) P (an engineer lives more than or equal to 7 km from her work place)

$$
=\frac{\text { No. of engineers who live more than or equal to } 7 \mathrm{~km} \text { from their work place }}{\text { Total no. of engineers }}=\frac{31}{40}
$$

(iii) P (an engineer lives within $\frac{1}{2} \mathrm{~km}$ from her place of work)

$$
=\frac{\text { No. of engineers who live within }{ }_{2}^{1} \mathrm{~km} \text { from their place of work }}{\text { Total no. of engineers }}=\frac{0}{40}=0
$$

Questions 9 and 10 are activities, so students should perform these activities on their own.

Q.11. Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg) :
$4.975 .05 \quad 5.085 .035 .005 .065 .084 .985 .045 .075 .00$
Find the probability that any of these bags chosen at random contains moer than 5 kg of flour.
Sol. Total no. of bags examined $=11$
$P($ a bag weighing more than 5 kg$)=\frac{\mathrm{No} \text {. of bags which weigh more than } 5 \mathrm{~kg}}{\text { Total no. of bags }}=\frac{7}{11}$
Q.12. A study was conducted to find out the concentration of sulphur dioxide in the air parts per million (ppm) of a certain city. The data obtained for 30 days is as follows :

0.03	0.08	0.08	0.09	0.04	0.17
0.16	0.05	0.02	0.06	0.18	0.20
0.11	0.08	0.12	0.13	0.22	0.07
0.08	0.01	0.10	0.06	0.09	0.18
0.11	0.07	0.05	0.07	0.01	0.04

Using this table, find the probability of the concentration of sulphur dioxide in the interval $0.12-0.16$ on any of these days.
Sol. Total no. of days $=30$
P (concentration of sulphur dioxide in the interval $0.12-0.16$ in a day)

$$
=\frac{\text { No. of days on which the concentration was in the interval } 0.12-0.16}{\text { Total no. of days }}=\frac{2}{30}=\frac{1}{15}
$$

Q.13. The blood groups of 30 students of Class VIII are recorded as follows :
$A, B, O, O, A B, O, A, O, B, A, O, B, A, O, O, A, A B, O, A, A, O, O, A B, B, A, O, B, A, B, O$
Use this table to determine the probability that a student of this class, selected at random, has blood group $A B$.

Sol. Total no. of students $=30$

$$
\begin{aligned}
\mathrm{P}(\text { a student has blood group } \mathrm{AB}) & =\frac{\text { No. of students which have the blood group } \mathrm{AB}}{\text { Total no. of students }} \\
& =\frac{3}{30}=\frac{1}{10}
\end{aligned}
$$

