Chapter 12 Heron's Formula

Exercise No. 12.1

Multiple Choice Questions:

1. An isosceles right triangle has area 8 cm². The length of its hypotenuse is

perit

- (A) $\sqrt{32}$ cm
- **(B)** $\sqrt{16}$ cm
- (C) $\sqrt{48}$ cm
- **(D)** $\sqrt{24}$ cm

Solution:

Given: An isosceles right triangle has area 8 cm².

Area of an isosceles right triangle $=\frac{1}{2} \times \text{Base} \times \text{Height}$

So, $8 = \frac{1}{2} \times \text{Base} \times \text{Height}$ (Base)²=16 [Base=height, as triangle is an isosceles] Base = $\sqrt{16}$ Base = 4cm

See the triangle ABC, using Pythagoras theorem: $AC^2 + AB^2 + BC^2 = 4^2 + 4^2$ = 16 + 16

$$= 16 + 16$$
$$AC^{2} = 32$$
$$AC = \sqrt{32}$$

Therefore, the length of its hypotenuse is $\sqrt{32}$. Hence, the correct option is (A).

2. The perimeter of an equilateral triangle is 60 m. The area is

(A) $10\sqrt{3} \text{ m}^2$ (B) $15\sqrt{3} \text{ m}^2$ (C) $20\sqrt{3} \text{ m}^2$ (D) $100\sqrt{3} \text{ m}^2$

Solution:

Given: The perimeter of an equilateral triangle is 60 m. Suppose that each side of an equilateral be a.

a + a + a = 60m 3a = 60m*a* =20m

Area of an equilateral triangle = $\frac{\sqrt{3}}{4} \times (\text{Side})^2$ $=\frac{\sqrt{3}}{4}\times(20)^2$

Therefore, the area of the triangle is $100\sqrt{3}$ m².

 $=100\sqrt{3}m^{2}$

3. The sides of a triangle are 56 cm, 60 cm and 52 cm long. Then the area of the triangle is

(A) 1322 cm²

- **(B)** 1311 cm^2
- **(C)** 1344 cm²
- **(D)** 1392 cm²

Solution:

The sides of a triangle are a = 56 cm, b = 60 cm and c = 52 cm. So, semi-perimeter of a triangle will be: NNN.O'

$$s = \frac{a+b+c}{2}$$
$$= \frac{56+60+52}{2}$$
$$= \frac{168}{2}$$
$$= 84cm$$

Area of the triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$
 [By heron's formula]
= $\sqrt{84(84-56)(84-60)(84-52)}$
= $\sqrt{84 \times 28 \times 24 \times 32}$
= $\sqrt{4 \times 7 \times 3 \times 4 \times 7 \times 4 \times 2 \times 3 \times 4 \times 4 \times 2}$
= $\sqrt{4^6 \times 7^2 \times 3^2}$
= $4^3 \times 7 \times 3$
= 1344cm²

Hence, the correct option is (C).

4. The area of an equilateral triangle with side $2\sqrt{3}$ cm is (A) 5.196 cm² (B) 0.866 cm² (C) 3.496 cm² (D) 1.732 cm²

Solution:

Given: The side of an equilateral triangle is $2\sqrt{3}$ cm.

Hence, the correct option is (A).

5. The length of each side of an equilateral triangle having an area of

- $9\sqrt{3}$ cm² is (A) 8 cm (B) 36 cm
- (C) 4 cm
- (D) 6 cm

Solution:

Given: area of an equilateral triangle = $9\sqrt{3}$ cm² Area of an equilateral triangle = $\frac{\sqrt{3}}{4} \times (\text{Side})^2$ $\frac{\sqrt{3}}{4} \times (\text{Side})^2 = 9\sqrt{3}$ $(\text{Side})^2 = 9 \times 4$ Side = $\sqrt{9 \times 4}$ Side = 3×2 Side = 6 cm

Therefore, the length of an equilateral triangle is 6 cm. Hence, the correct option is (D).

6. If the area of an equilateral triangle is $16\sqrt{3}$ cm², then the perimeter of the triangle is

(A) 48 cm (B) 24 cm (C) 12 cm

(D) 306 cm

Solution:

Given: The area of an equilateral triangle is $16\sqrt{3}$ cm².

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times (\text{side})^2$

$$16\sqrt{3} = \frac{\sqrt{3}}{4} \times (\text{side})^2$$
$$(\text{Side})^2 = \frac{16\sqrt{3} \times 4}{\sqrt{3}}$$
$$= 64$$

Side = $\sqrt{64}$

Side = 8 cm

itopper.ir Therefore, the perimeter of triangle 8 + 8 + 8 = 24 cm Hence, the correct option is (B).

7. The sides of a triangle are 35 cm, 54 cm and 61 cm, respectively. The length of its longest altitude

(A) $16\sqrt{5}$ cm

(B) $10\sqrt{5}$ cm

(C) $24\sqrt{5}$ cm

(D) 28 cm

Solution:

Given: The sides of a triangle are a= 35 cm, b=54 cm and c=61 cm, respectively. So, semiperimeter of a triangle is:

$$s = \frac{a+b+c}{2} = \frac{35+54+61}{2} = \frac{150}{2} = 75$$

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{75(75-35)(75-54)(75-61)}$$

= $\sqrt{75 \times 40 \times 21 \times 14}$
= $\sqrt{5 \times 5 \times 3 \times 2 \times 2 \times 2 \times 5 \times 3 \times 7 \times 7 \times 2}$
= $5 \times 3 \times 2 \times 2 \times 7\sqrt{5}$
= $420\sqrt{5}$

As know that,

Area of triangle ABC= $\frac{1}{2}$ × Base × Altitude $\frac{1}{2} \times 35 \times \text{Altitude} = 420\sqrt{5}$ Altitude = $\frac{420\sqrt{5} \times 2}{35}$ Altitude = $24\sqrt{5}$

Therefore, the length of altitude is $24\sqrt{5}$. Hence, the correct option is (C).

8. The area of an isosceles triangle having base 2 cm and the length of one www.cree of the equal sides 4 cm, is

2er.in

(A) $\sqrt{15}$ cm² **(B)** $\sqrt{\frac{15}{2}}$ cm² (C) $2\sqrt{15}$ cm² **(D)** $4\sqrt{15}$ cm²

Solution:

Given: The length of side be a = 2cm and b = 4cm. As we know that,

Area of an isosceles triangle =
$$\frac{a}{4}\sqrt{4b^2 - a^2}$$

= $\frac{2\sqrt{4 \times (4)^2 - 2^2}}{4}$
= $\frac{\sqrt{64 - 4}}{2}$

$$= \frac{\sqrt{60}}{2}$$
$$= \frac{2\sqrt{15}}{2}$$
$$= \sqrt{15} \text{ cm}^2$$

Hence, the correct option is (A).

9. The edges of a triangular board are 6 cm, 8 cm and 10 cm. The cost of painting it at the rate of 9 paise per cm² is

- (A) Rs 2.00
- (B) Rs 2.16
- (C) Rs 2.48
- (D) Rs 3.00

Solution:

and Mode M Given: The edges of a triangular board are a=6 cm, b=8 cm and c=10 cm.

Now, semi-perimeter of a triangular board will be:

 $s = \frac{a+b+c}{2}$ $=\frac{6+8+10}{2}$ $=\frac{24}{2}$ =12*cm*

Now, by Heron's formula:

Area of a triangle board =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{12(12-6)(12-8)(12-10)}$
= $\sqrt{12 \times 6 \times 4 \times 2}$
= $\sqrt{12^2 \times 2^2}$
= 12×2
= 24 cm^2

As, the cost of painting for area $1 \text{ cm}^2 = \text{Rs. } 0.09$

So, Cost of paint for area 24 $\text{cm}^2 = 0.09 \times 24 = \text{Rs. } 2.16$ Therefore, the cost of a triangular board is Rs. 2.16. Hence, the correct option is (B).

Short Answer Questions with Reasoning:

Write True or False and justify your answer:

1. The area of a triangle with base 4 cm and height 6 cm is 24 cm².

Solution:

Given: The base and height of a triangle are 4 cm and 6 cm respectively.

As we know that, area of a triangle = $\frac{1}{2} \times \text{Base} \times \text{Height}$

$$=\frac{1}{2} \times 4 \times 6$$
$$= 12 \text{ cm}^2$$

Hence, the given statement is false.

2. The area of $\triangle ABC$ is 8 cm² in which AB = AC = 4 cm and $\angle A = 90^{\circ}$.

Solution:

 $2^{2} + 4^{2$

3. The area of the isosceles triangle is $\frac{5}{4}\sqrt{11}$ cm², if the perimeter is 11 cm and the base is 5 cm.

Solution:

Suppose that side of isosceles triangle be a. Now, perimeter of an isosceles triangle: 2s = 5 + a + a [2s = a + b + c] 11 = 5 + 2a2a = 11 - 52a=6 a=3

Now, the formula of an area of isosceles triangle = $\frac{a}{4}\sqrt{4b^2 - a^2}$

So, area of an isosceles triangle = $\frac{5\sqrt{4\times(3)^2-(5)^2}}{4}$

$$=\frac{4}{5\sqrt{4\times9-25}}$$
$$=5\times\frac{\sqrt{36-25}}{4}$$
$$=\frac{5\sqrt{11}}{4}$$
 cm²

Hence, the given statement is true.

4. The area of the equilateral triangle is $20\sqrt{3}$ cm² whose each side is 8 cm.

Solution:

Given, side of an equilateral triangle be 8 cm. Area of the equilateral triangle = $\frac{\sqrt{3}}{4}$ (Side)² = $\frac{\sqrt{3}}{4} \times (8)^2$ = $\frac{64}{3} \sqrt{3} [\therefore \text{ side} = 8 \text{ cm}]$ = $16 \sqrt{3} \text{ cm}^2$

Hence, the given statement is false.

5. If the side of a rhombus is 10 cm and one diagonal is 16 cm, the area of the rhombus is 96 cm^2 .

Solution:

Let PQRS be the rhombus whose one diagonal is 16 cm, the area of the rhombus is 10 cm.

As we know that diagonal of a rhombus bisect each other at right angles. So, OA = OC = 8cm and OB = OD

Now, in triangle AOB, $\angle AOB = 90^{\circ}$ So, $AB^2 = OA^2 + OB^2$ [By Pythagoras theorem]

$$AB^{2} = OA^{2} + OB^{2}$$
$$OB^{2} = AB^{2} - OA^{2}$$
$$= (10)^{2} - 8^{2}$$
$$= 100 - 64$$
$$= 36$$
So, $OB = \sqrt{36} = 6$

Also, $OB = 2(OA) = 2 \times 6$ = 12cm

Therefore, area of rhombus = $\frac{1}{2} \times$ Products of diagonals = $\frac{1}{2} \times 16 \times 12$ = 96cm²

Hence, the given statement is true.

6. The base and the corresponding altitude of a parallelogram are 10 cm and 3.5 cm, respectively. The area of the parallelogram is 30 cm².

Solution:

Given, parallelogram in which base = 10 cm and altitude = 3.5 cm Area of a parallelogram = Base x Altitude = 10×3.5 = 35 cm^2

Hence, the given statement is false.

7. The area of a regular hexagon of side 'a' is the sum of the areas of the five equilateral triangles with side a.

Solution:

Given: The side of a regular hexagon is 'a'.

As we know that the regular hexagon is divided into six equilateral triangles. So,

Area of regular hexagon = Sum of area of the six equilateral triangles. Hence, the given statement is false.

8. The cost of levelling the ground in the form of a triangle having the sides 51 m, 37 m and 20 m at the rate of Rs 3 per m² is Rs 918.

Solution:

Given: The sides of the ground are a = 51m, b = 37cm, and c = 20cm. Now, the semiparameter(s) of ground is:

2s = a + b + c 2s = 51m+37m+20m 2s = 108m $s = \frac{108m}{2}$ s = 54mArea of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{54(54-51)(54-37)(54-20)}$ $= \sqrt{54\times3\times17\times34}$ $= \sqrt{3\times3\times3\times2\times3\times17\times17\times2}$ $= 306m^{2}$ The cost of levelling of 1 m² area is Rs. 3. So, cost of levelling the ground of 306 m² area = Rs. 3×306= Rs. 918

Hence, the given statement is true.

9. In a triangle, the sides are given as 11 cm, 12 cm and 13 cm. The length of the altitude is 10.25 cm corresponding to the side having length 12 cm.

Solution:

Given: The length of the altitude is 10.25. And in a triangle, the sides are a=11cm, b=12cm and c = 13cm. So, semi-perimeter(s) will be: 2s = a+b+c2s = 11cm+12cm+13cm2s = 36cm $s = \frac{36}{2}$ s = 18cm So, area of triangle = $\frac{2 \times \text{Area of } \Delta}{\text{Base}}$ = $\frac{2 \times 6\sqrt{105}}{12}$ = $\sqrt{105}$ = 10.25

Hence, the given statement is true.

www.dreamicopper.in

Short Answer Questions:

1 Find the cost of laying grass in a triangular field of sides 50 m, 65 m and 65 m at the rate of Rs 7 per m².

Solution:

Given: The sides of the ground are a = 50m, b = 65m, and c = 65m. Now, the semiparameter(s) of the cost of levelling is:

$$2s = a+b+c$$

$$2s = 50m+65m+65m$$

$$2s = 180m$$

$$s = \frac{180m}{2}$$

$$s = 90m$$

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{90(90-50)(90-65)(90-65)}$$

$$= \sqrt{90 \times 40 \times 25 \times 25}$$

$$= 3 \times 2 \times 10 \times 25$$

$$= 6 \times 250$$

$$= 1500m^{2}$$

The cost of laving grass 1 m² area is Rs. 7

The cost of laying grass 1 m^2 area is Rs. 7. Therefore, the cost of levelling grass per $1500m^2 = Rs. 7 \times 1500 = Rs. 10500$

2 The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 13 m, 14 m and 15 m. The advertisements yield an earning of Rs 2000 per m² a year. A company hired one of its walls for 6 months. How much rent did it pay?

Solution:

Let the sides of a triangular walls are a = 13m, b = 14m and c = 15m. Now, the semi-perimeter of triangular side wall,

 $s = \frac{a+b+c}{2}$ $=\frac{13+14+15}{2}$ = 21m

Now, area of triangular wall = $\sqrt{s(s-a)(s-b)(s-c)}$ [By Heron's formula]

$$= \sqrt{21(21-13)(21-14)(21-15)}$$

= $\sqrt{21 \times (21-13) \times (21-14) \times (21-15)}$
= $\sqrt{21 \times 8 \times 7 \times 6}$
= $\sqrt{21 \times 4 \times 2 \times 7 \times 3 \times 2}$
= $\sqrt{21^2 \times 4^2}$
= 21×4
= $84m^2$

The advertisement yield earning per year for 1 m^2 area is Rs. 2000.

Therefore, advertisement yield earning per year on 84 $m^2 = 2000 \times 84 = \text{Rs.}$ 168000.

According to the question, the company hired one of its walls for 6 months, therefor company

pay the rent = $\frac{1}{2} \times 168000 = \text{Rs. } 84000$.

Hence, the company paid rent Rs. 84000.

3 From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are 14 cm, 10 cm and 6 cm. Find the area of the triangle.

Solution:

Let ABC be an equilateral triangle, O be the interior point and OP=14cm, OQ = 10cm and OR = 6cm. Also, sides of an equilateral triangle be *a* m.

Area of triangle OAB =
$$\frac{1}{2} \times AB \times OP$$
 [Area of a triangle = $\frac{1}{2} \times (Base \times Height)$]
= $\frac{1}{2} \times a \times 14$
= $7acm^2$

Similarly, Area of triangle OBC =
$$\frac{1}{2} \times BC \times OQ$$

= $\frac{1}{2} \times a \times 10$
= $5acm^2$

Again, area of triangle OAC = $\frac{1}{2} \times AC \times OR$ = $\frac{1}{2} \times a \times 6$ = 3acm²

See the given figure, area of equilateral triangle ABC = Area of $(\Delta OAB + \Delta OBC + \Delta OAC)$

 $= (7a+5a+3a) \operatorname{cm}^2$ $= 15a \operatorname{cm}^2$

Now, semi-perimeter of triangle ABC is:

$$s = \frac{a+a+a}{2}$$
$$s = \frac{3a}{2}cm$$

As, area of equilateral triangle ABC = $\sqrt{s(s-a)(s-b)(s-c)}$ [By Heron's formula]

$$=\sqrt{\frac{3a}{2}\left(\frac{3a}{2}-a\right)\left(\frac{3a}{2}-a\right)\left(\frac{3a}{2}-a\right)}$$
$$=\sqrt{\frac{3a}{2}\times\frac{a}{2}\times\frac{a}{2}\times\frac{a}{2}}$$
$$=\frac{\sqrt{3}}{4}a^{2}\dots(\mathrm{II})$$

According to the equation (I) and (II), get: $\sqrt{2}$

$$\frac{\sqrt{3}}{4}a^2 = 15a$$
$$a = \frac{15 \times 4}{\sqrt{3}}$$
$$a = \frac{60}{\sqrt{3}}$$
$$a = 20\sqrt{3}$$

Putting $a = 20\sqrt{3}$ in equation (II), get: Area of triangle ABC $= \frac{\sqrt{3}}{4} \times (20\sqrt{3})^2$ $= \frac{\sqrt{3}}{4} \times 400 \times 3$ $= 300\sqrt{3}cm^2$ Hence, the area of an equilateral triangle is $300\sqrt{3}$ cm².

4 The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3 : 2. Find the area of the triangle.

Solution:

Given: Perimeter of triangle= 32cm

The ratio of the equal side to its base of an isosceles triangle is 3 : 2. Let sides of an isosceles triangle be 3x, 3x and 2x.

So, perimeter of the triangle = 3x + 3x + 2x = 8x32 = 8x $x = \frac{32}{8}$

x = 4

Since, the sides of the isosceles triangle are $3 \times 4 = 12$, $3 \times 4 = 12$ and $2 \times 4 = 8cm$. zamtop Now, semi-perimeter of triangle will be:

 $s = \frac{12 + 12 + 8}{2}$ $=\frac{32}{2}$ =16*cm*

Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{16(16-12)(16-12)(16-8)}$
= $\sqrt{16 \times 4 \times 4 \times 8}$
= $4 \times 4 \times 2\sqrt{2}cm^2$
= $32\sqrt{2}$

Therefore, the area of an isosceles triangle ABC = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{16(16-12)(16-12)(16-8)}$ $=\sqrt{16\times4\times4\times8}$ $=32\sqrt{2}cm^2$

Therefore, the area of an isosceles triangle is $32\sqrt{2}$ cm².

5 Find the area of a parallelogram given in Fig. Also find the length of the altitude from vertex A on the side DC.

Solution:

Let the sides of a triangle BCD are a = 12 cm, b = 17 cm and c = 25 cm and altitude of a parallelogram is h.

Area of parallelogram, ABCD = 2 (Area of triangle BCD) ...(I)

Now, semi-perimeter(s) of triangle BCD will be:

$$s = \frac{a+b+c}{2}$$

$$= \frac{12+17+25}{2}$$

$$= \frac{54}{2}$$

$$= 27cm$$
Area of triangle BCD = $\sqrt{s(s-a)(s-b)(s-c)}$ [By heron's formula]

$$= \sqrt{27(27-12)(27-17)(27-25)}$$

$$= \sqrt{27\times15\times10\times2}$$

$$= \sqrt{9\times3\times3\times5\times5\times2\times2}$$

$$= 3\times3\times5\times2cm^{2}$$

$$= 90cm^{2}$$

So, area of parallelogram ABCD = $2 \times \text{Area of triangle BCD}$ = $2 \times 90 \text{ cm}^2$ = 180 cm^2 ...(II)

As, Area of parallelogram ABCD = Base × Altitude $180 = DC \times h$ $180 = 12 \times h$ $h = \frac{180}{12}$ h = 15 cm

Therefore, the area of parallelogram is 180 cm^2 and the length of altitude is 15 cm.

6 A field in the form of a parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. Find the area of the parallelogram.

Solution:

Given: Let a field in the form of a parallelogram ABCD has sides 60 m and 40 m and one of its diagonals is 80 m long.

$$s = \frac{a+b+c}{2}$$
$$= \frac{40+60+80}{2}$$
$$= \frac{180}{2}$$
$$= 90 \text{m}$$

So, area of triangle ABC will be = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{90(90-40)(90-60)(90-80)}$$

= $\sqrt{90 \times 50 \times 30 \times 10}$
= $\sqrt{3 \times 30 \times 5 \times 10 \times 30 \times 10}$
= $300\sqrt{15}$
= $1161.895m^2$

Now, from equation (I),

Area of parallelogram ABCD = $2 \times 1161.895m^2 = 2323.79m^2$. Therefore, the area of parallelogram ABCD is $2323.79m^2$.

7 The perimeter of a triangular field is 420 m and its sides are in the ratio 6 : 7 : 8. Find the area of the triangular field.

Solution:

Given: The perimeter of a triangular field is 420 m and its sides are in the ratio 6:7:8. According to the question, Let the sides in meters are a=6x, b=7x and c=8x. So, perimeter of the triangle=6x+7x+8x420 = 21x $x = \frac{420}{21}$ x = 20 Since, the sides of the triangular field are $a = 6 \times 20$ cm = 120m, $b = 7 \times 20$ m = 140m and $c = 8 \times 20$ m = 160m.

Now, semi-perimeter(s) of triangle will be:

$$s = \frac{1}{2} \times 420m$$
$$= 210m$$

Area of the triangle field = $\sqrt{s(s-a)(s-b)(s-c)}$ [Using Heron's formula] = $\sqrt{210(210-120)(210-140)(210-160)}$ = $\sqrt{210 \times 90 \times 70 \times 50}$ = $100\sqrt{7 \times 3 \times 3^2 \times 7 \times 5}$ = $100 \times 7 \times 3 \times \sqrt{15}$ = $2100\sqrt{15}$

Therefore, the area of the triangular field is $2100\sqrt{15}$

8 The sides of a quadrilateral ABCD are 6 cm, 8 cm, 12 cm and 14 cm (taken in order) respectively, and the angle between the first two sides is a right angle. Find its area.

Solution:

Given: The sides of a quadrilateral ABCD are AB = 6 cm, BC = 8 cm, and CD = 12 cm and DA = 14 cm. Construction: Join AC.

In the right triangle ABC, whose angle B is right angle. So, $AC^2 = AB^2 + BC^2$ [By Pythagoras theorem] $AC^2 = 6^2 + 8^2$ $AC^2 = 36 + 64$ $AC = \sqrt{100}$ AC = 10 Area of quadrilateral ABCD = Area of triangle ABC + Area of triangle ACD Now, area of triangle ABC= $\frac{1}{2} \times AB \times AC$ = $\frac{1}{2} \times 6 \times 8$ = 24cm²

In triangle ACD, let AC = a = 10 cm, CD = b = 12 cm, and DA = c = 14 cm.

Now, semi-perimeter of triangle ACD will be:

$$s = \frac{a+b+c}{2}$$

$$= \frac{10+12+14}{2}$$

$$= \frac{36}{2}$$

$$= 18cm$$
So, area of triangle ACD = $\sqrt{s(s-a)(s-b)(s-c)}$ [By heron's formula]

$$= \sqrt{18(18-10)(18-12)(18-14)}$$

$$= \sqrt{18\times8\times6\times4}$$

$$= \sqrt{(3)^2 \times 2 \times 4 \times 2 \times 3 \times 2 \times 4}$$

$$= 3 \times 4 \times 2\sqrt{3 \times 2}$$

$$= 24\sqrt{6}cm^2$$

Hence, the area of the quadrilateral ABCD is $24\sqrt{6}$ cm².

9 A rhombus shaped sheet with perimeter 40 cm and one diagonal 12 cm, is painted on both sides at the rate of Rs 5 per m². Find the cost of painting.

Solution:

Given: One diagonal = 12 cm, Perimeter of rhombus = 40 cm So, $4 \times \text{Side} = 40$ $\text{side} = \frac{40}{4}$ Side = 10 cm

In triangle ABC, let a = 10 cm, b = 10 cm, and c = 12 cm. As we know that rhombus is also a parallelogram, so its diagonal divide it into two congruent triangles of equal area. So,

Area of rhombus = 2 (Area of triangle ABC)

Now, Semi-perimeter of triangle ABC will be:

ntopper.ir $s = \frac{a+b+c}{2}$ $=\frac{10+10+12}{2}$ $=\frac{32}{2}$ =16cm So, area of triangle ABC = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{16(16-10)(16-10)(16-12)}$ $=\sqrt{16\times6\times6\times4}$ $=\sqrt{2304}$ $=48cm^{2}$

Since, area of rhombus = 2 (Area of triangle ABC) $= 2 \times 48 \text{cm}^2$

$$=96$$
cm²

The cost of painting of the sheet is Rs. 5 per m^2 .

Therefore, cost of painting both sides of rhombus shaped sheet ABCD = $\operatorname{Rs.}(2 \times 5 \times 96) = \operatorname{Rs.} 960.$

10 Find the area of the trapezium PQRS with height PQ given in Fig.

Solution:

Let PQRS is a trapezium, in which draw a line RT perpendicular to PS.

Now, area of trapezium = Area of DSTR + Area of rectangle PQRT = 30 + 84= $114m^2$

Therefore, the area of trapezium is $114m^2$.

Long Answer Questions:

1. How much paper of each shade is needed to make a kite given in Fig., in which ABCD is a square with diagonal 44 cm?

Now, area of square ABCD = Side × Side = $22\sqrt{2} \times 22\sqrt{2} = 968$ cm² Since, area of square is divided into four parts.

is:

Now, the area of paper of Red shade needed to make the kite is: $=\frac{1}{4} \times 968cm^2 = 242cm^2$

Also, area of green portion is:

$$= \frac{1}{4} \times 968 cm^{2}$$
$$= 242 cm^{2}$$
Similarly, area of yellow portion

$$=\frac{1}{2} \times 968cm^{2} = 484cm^{2}$$

In triangle PCQ, Let PC = a = 20cm, CQ = b = 20cm, and PQ = c = 14cm.
Now, semi-perimeter of triangle PCQ will be:
$$s = \frac{a+b+c}{2}$$
$$= \frac{20+20+14}{2}$$
$$= \frac{54}{2}$$
$$= 27cm$$

So, area of triangle PCQ = $\sqrt{s(s-a)(s-b)(s-c)}$
$$= \sqrt{27 \times (27-20) \times (27-20)(27-14)}$$
$$= \sqrt{27 \times 7 \times 7 \times 13}$$
$$= \sqrt{3 \times 3 \times 3 \times 7 \times 7 \times 13}$$
$$= 21\sqrt{39}$$

$$= 21 \times 6.24$$

 $= 131.04 \text{ cm}^2$ Since, the total area of green portion = 242 cm² + 131.04 cm² = 373.04 cm²

Therefore, the paper required for each shade to make a kite is red paper = 242 cm^2 , yellow paper = 484 cm^2 , and green paper = 373.04 cm^2 .

2. The perimeter of a triangle is 50 cm. One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.

Solution:

Given: the perimeter of a triangle is 50 cm.

Now, semi-perimeter(s) of the triangle is $=\frac{\text{Perimeter of triangle}}{2}=\frac{50}{2}=25$

Suppose that the smaller side of the triangle be a = x cm. So, the second side will be b = (x+4) cm and 3^{rd} side will be c = (2x-6)cm.

Now, perimeter of triangle = a + b + c = x + (x+4) + (2x-6)50 cm= (4x - 2) cm 50 = 4x - 2 4x = 50 + 2 4x = 52 $x = \frac{52}{4}$ x = 13 Since, the three side of the triangle are: a = x = 13, b = x + 4 = 13 + 4 = 17 $c = 2x - 6 = 2 \times 13 - 6 = 26 - 6 = 20$.

So, area of the triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{25 \times (25-13) \times (25-17) \times (25-20)}$
= $\sqrt{25 \times 12 \times 8 \times 5}$
= $\sqrt{5 \times 5 \times 4 \times 3 \times 4 \times 2 \times 5}$
= $5 \times 4 \times 20\sqrt{30}cm^2$
= $20\sqrt{30}cm^2$

Therefore, the area of triangle is $20\sqrt{30}cm^2$.

3. The area of a trapezium is 475 cm² and the height is 19 cm. Find the lengths of its two parallel sides if one side is 4 cm greater than the other.

Solution:

Given: Area of a trapezium = $475cm^2$ and Height = 19 cm.

According to the question, let one sides of trapezium is x. So, another side will be x + 4. Now, Area of trapezium = $\frac{1}{2} \times ($ Sum of the parallel sides $) \times$ Height

$$475 = \frac{1}{2} \times (x + x + 4) \times 19 \text{ cm}$$

$$2x + 4 = \frac{950}{19}$$

$$= 50$$

$$2x = 50 - 4$$

$$2x = 46$$

$$x = 23$$

Therefore, the length of the parallel side of trapezium are x = 23 cm and x + 4 = 23 + 4 = 27 cm.

4. A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a

minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.

Solution:

Given: Let a rectangular plot ABCD is constructing a house, having a measurement of 40 m long and 15 m in the front.

According to the question,

Length of inner-rectangle (EF) = 40 - 3 - 3 = 34mAnd breadth of inner rectangle (FG) = 15 - 2 - 2 = 11m

Now, area of inner rectangle (EFGH) will be = Length x Breadth = $EF \times FG$

$$=34 \times 11m^{2}$$

 $=374m^{2}$

Therefore, the largest area where house can be constructed = $374m^2$.

5. A field is in the shape of a trapezium having parallel sides 90 m and 30 m. These sides meet the third side at right angles. The length of the fourth side is 100 m. If it costs Rs 4 to plough 1m² of the field, find the total cost of ploughing the field.

Solution:

Given: In the trapezium ABCD, the two parallel sides are AB = 90 m, CD = 30 m, and $EC \perp AB$. So, EB = AB - EA = 90 m - 30 m = 60m

Now, in triangle BEC,

$$(BC)^2 = (BE)^2 + (EC)^2$$

 $100^2 = 60^2 + (EC)^2$
 $(EC)^2 = 10000 - 3600$
 $(EC)^2 = 6400$
 $EC = \sqrt{6400}$
 $EC = 80m$

ntopper.ir Now, area of trapezium ABCD = $\frac{1}{2} \times ($ Sum of parallel sides $) \times ($ Distance between parallel sides) $= \frac{1}{2} \times (AB + CD) \times EC$ $= \frac{1}{2} \times (90 + 30) \times 80$ $= \frac{1}{2} \times 120 \times 80$

 $=4800m^{2}$ The cost of ploughing the field of $1m^2$ is Rs. 4. Now, The cost of ploughing the field of $4800m^2$ area = $4800 \times Rs$. 4 = Rs. 19200. Therefore, the total cost of plughing the field is Rs. 19200.

6. In Fig., $\triangle ABC$ has sides AB = 7.5 cm, AC = 6.5 cm and BC = 7 cm. On base BC a parallelogram DBCE of same area as that of AABC is constructed. Find the height DF of the parallelogram.

Solution:

Given: in triangle ABC, the sides are AB = a = 7.5 cm, BC = b = 7 cm, and CA = c = 6.5 cm. Now, semi-perimeter of a triangle will be:

 $s = \frac{a+b+c}{2} = \frac{7.5+7+6.5}{2} = \frac{21}{2} = 10.5$

So, area of triangle ABC = $\sqrt{s(s-a)(s-b)(s-c)}$ [By heron's formula] = $\sqrt{10.5 \times (10.5 - 7.5)(10.5 - 7)(10.5 - 6.5)}$ = $\sqrt{10.5 \times 3 \times 3.5 \times 4}$ = $\sqrt{441}$ = 21cm^2

Also, the area of parallelogram BCED will be = Base \times Height = $BC \times DF$

$$=7 \times DF$$

Now, according to the question, Area of triangle ABC = Area of parallelogram BCED $21 = 7 \times DF$

$$DF = \frac{21}{2}$$

4DF = 3cm

Hence, the height of parallelogram BCED is 3 cm.

7. The dimensions of a rectangle ABCD are 51 cm \times 25 cm. A trapezium PQCD with its parallel sides QC and PD in the ratio 9 : 8, is cut off from the

rectangle as shown in the Fig. If the area of the trapezium PQCD is $\frac{5}{6}$ th part of the area of the rectangle, find the lengths QC and PD.

Solution:

Given: ABCD is a rectangle, where AB = 51 cm and BC = 25 cm. The parallel sides QC and PD of the trapezium PQCD are in the ratio of 9 : 8. Let QC = 9x and PD = 8x.

Now, the area of trapezium PQCD:

$$= \frac{1}{2} \times (\text{Sum of parallel sides}) \times (\text{Distance between parallel sides})$$
$$= \frac{1}{2} \times (9x + 8x) \times 25 \text{cm}^{2}$$
$$= \frac{1}{2} \times 17x \times 25$$

Again, area of rectangle ABCD = $BC \times CD = 51 \times 25$

Now, according to the question,

Area of trapezium PQCD = $\frac{5}{6}$ × Area of rectangle ABCD $\frac{1}{2}$ × 17x × 25 = $\frac{5}{6}$ × 51×25 $x = \frac{5}{6}$ × 51×25×2× $\frac{1}{17\times25}$ x = 5

Therefore, the length of the trapezium PQCD, $QC = 9x = 9 \times 5 = 45cm$ and, $PD = 8x = 8 \times 5 = 40cm$.

8. A design is made on a rectangular tile of dimensions 50 cm \times 70 cm as shown in Fig. The design shows 8 triangles, each of sides 26 cm, 17 cm and 25 cm. Find the total area of the design and the remaining area of the tile.

Solution:

Given: the dimension of the rectangular tile are 50 cm \times 70cm. So, area of the rectangular tile = 50 cm \times 70 cm =3500 cm². See the given figure in the question, the sides of the triangle ABC be: a = 25cm, b = 17cm, and c = 26cm

Since, semi-parameter(s) of triangle be:

 $s = \frac{a+b+c}{2}$ $= \frac{25+17+26}{2}$ $= \frac{68}{2}$ = 34

So, area of triangle ABC = $\sqrt{s(s-a)(s-b)(s-c)}$

[By heron's formula]

Since, Total area of eight triangle = $8 \times \text{Area of triangle ABC}$ = 204×8

$$=1632 \text{ cm}^{2}$$

The area of the design will be equal to the area of eight triangle that is 1632cm².

Now, remaining area of the tile = Area of the rectangle – Area of the design = $3500 \text{cm}^2 - 1632 \text{cm}^2 = 1868 \text{cm}^2$ Therefore, total area of the design is 1632cm^2 and the remaining area of the tile is 1868cm^2 .

www.dreamicopper.in