Chapter 6

Lines and Angles

Exercise No. 6.1

Multiple Choice Questions:

Write the correct answer in each of the following:

1. In Fig., if $A B\|C D\| E F, P Q \| R S, \angle R Q D=25^{\circ}$ and $\angle C Q P=60^{\circ}$, then $\angle Q R S$ is equal to

(A) 85°
(B) 135°
(C) 145°
(D) 110°

Solution:
As $\angle A R Q=\angle R Q D=25^{\circ}$ [alt. $\angle s$]
Also, $\angle R Q C=180^{\circ}-60^{\circ}=120^{\circ}$ (linear pair)
And, $\angle S R A=120^{\circ}$ (Corresponding angle)
Now,
$\angle S R Q=120^{\circ}+25^{\circ}$
$\angle S R Q=145^{\circ}$
Hence, the correct option is (C).
2. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is
(A) an isosceles triangle
(B) an obtuse triangle
(C) an equilateral triangle
(D) a right triangle

Solution:
Given

Let angle of triangle ABC be $\angle A, \angle B$ and $\angle C$
Given that：

$$
\begin{equation*}
\angle A=\angle B+\angle C \tag{I}
\end{equation*}
$$

We know that in any triangle $\angle A+\angle B+\angle C=180^{\circ}$
From equation（I）and（II），get：

$$
\begin{align*}
\angle A+\angle A & =180^{\circ} \tag{II}\\
2 \angle A & =180^{\circ} \\
\angle A & =\frac{180^{\circ}}{2} \\
\angle A & =90^{\circ}
\end{align*}
$$

Hence，the triangle is a right triangle．
Therefore，the correct option is（D）．
3．An exterior angle of a triangle is 105° and its two interior opposite angles are equal．Each of these equal angles is
（A） $37 \frac{1}{2}$ 。
（B） $52 \frac{1}{2}$ 。
（C） $72 \frac{1}{2}$ 。
（D） 75°

Solution：

Given：An exterior angle of triangle is 150° ．
Let each of the two interior opposite angle be x ．
The sum of two interior opposite angle is equal to exterior angle of a triangle．So， $105^{\circ}=x+x$

$$
\begin{aligned}
2 x & =105^{\circ} \\
x & =52 \frac{1}{2}
\end{aligned}
$$

Hence，the correct option is（B）．
4．The angles of a triangle are in the ratio $5: 3: 7$ ．The triangle is
（A）an acute angled triangle
（B）an obtuse angled triangle
（C）a right triangle
（D）an isosceles triangle
Solution：

Let the angle of the triangle are $5 \mathrm{x}, 3 \mathrm{x}$ and 7 x . As we know that sum of all angle of triangle is 180°. Now,
$5 x+3 x+7 x=180^{\circ}$

$$
\begin{aligned}
15 x & =180^{\circ} \\
x & =\frac{180^{\circ}}{15} \\
x & =12^{\circ}
\end{aligned}
$$

Hence, the angle of the triangle are:
$5 \times 12^{\circ}=60^{\circ}$
$3 \times 12^{\circ}=36^{\circ}$
$7 \times 12^{\circ}=84^{\circ}$
All the angle of this triangle is less than 90 degree.
Hence,, the triangle is an acute angled triangle.
5. If one of the angles of a triangle is $\mathbf{1 3 0}^{\circ}$, then the angle between the bisectors of the other two angles can be
(A) 50°
(B) 65°
(C) 145°
(D) 155°

Solution:

In triangle ABC , Let $\angle A=130^{\circ}$.
The bisector of the angle B and C are OB and OC.
Let $\angle O B C=\angle O B A=x$ and $\angle O C B=\angle O C A=y$
In triangle ABC ,

$$
\begin{aligned}
\angle A+\angle B+\angle C & =180^{\circ} \\
130^{\circ}+2 x+2 y & =180^{\circ} \\
2 x+2 y & =180^{\circ}-130^{\circ} \\
2 x+2 y & =50^{\circ} \\
x+y & =25^{\circ}
\end{aligned}
$$

That is $\angle O B C+\angle O C A=25^{\circ}$
Now, in triangle BOC:

$$
\begin{aligned}
\angle B O C & =180^{\circ}-(\angle O B C+\angle O C B) \\
& =180^{\circ}-25^{\circ} \\
& =155^{\circ}
\end{aligned}
$$

Hence, the correct option is (D).
6. In Fig., $P O Q$ is a line. The value of x is

(A) 20°
(B) 25°
(C) 30°
(D) 35°

Solution:
See the given figure in the question:
$40^{\circ}+4 x+3 x=180^{\circ}$ (Angles on the straight line)
$4 x+3 x=180^{\circ}-40^{\circ}$

$$
7 x=140^{\circ}
$$

$$
x=\frac{140^{\circ}}{7}
$$

$$
x=20^{\circ}
$$

Hence, the correct option is (A).
7. In Fig., if $\mathrm{OP} \| \mathrm{RS}, \angle \mathrm{OPQ}=110^{\circ}$ and $\angle \mathrm{QRS}=130^{\circ}$, then $\angle \mathrm{PQR}$ is equal to

(A) 40°
(B) 50°
(C) 60°
(D) 70°

Solution:
See the given figure, producing OP, to intersect RQ at X.
Given: $\mathrm{OP} \| \mathrm{RS}$ and RX is a transversal.
So, $\angle R X P=\angle X R S$ (alternative angle)

$\angle R X P=130^{\circ} \quad$ [Given: $\angle Q R S=130^{\circ}$]
RQ is a line segment.
So, $\angle P X Q+\angle R X V=180^{\circ}$ [linear pair axiom]
$\angle P X Q=180^{\circ}-\angle R X P=180^{\circ}-130^{\circ}$
$\angle P X Q=50^{\circ}$
In triangle $\mathrm{PQX}, \angle O P Q$ is an exterior angle,
Therefore, $\angle O P Q=\angle P X Q+\angle P Q X$ [exterior angle $=$ sum of two opposite interior angles]

$$
\begin{aligned}
110^{\circ} & =50^{\circ}+\angle P Q X \\
\angle P Q X & =110^{\circ}-50^{\circ} \\
\angle P Q R & =60^{\circ}
\end{aligned}
$$

Hence, the correct option is (

8. Angles of a triangle are in the ratio $2: 4: 3$. The smallest angle of the triangle is
(A) 60°
(B) 40°
(C) 80°
(D) $\mathbf{2 0}{ }^{\circ}$

Solution:

Given, the ratio of angles of a triangle is $2: 4: 3$.
Let the angles of a triangle be $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.
$\angle A=2 x, \angle B=4 x \angle C=3 x$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [sum of all the angles of a triangle is 180°]
$2 \mathrm{x}+4 \mathrm{x}+3 \mathrm{x}=180^{\circ}$
$9 \mathrm{x}=180^{\circ}$
$\mathrm{x}=180^{\circ} / 9$
$=20^{\circ}$

$$
\begin{aligned}
& \angle A=2 x=2 \times 20^{\circ}=40^{\circ} \\
& \angle B=4 x=4 \times 20^{\circ}=80^{\circ} \\
& \angle C=3 x=3 \times 20^{\circ}=60^{\circ}
\end{aligned}
$$

So, the smallest angle of a triangle is 40°.
Hence, the correct option is (B).

Exercise No. 6.2

Short Answer Questions with Reasoning:

1. For what value of $x+y$ in Fig. will ABC be a line? Justify your answer.

Solution:

See the figure, x and y are two adjacent angles.
For ABC to be a straight line, the sum of two adjacent angle must be 180°.
2. Can a triangle have all angles less than 60° ? Give reason for your answer.

Solution:

We know that in a triangle, sum of all the angles is always 180°. So, a triangle can't have all angles less than 60°.

3. Can a triangle have two obtuse angles? Give reason for your answer.

Solution:

If an angle whose measure is more than 90° but less than 180° is called an obtuse angle.
We know that a triangle can't have two obtuse angle because the sum of all the angles of it can't be more than 180°. It is always equal to 180°.
4. How many triangles can be drawn having its angles as $45^{\circ}, 64^{\circ}$ and 72° ? Give reason for your answer.

Solution:

We know that sum of all the angles in a triangle is 180°.
The sum of all the angles is $45^{\circ}+64^{\circ}+72^{\circ}=181^{\circ}$. So, we can't draw any triangle having sum of all the angle 181°.
5. How many triangles can be drawn having its angles as $53^{\circ}, 64^{\circ}$ and 63° ? Give reason for your answer.

Solution:

We know that sum of all the angles in a triangle is 180°.

Sum of these angles $=53^{\circ}+64^{\circ}+63^{\circ}=180^{\circ}$. So, we can draw infinitely many triangles having its angles as $53^{\circ}, 64^{\circ}$ and 63°.

6. In Fig., find the value of \boldsymbol{x} for which the lines \boldsymbol{l} and \boldsymbol{m} are parallel.

Solution:

See the given figure, $1 \| \mathrm{m}$ and if a transversal intersects two parallel lines, then sum of interior angles on the same side of a transversal is supplementary.

$$
\begin{aligned}
x+44^{\circ} & =180^{\circ} \\
x & =180^{\circ}-44^{\circ} \\
x & =136^{\circ}
\end{aligned}
$$

7. Two adjacent angles are equal. Is it necessary that each of these angles will be a right angle? Justify your answer.

Solution:

No, because if it will be a right angle only when they form a linear pair.
8. If one of the angles formed by two intersecting lines is a right angle, what can you say about the other three angles? Give reason for your answer.

Solution:

If two intersecting line are formed right then by using linear pair axiom aniom, other three angles will be a right angle.

9. In Fig., which of the two lines are parallel and why?

Solution:

In the first figure, sum of two interior angle is:
$132^{\circ}+48^{\circ}=180^{\circ}$ [Equal to 180°]
Hence, we know that, if sum of two interior angle are equal on the same side of n is 180°, then they are the parallel lines.

In the second figure, sum of two interior angle is:
$73^{\circ}+106^{\circ}=179^{\circ} \neq 180^{\circ}$.
Hence, we know that, if sum of two interior angle are equal on the same side of r is not equal to 180°, then they are not the parallel lines.

10. Two lines l and m are perpendicular to the same line n. Are l and m perpendicular to each other? Give reason for your answer.

Solution:

If two lines 1 and m are perpendicular to the same line n, then each of the two corresponding angles formed by these lines 1 and m with the line n are equal to 90°. Hence the line 1 and m are not perpendicular but parallel.

Exercise No. 6.3

Short Answer Questions:

1. In Fig., $O D$ is the bisector of $\angle A O C, O E$ is the bisector of $\angle B O C$ and $O D$ \perp OE. Show that the points A, O and B are collinear.

Solution:

Given:
OD is the bisector of $\angle \mathrm{AOC}, \mathrm{OE}$ is the bisector of $\angle \mathrm{BOC}$ and $\mathrm{OD} \perp \mathrm{OE}$
To prove that point A, O and B are collinear that is AOB are straight line.
$\angle A O C=2 \angle D O C$
$\angle C O B=2 \angle C O E$
Now, adding equations (I) and (II), get:

$$
\begin{aligned}
\angle A O C+\angle C O B & =2 \angle D O C+\angle C O E \\
\angle A O C+\angle C O B & =2(\angle D O C+\angle C O E) \\
\angle A O C+\angle C O B & =2 \angle D O C \\
\angle A O C+\angle C O B & =2 \times 90^{\circ} \\
\angle A O C+\angle C O B & =180^{\circ} \\
\angle A O C & =180^{\circ}
\end{aligned}
$$

So, $\angle A O C+\angle C O B$ are forming linear pair or we can say that AOB is a straight line.
Hence, point A, O and B are collinear.
2. In Fig., $\angle 1=60^{\circ}$ and $\angle 6=120^{\circ}$. Show that the lines m and n are parallel.

Solution:

See the given figure,

$$
\begin{gathered}
\angle 5+\angle 6=180^{\circ}(\text { Linear pair angle }) \\
\angle 5+120^{\circ}=180^{\circ} \\
\angle 5=180^{\circ}-120^{\circ} \\
\angle 5=60^{\circ}
\end{gathered}
$$

Then, $\angle 1=\angle 5\left[\right.$ Each $\left.=60^{\circ}\right]$
Since, these are corresponding angles.

Hence, the line m and n are parallel.
3. $A P$ and $B Q$ are the bisectors of the two alternate interior angles formed by the intersection of a transversal \boldsymbol{t} with parallel lines \boldsymbol{l} and \boldsymbol{m}. Show that AP || BQ.

Solution:

According to the question,
Line $1 \| \mathrm{m}$ and t is the transversal.
$\angle M A B=\angle S B A$ [Alt. $\angle s$]
$\frac{1}{2} \angle M A B=\frac{1}{2} \angle S B A$
$\angle P A B=\angle Q B A$
But, $\angle P A B$ and $\angle Q B A$ are alternate angles.
Hence, $\mathrm{AP}|\mid \mathrm{BQ}$.
4. If in Fig., bisectors $A P$ and $B Q$ of the alternate interior angles are parallel, then show that $l \| m$.

Solution:

See the given figure, $\mathrm{AP} \| \mathrm{BQ}, \mathrm{AP}$ and BQ are the bisectors of alternate interior angles $\angle C A B$ and $\angle A B F$.
To show that $1|\mid \mathrm{m}$.
Now, prove that $\mathrm{AP} \| \mathrm{BQ}$ are t is transversal, therefore:
$\angle P A B=\angle A B Q$ [Alternate interior angle]
$2 \angle P A B=2 \angle A B Q$ [Multiplying both sides by 2 in equation (I)]

Since, alternate interior angle are equal.
So, if two alternate interior angle are equal then lines are parallel.
Hence, $1 \mid \mathrm{m}$.
5. In Fig., BA || ED and BC || EF. Show that $\angle A B C=\angle D E F$.
[Hint: Produce DE to intersect BC at P (say)].

Solution:

According to the question:
Given:
Producing DE to intersect BC at P .
$\mathrm{EF}|\mid \mathrm{BC}$ and DP is the transversal,

$\angle D E F=\angle D P C$
... (I) [Corresponding $\angle s$]
See the above figure, $\mathrm{AB} \| \mathrm{DP}$ and BC is the transversal,
$\angle D P C=\angle A B C$
... (II) [Corresponding $\angle s$]
Now, from equation (I) and (II), get:
$\angle A B C=\angle D E F$
Hence, proved.
6. In Fig., BA || ED and BC || EF. Show that $\angle A B C+\angle D E F=180^{\circ}$.

Solution:

See in the figure, $\mathrm{BA} \| \mathrm{ED}$ and $\mathrm{BC} \| \mathrm{EF}$.
Show that $\angle \mathrm{ABC}+\angle \mathrm{DEF}=180^{\circ}$.
Produce a ray PE opposite to ray EF.

Prove: $\mathrm{BC} \| \mathrm{EF}$
Now, $\angle E P B+\angle P B C=180^{\circ}$
[sum of co interior is 180°] ...(I)

Now, $\mathrm{AB} \| \mathrm{ED}$ and PE is transversal line, $\angle E P B=\angle D E F$ [Corresponding angles] \ldots (II)

Now, from equation (I) and (II),
$\angle D E F+\angle P B C=180^{\circ}$
$\angle A B C+\angle D E F=180^{\circ}[$ Because $\angle P B C=\angle A B C]$
Hence, proved.

7. In Fig., DE $\|$ QR and AP and BP are bisectors of $\angle E A B$ and $\angle R B A$, respectively. Find $\angle A P B$.

Solution:

See in the given figure, $\mathrm{DE} \| \mathrm{QR}$ and the line n is the transversal line.
$\angle E A B+\angle R B A=180^{\circ} \ldots$ (I) [The interior angles on the same side of transversal are supplementary.]

Now, $\angle P A B+\angle P B A=90^{\circ}$
Then, from triangle APB, given:
$\angle A P B=180^{\circ}-(\angle P A B+\angle P B A)$
So, $\angle A P B=180^{\circ}-90^{\circ}=90^{\circ}$

8. The angles of a triangle are in the ratio $2: 3: 4$. Find the angles of the triangle.

Solution:
Given in the question, ratio of angles is: $2: 3: 4$.
Let the angles of the triangle be $2 \mathrm{x}, 3 \mathrm{x}$ and 4 x .
So,
$2 x+3 x+4 x=180^{\circ}$ [sum of angles of triangle is 180°]
$9 x=180^{\circ}$
$x=\frac{180^{\circ}}{9}$
$x=20^{\circ}$
Therefore, $2 x=2 \times 20^{\circ}=40^{\circ}$
$3 x=2 \times 20^{\circ}=60^{\circ}$
And, $4 x=4 \times 20^{\circ}=80^{\circ}$
Hence, the angle of the triangles are $40^{\circ}, 60^{\circ}$ and 80°
9. A triangle $A B C$ is right angled at A. L is a point on $B C$ such that $A L \perp$ $B C$. Prove that $\angle B A L=\angle A C B$.

Solution:

Given:
In triangle ABC ,
$\angle A=90^{\circ}$ and $A L \perp B C$
To prove: $\angle B A L=\angle A C B$
Proof: Let $\angle A B C=x$
$\angle B A L=90^{\circ}-x$
As, $\angle A=x$
$\angle C A L=x$
$\angle A B C=\angle C A L$
$\angle A B C=\angle A C B$

Hence, proved.

10. Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.

Solution:

According to the question:

Two line p and n are respectively perpendicular to two parallel line 1 and m , that is $\mathrm{P} \perp l$ and $\mathrm{n} \perp \mathrm{m}$.
To prove that p is parallel to n .
Given: $\mathrm{n} \perp \mathrm{m}$
So, $\angle 1=90^{\circ}$
Now, $\mathrm{P} \perp l$
So, $\angle 2=90^{\circ}$
Since, 1 is parallel to m . So,
$\angle 2=\angle 3 \quad$ [Corresponding $\angle s$]
So,
$\angle 2=90^{\circ}$
From equation (I) and (II), get:
$\angle 1=\angle 3$
[each 90°]
But these are corresponding angles.
Hence, $\mathrm{p} \mid \mathrm{n}$.

Exercise No. 6.4

Long Answer Questions:

1. If two lines intersect, prove that the vertically opposite angles are equal.

Solution:

Two lines AB and CD intersect at point O .
To prove: (i) $\angle A O C=\angle B O D$
(ii) $\angle A O D=\angle B O C$

Proof: (i)
Ray on stands on line CD. So, $\angle A O C+\angle A O D=180^{\circ} \ldots$ (I) [linear pair axiom]

Similarly, ray OD stands on line AB. So,
$\angle A O D+\angle B O D=180^{\circ} \ldots$ (II)
Now, from equation (I) and (II), get:

$$
\begin{aligned}
\angle A O C+\angle A O D & =\angle A O D+\angle B O D \\
\angle A O C & =\angle B O D
\end{aligned}
$$

Hence, proved.
(ii) Ray OD stands on line AB .
$\angle A O D+\angle B O D=180^{\circ}$
... (III) [Linear pair axiom]

Similarly, ray OB stands on line CD. So, $\angle D O B+\angle B O C=180^{\circ}$
From equations (III) and (IV), get:

$$
\begin{align*}
\angle A O D+\angle B O D & =\angle D O B+\angle B O C \tag{IV}\\
\angle A O D & =\angle B O C
\end{align*}
$$

Hence, proved.

2. Bisectors of interior $\angle B$ and exterior $\angle A C D$ of a $\triangle A B C$ intersect at the point T. Prove that

$\angle \mathrm{BTC}=\frac{1}{2} \angle \mathrm{BAC}$

Solution:

Given: in triangle ABC , produce BC to D and the bisectors of $\angle A B C$ and $\angle A C D$ meet at point T.
To prove that $\angle B T C=\frac{1}{2} \angle B A C$

Proof: In triangle $\mathrm{ABC}, \angle A C D$ is an exterior angle.
$\angle A C D=\angle A B C+\angle C A B$ [We know that exterior angle of a triangle is equal to the sum of two opposite angle]
$\frac{1}{2} \angle A C D=\frac{1}{2} \angle C A B+\frac{1}{2} \angle A B C$ [Dividing both sides by 2 in the above equation]
$\angle T C D=\frac{1}{2} \angle C A B+\frac{1}{2} \angle A B C$
[Since, CT is the bisector of
$\angle A C D$ that is $\left.\frac{1}{2} \angle A C D=\angle T C D\right]$
Now, in triangle BTC, $\angle T C D=\angle B T C+\angle C B T$ [We know that exterior angle of the triangle is equal to the sum of two opposite angles]
$\angle T C D=\angle B T C+\frac{1}{2} \angle A B C$
...(II) [Since, BT is the bisector of triangle
$\left.\mathrm{ABC} \angle C B T=\frac{1}{2} \angle A B C\right]$
Now, from equation (I) and (II), get:

$$
\begin{gathered}
\frac{1}{2} \angle C A B+\frac{1}{2} \angle A B C=\angle B T C+\frac{1}{2} \angle A B C \\
\frac{1}{2} \angle C A B=\angle B T C \\
\frac{1}{2} \angle B A C=\angle B T C
\end{gathered}
$$

Hence, proved.

3. A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.

Solution:

Given: Lines $\mathrm{DE} \mid \mathrm{QR}$ and the line DE intersected by transversal at A and the line QR intersected by transversal at B . Also, BP and AF are the bisector of angle $\angle A B R$ and $\angle C A E$ respectively.

To prove: $\mathrm{BP}|\mid \mathrm{FA}$
Proof: $\mathrm{DE} \| \mathrm{QR}$
$\angle C A E=\angle A B R$ [Corresponding angles]
$\frac{1}{2} \angle C A E=\frac{1}{2} \angle A B R$ [Dividing both side by 2 in the above equation]
$\angle C A F=\angle A B P$ [Since, bisector of angle $\angle A B R$ and $\angle C A E$ are BP and AF respectively]
Because these are the corresponding angles on transversal line n and are equal.
Hence, BP ||FA.

4. Prove that through a given point, we can draw only one perpendicular to a given line.
 [Hint: Use proof by contradiction].

Solution:

Drawn a perpendicular line from the point p as $\mathrm{PM} \perp \mathrm{AB}$. So, $\angle P M B=90^{\circ}$

Let if possible, drown another perpendicular line $\mathrm{PN} \perp \mathrm{AB}$. So, $\angle P M B=90^{\circ}$
Since, $\angle P M B=\angle P N B$ it will be possible when PM and PN coincide with each other.

Therefore, at a given point we can draw only one perpendicular to a given line.

5. Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other.
 [Hint: Use proof by contradiction].

Solution:

Given:
Let lines l and m are two intersecting lines. Again, let $\mathrm{n} \perp \mathrm{p}$ to the intersecting lines meet at point D.
To prove that two lines n and p intersecting at a point.
Proof:
Let consider that line n and p are intersecting each other it means lines n and p are parallel to each other.
$\mathrm{n} \| \mathrm{p}$
Therefore, lines n and p are perpendicular to m and l respectively.
Now, by using equation (I), $\mathrm{n} \| \mathrm{p}$, it means that l and m . it is a contradiction.
Since, our assumption is wrong.
Hence, line n and p are intersect at a point.

6. Prove that a triangle must have at least two acute angles.

Solution:

If triangle is an acute triangle then all the angle will be acute angle and sum of the all angle will be 180°.

If a triangle is a right angle triangle then one angle will be equal to 90° and remaining two angle will be acute angles and sum of all the angles will be 180°.
Hence, a triangle must have at least two acute angles.
7. In Fig., $\angle \mathrm{Q}>\angle \mathrm{R}, \mathrm{PA}$ is the bisector of $\angle \mathrm{QPR}$ and $\mathrm{PM} \perp \mathrm{QR}$. Prove that $\angle \mathrm{APM}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$

Solution:
Given in triangle $\mathrm{PQR}, \angle Q>\angle R, \mathrm{PA}$ is the bisector of $\angle Q P R$ and $\mathrm{PM} \perp \mathrm{QR}$.
To prove that $\angle A P M=\frac{1}{2}(\angle Q-\angle R)$
Proof: PA is the bisector of $\angle Q P R$. So, $\angle Q P A=\angle A P R$

In angle $\mathrm{PQM}, \angle Q+\angle P M Q+\angle Q P M=180^{\circ} \ldots$ (I) [Angle sum property of a triangle]
$\angle Q+90^{\circ}+\angle Q P M=180^{\circ} \quad\left[\angle P M R=90^{\circ}\right]$
$\angle Q=90^{\circ}-\angle Q P M$
$\angle Q=90^{\circ}-\angle Q P M$
In triangle PMR, $\angle P M R+\angle R+\angle R P M=180^{\circ}$ [Angle sum property of a triangle]
$90^{\circ}+\angle R+\angle R P M=180^{\circ}\left[\angle P M R=90^{\circ}\right]$
$\angle R=180^{\circ}-90^{\circ}-\angle R P M$
$\angle R=180^{\circ}-90^{\circ}-\angle R P M$
$\angle R=90^{\circ}-\angle R P M$
Subtracting equation (III) from equation (II), get:

$$
\begin{align*}
& \angle Q-\angle R=\left(90^{\circ}-\angle A P M\right)-\left(90^{\circ}-\angle R P M\right) \\
& \angle Q-\angle R=\angle R P M-\angle Q P M \\
& \angle Q-\angle R=(\angle R P A+\angle A P M)-(\angle Q P A-\angle A P M) \quad \ldots(\mathrm{IV}) \tag{IV}\\
& \angle Q-\angle R=\angle Q P A+\angle A P M-\angle Q P A+\angle A P M \text { [As, } \angle R P A=\angle Q P A \text {] } \\
& \angle Q-\angle R=2 \angle A P M \\
& \angle A P M=\frac{1}{2}(\angle Q-\angle R)
\end{align*}
$$

Hence, proved.

