Chapter 12

Heron's Formula

Exercise No. 12.1

Multiple Choice Questions:

1. An isosceles right triangle has area $8 \mathrm{~cm}^{2}$. The length of its hypotenuse is
(A) $\sqrt{32} \mathrm{~cm}$
(B) $\sqrt{16} \mathrm{~cm}$
(C) $\sqrt{48} \mathrm{~cm}$
(D) $\sqrt{24} \mathrm{~cm}$

Solution:

Given: An isosceles right triangle has area $8 \mathrm{~cm}^{2}$.
Area of an isosceles right triangle $=\frac{1}{2} \times$ Base \times Height
So, $8=\frac{1}{2} \times$ Base \times Height
$(\text { Base })^{2}=16 \quad$ [Base $=$ height, as triangle is an isosceles]
Base $=\sqrt{16}$
Base $=4 \mathrm{~cm}$

See the triangle ABC , using Pythagoras theorem:

$$
\begin{aligned}
A C^{2}+A B^{2}+B C^{2} & =4^{2}+4^{2} \\
& =16+16 \\
A C^{2} & =32 \\
A C & =\sqrt{32}
\end{aligned}
$$

Therefore, the length of its hypotenuse is $\sqrt{32}$.
Hence, the correct option is (A).
2. The perimeter of an equilateral triangle is $\mathbf{6 0} \mathrm{m}$. The area is
(A) $10 \sqrt{3} \mathrm{~m}^{2}$
(B) $15 \sqrt{3} \mathrm{~m}^{2}$
(C) $20 \sqrt{3} \mathrm{~m}^{2}$
(D) $100 \sqrt{3} \mathrm{~m}^{2}$

Solution:

Given: The perimeter of an equilateral triangle is 60 m .
Suppose that each side of an equilateral be a.

$$
\begin{aligned}
& a+a+a=60 \mathrm{~m} \\
& 3 a=60 \mathrm{~m} \\
& a=20 \mathrm{~m}
\end{aligned}
$$

Area of an equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} \times(20)^{2} \\
& =100 \sqrt{3} \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, the area of the triangle is $100 \sqrt{3} \mathrm{~m}^{2}$.

3. The sides of a triangle are $56 \mathrm{~cm}, 60 \mathrm{~cm}$ and 52 cm long. Then the area of the triangle is

(A) $1322 \mathrm{~cm}^{2}$
(B) $1311 \mathrm{~cm}^{2}$
(C) $1344 \mathrm{~cm}^{2}$
(D) $1392 \mathrm{~cm}^{2}$

Solution:

The sides of a triangle are $\mathrm{a}=56 \mathrm{~cm}, \mathrm{~b}=60 \mathrm{~cm}$ and $\mathrm{c}=52 \mathrm{~cm}$.
So, semi-perimeter of a triangle will be:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{56+60+52}{2} \\
& =\frac{168}{2} \\
& =84 \mathrm{~cm}
\end{aligned}
$$

Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)} \quad$ [By heron's formula $]$

$$
\begin{aligned}
& =\sqrt{84(84-56)(84-60)(84-52)} \\
& =\sqrt{84 \times 28 \times 24 \times 32} \\
& =\sqrt{4 \times 7 \times 3 \times 4 \times 7 \times 4 \times 2 \times 3 \times 4 \times 4 \times 2} \\
& =\sqrt{4^{6} \times 7^{2} \times 3^{2}} \\
& =4^{3} \times 7 \times 3 \\
& =1344 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the correct option is (C).
4. The area of an equilateral triangle with side $2 \sqrt{3} \mathrm{~cm}$ is
(A) $5.196 \mathrm{~cm}^{2}$
(B) $0.866 \mathrm{~cm}^{2}$
(C) $3.496 \mathrm{~cm}^{2}$
(D) $1.732 \mathrm{~cm}^{2}$

Solution:

Given: The side of an equilateral triangle is $2 \sqrt{3} \mathrm{~cm}$.
Now, area of an equilateral triangle $=\frac{\sqrt{3}}{4}(\text { Side })^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} \times(2 \sqrt{3})^{2} \\
& =\frac{\sqrt{3}}{4} \times 4 \times 3 \\
& =3 \sqrt{3} \\
& =3 \times 1.732 \\
& =5.196 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of an equilateral triangle is $5.196 \mathrm{~cm}^{2}$
Hence, the correct option is (A).
5. The length of each side of an equilateral triangle having an area of $9 \sqrt{3} \mathrm{~cm}^{2}$ is
(A) 8 cm
(B) 36 cm
(C) 4 cm
(D) $\mathbf{6 \mathrm { cm }}$

Solution:

Given: area of an equilateral triangle $=9 \sqrt{3} \mathrm{~cm}^{2}$
Area of an equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$

$$
\begin{aligned}
\frac{\sqrt{3}}{4} \times(\text { Side })^{2} & =9 \sqrt{3} \\
(\text { Side })^{2} & =9 \times 4 \\
\text { Side } & =\sqrt{9 \times 4} \\
\text { Side } & =3 \times 2 \\
\text { Side } & =6 \mathrm{~cm}
\end{aligned}
$$

Therefore, the length of an equilateral triangle is 6 cm .
Hence, the correct option is (D).
6. If the area of an equilateral triangle is $16 \sqrt{3} \mathrm{~cm}^{2}$, then the perimeter of the triangle is
(A) 48 cm
(B) 24 cm
(C) 12 cm
(D) 306 cm

Solution:

Given: The area of an equilateral triangle is $16 \sqrt{3} \mathrm{~cm}^{2}$.
Area of equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$

$$
\begin{aligned}
16 \sqrt{3} & =\frac{\sqrt{3}}{4} \times(\text { side })^{2} \\
(\text { Side })^{2} & =\frac{16 \sqrt{3} \times 4}{\sqrt{3}} \\
& =64 \\
\text { Side } & =\sqrt{64} \\
\text { Side } & =8 \mathrm{~cm}
\end{aligned}
$$

Therefore, the perimeter of triangle $8+8+8=24 \mathrm{~cm}$
Hence, the correct option is (B).
7. The sides of a triangle are $35 \mathrm{~cm}, 54 \mathrm{~cm}$ and 61 cm , respectively. The length of its longest altitude
(A) $16 \sqrt{5} \mathrm{~cm}$
(B) $10 \sqrt{5} \mathrm{~cm}$
(C) $24 \sqrt{5} \mathrm{~cm}$
(D) 28 cm

Solution:

Given: The sides of a triangle are $\mathrm{a}=35 \mathrm{~cm}, \mathrm{~b}=54 \mathrm{~cm}$ and $\mathrm{c}=61 \mathrm{~cm}$, respectively. So, semiperimeter of a triangle is:
$s=\frac{a+b+c}{2}=\frac{35+54+61}{2}=\frac{150}{2}=75$
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{75(75-35)(75-54)(75-61)}$
$=\sqrt{75 \times 40 \times 21 \times 14}$
$=\sqrt{5 \times 5 \times 3 \times 2 \times 2 \times 2 \times 5 \times 3 \times 7 \times 7 \times 2}$
$=5 \times 3 \times 2 \times 2 \times 7 \sqrt{5}$
$=420 \sqrt{5}$
As know that,
Area of triangle $\mathrm{ABC}=\frac{1}{2} \times$ Base \times Altitude

$$
\frac{1}{2} \times 35 \times \text { Altitude }=420 \sqrt{5}
$$

$$
\text { Altitude }=\frac{420 \sqrt{5} \times 2}{35}
$$

$$
\text { Altitude }=24 \sqrt{5}
$$

Therefore, the length of altitude is $24 \sqrt{5}$.
Hence, the correct option is (C).
8. The area of an isosceles triangle having base 2 cm and the length of one of the equal sides 4 cm , is
(A) $\sqrt{15} \mathrm{~cm}^{2}$
(B) $\sqrt{\frac{15}{2}} \mathrm{~cm}^{2}$
(C) $2 \sqrt{15} \mathrm{~cm}^{2}$
(D) $4 \sqrt{15} \mathrm{~cm}^{2}$

Solution:

Given: The length of side be $\mathrm{a}=2 \mathrm{~cm}$ and $\mathrm{b}=4 \mathrm{~cm}$.
As we know that,
Area of an isosceles triangle $=\frac{a}{4} \sqrt{4 b^{2}-a^{2}}$

$$
\begin{aligned}
& =\frac{2 \sqrt{4 \times(4)^{2}-2^{2}}}{4} \\
& =\frac{\sqrt{64-4}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sqrt{60}}{2} \\
& =\frac{2 \sqrt{15}}{2} \\
& =\sqrt{15} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the correct option is (A).
9. The edges of a triangular board are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . The cost of painting it at the rate of 9 paise per cm^{2} is
(A) Rs 2.00
(B) Rs 2.16
(C) Rs 2.48
(D) Rs 3.00

Solution:

Given: The edges of a triangular board are $a=6 \mathrm{~cm}, \mathrm{~b}=8 \mathrm{~cm}$ and $\mathrm{c}=10 \mathrm{~cm}$.
Now, semi-perimeter of a triangular board will be:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{6+8+10}{2} \\
& =\frac{24}{2} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

Now, by Heron's formula:
Area of a triangle board $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{12(12-6)(12-8)(12-10)} \\
& =\sqrt{12 \times 6 \times 4 \times 2} \\
& =\sqrt{12^{2} \times 2^{2}} \\
& =12 \times 2 \\
& =24 \mathrm{~cm}^{2}
\end{aligned}
$$

As, the cost of painting for area $1 \mathrm{~cm}^{2}=$ Rs. 0.09
So, Cost of paint for area $24 \mathrm{~cm}^{2}=0.09 \times 24=$ Rs. 2.16
Therefore, the cost of a triangular board is Rs. 2.16.
Hence, the correct option is (B).

Exercise No. 12.2

Short Answer Questions with Reasoning:

Write True or False and justify your answer:

1. The area of a triangle with base 4 cm and height 6 cm is $24 \mathrm{~cm}^{2}$.

Solution:

Given: The base and height of a triangle are 4 cm and 6 cm respectively.
As we know that, area of a triangle $=\frac{1}{2} \times$ Base \times Height

$$
\begin{aligned}
& =\frac{1}{2} \times 4 \times 6 \\
& =12 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the given statement is false.
2. The area of $\triangle \mathrm{ABC}$ is $\mathbf{8} \mathbf{~ c m}^{\mathbf{2}}$ in which $\mathrm{AB}=\mathbf{A C}=\mathbf{4} \mathbf{~ c m}$ and $\angle \mathrm{A}=90^{\circ}$.

Solution:

Area of a triangle $=\frac{1}{2} \times$ Base \times Height

$$
\begin{aligned}
& =\frac{1}{2} \times 4 \times 4 \\
& =8 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the given statement is true.
3. The area of the isosceles triangle is $\frac{5}{4} \sqrt{11} \mathrm{~cm}^{2}$, if the perimeter is $\mathbf{1 1} \mathbf{~ c m}$ and the base is 5 cm .

Solution:

Suppose that side of isosceles triangle be a.
Now, perimeter of an isosceles triangle:
$2 \mathrm{~s}=5+\mathrm{a}+\mathrm{a}[2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}]$
$11=5+2 \mathrm{a}$
$2 \mathrm{a}=11-5$
$2 a=6$
$a=3$
Now, the formula of an area of isosceles triangle $=\frac{a}{4} \sqrt{4 b^{2}-a^{2}}$

So, area of an isosceles triangle $=\frac{5 \sqrt{4 \times(3)^{2}-(5)^{2}}}{4}$

$$
\begin{aligned}
& =\frac{5 \sqrt{4 \times 9-25}}{4} \\
& =5 \times \frac{\sqrt{36-25}}{4} \\
& =\frac{5 \sqrt{11}}{4} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the given statement is true.

4. The area of the equilateral triangle is $20 \sqrt{3} \mathrm{~cm}^{2}$ whose each side is $\mathbf{8} \mathbf{~ c m}$.

Solution:

Given, side of an equilateral triangle be 8 cm .
Area of the equilateral triangle $=\frac{\sqrt{3}}{4}(\text { Side })^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} \times(8)^{2} \\
& =\frac{64}{3} \sqrt{3}[\therefore \text { side }=8 \mathrm{~cm}] \\
& =16 \sqrt{ } 3 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the given statement is false.

5. If the side of a rhombus is 10 cm and one diagonal is $\mathbf{1 6} \mathbf{~ c m}$, the area of the rhombus is $96 \mathrm{~cm}^{2}$.

Solution:

Let PQRS be the rhombus whose one diagonal is 16 cm , the area of the rhombus is 10 cm .

As we know that diagonal of a rhombus bisect each other at right angles. So, $\mathrm{OA}=\mathrm{OC}=8 \mathrm{~cm}$ and $\mathrm{OB}=\mathrm{OD}$

Now, in triangle $\mathrm{AOB}, \angle A O B=90^{\circ}$
So, $A B^{2}=O A^{2}+O B^{2}$
[By Pythagoras theorem]

$$
\begin{aligned}
A B^{2} & =O A^{2}+O B^{2} \\
O B^{2} & =A B^{2}-O A^{2} \\
& =(10)^{2}-8^{2} \\
& =100-64 \\
& =36
\end{aligned}
$$

So, $O B=\sqrt{36}=6$
Also,

$$
\begin{aligned}
O B & =2(O A)=2 \times 6 \\
& =12 \mathrm{~cm}
\end{aligned}
$$

Therefore, area of rhombus $=\frac{1}{2} \times$ Products of diagonals

$$
\begin{aligned}
& =\frac{1}{2} \times 16 \times 12 \\
& =96 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the given statement is true.
6. The base and the corresponding altitude of a parallelogram are 10 cm and 3.5 cm , respectively. The area of the parallelogram is $30 \mathrm{~cm}^{2}$.

Solution:

Given, parallelogram in which base $=10 \mathrm{~cm}$ and altitude $=3.5 \mathrm{~cm}$
Area of a parallelogram = Base x Altitude

$$
\begin{aligned}
& =10 \times 3.5 \\
& =35 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the given statement is false.

7. The area of a regular hexagon of side ' a ' is the sum of the areas of the five equilateral triangles with side a.

Solution:

Given: The side of a regular hexagon is ' a '.

As we know that the regular hexagon is divided into six equilateral triangles. So,

Area of regular hexagon $=$ Sum of area of the six equilateral triangles.
Hence, the given statement is false.

8. The cost of levelling the ground in the form of a triangle having the sides

 $51 \mathrm{~m}, 37 \mathrm{~m}$ and 20 m at the rate of Rs $\mathbf{3}$ per m^{2} is Rs 918 .
Solution:

Given: The sides of the ground are $\mathrm{a}=51 \mathrm{~m}, \mathrm{~b}=37 \mathrm{~cm}$, and $\mathrm{c}=20 \mathrm{~cm}$. Now, the semiparameter(s) of ground is:

$$
\begin{aligned}
& 2 s=a+b+c \\
& 2 s=51 \mathrm{~m}+37 \mathrm{~m}+20 \mathrm{~m} \\
& 2 \mathrm{~s}=108 \mathrm{~m} \\
& \mathrm{~s}=\frac{108 \mathrm{~m}}{2} \\
& s=54 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{54(54-51)(54-37)(54-20)} \\
& =\sqrt{54 \times 3 \times 17 \times 34} \\
& =\sqrt{3 \times 3 \times 3 \times 2 \times 3 \times 17 \times 17 \times 2} \\
& =3 \times 3 \times 17 \times 2 \\
& =306 \mathrm{~m}^{2}
\end{aligned}
$$

The cost of levelling of $1 \mathrm{~m}^{2}$ area is Rs. 3 .
So, cost of levelling the ground of $306 \mathrm{~m}^{2}$ area $=$ Rs. $3 \times 306=$ Rs. 918
Hence, the given statement is true.
9. In a triangle, the sides are given as $11 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . The length of the altitude is 10.25 cm corresponding to the side having length $12 \mathbf{~ c m}$.

Solution:

Given: The length of the altitude is 10.25 . And in a triangle, the sides are $\mathrm{a}=11 \mathrm{~cm}, \mathrm{~b}=12 \mathrm{~cm}$ and $\mathrm{c}=13 \mathrm{~cm}$.
So, semi-perimeter(s) will be:
$2 s=a+b+c$
$2 s=11 \mathrm{~cm}+12 \mathrm{~cm}+13 \mathrm{~cm}$
$2 s=36 \mathrm{~cm}$
$s=\frac{36}{2}$
$s=18 \mathrm{~cm}$

So, area of triangle $=\frac{2 \times \text { Area of } \Delta}{\text { Base }}$

$$
\begin{aligned}
& =\frac{2 \times 6 \sqrt{105}}{12} \\
& =\sqrt{105} \\
& =10.25
\end{aligned}
$$

Hence, the given statement is true.

Exercise No. 12.3

Short Answer Questions:

1 Find the cost of laying grass in a triangular field of sides $50 \mathrm{~m}, 65 \mathrm{~m}$ and 65 m at the rate of Rs 7 per m^{2}.

Solution:

Given: The sides of the ground are $\mathrm{a}=50 \mathrm{~m}, \mathrm{~b}=65 \mathrm{~m}$, and $\mathrm{c}=65 \mathrm{~m}$. Now, the semiparameter(s) of the cost of levelling is:

$$
\begin{aligned}
& 2 s=a+b+c \\
& 2 s=50 \mathrm{~m}+65 \mathrm{~m}+65 \mathrm{~m} \\
& 2 \mathrm{~s}=180 \mathrm{~m} \\
& \mathrm{~s}=\frac{180 \mathrm{~m}}{2} \\
& s=90 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{90(90-50)(90-65)(90-65)} \\
& =\sqrt{90 \times 40 \times 25 \times 25} \\
& =3 \times 2 \times 10 \times 25 \\
& =6 \times 250 \\
& =1500 \mathrm{~m}^{2}
\end{aligned}
$$

The cost of laying grass $1 \mathrm{~m}^{2}$ area is Rs. 7.
Therefore, the cost of levelling grass per $1500 \mathrm{~m}^{2}=$ Rs. $7 \times 1500=$ Rs. 10500
2 The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $13 \mathrm{~m}, 14 \mathrm{~m}$ and 15 m . The advertisements yield an earning of Rs $\mathbf{2 0 0 0}$ per \mathbf{m}^{2} a year. A company hired one of its walls for 6 months. How much rent did it pay?

Solution:

Let the sides of a triangular walls are $\mathrm{a}=13 \mathrm{~m}, \mathrm{~b}=14 \mathrm{~m}$ and $\mathrm{c}=15 \mathrm{~m}$.
Now, the semi-perimeter of triangular side wall,

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{13+14+15}{2} \\
& =21 \mathrm{~m}
\end{aligned}
$$

Now, area of triangular wall $=\sqrt{s(s-a)(s-b)(s-c)}$ [By Heron's formula]

$$
\begin{aligned}
& =\sqrt{21(21-13)(21-14)(21-15)} \\
& =\sqrt{21 \times(21-13) \times(21-14) \times(21-15)} \\
& =\sqrt{21 \times 8 \times 7 \times 6} \\
& =\sqrt{21 \times 4 \times 2 \times 7 \times 3 \times 2} \\
& =\sqrt{21^{2} \times 4^{2}} \\
& =21 \times 4 \\
& =84 \mathrm{~m}^{2}
\end{aligned}
$$

The advertisement yield earning per year for $1 \mathrm{~m}^{2}$ area is Rs. 2000.
Therefore, advertisement yield earning per year on $84 \mathrm{~m}^{2}=2000 \times 84=$ Rs. 168000 .
According to the question, the company hired one of its walls for 6 months, therefor company pay the rent $=\frac{1}{2} \times 168000=$ Rs. 84000 .
Hence, the company paid rent Rs. 84000.
3 From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are $14 \mathbf{c m}, 10$ cm and 6 cm . Find the area of the triangle.

Solution:

Let $A B C$ be an equilateral triangle, O be the interior point and $O P=14 \mathrm{~cm}, O Q=10 \mathrm{~cm}$ and $\mathrm{OR}=6 \mathrm{~cm}$. Also, sides of an equilateral triangle be $a \mathrm{~m}$.

Area of triangle $\mathrm{OAB}=\frac{1}{2} \times A B \times O P$ [Area of a triangle $=\frac{1}{2} \times($ Base \times Height $\left.)\right]$

$$
\begin{aligned}
& =\frac{1}{2} \times a \times 14 \\
& =7 a \mathrm{~cm}^{2}
\end{aligned}
$$

Similarly, Area of triangle $\mathrm{OBC}=\frac{1}{2} \times B C \times O Q$

$$
\begin{aligned}
& =\frac{1}{2} \times a \times 10 \\
& =5 a \mathrm{~cm}^{2}
\end{aligned}
$$

Again, area of triangle $\mathrm{OAC}=\frac{1}{2} \times A C \times O R$

$$
\begin{aligned}
& =\frac{1}{2} \times a \times 6 \\
& =3 a \mathrm{~cm}^{2}
\end{aligned}
$$

See the given figure, area of equilateral triangle $\mathrm{ABC}=$ Area of $(\triangle O A B+\triangle O B C+\triangle O A C)$ $=(7 a+5 a+3 a) \mathrm{cm}^{2}$
$=15 a \mathrm{~cm}^{2}$
Now, semi-perimeter of triangle ABC is:
$s=\frac{a+a+a}{2}$
$s=\frac{3 a}{2} c m$

As, area of equilateral triangle $\mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)} \quad$ [By Heron's formula]

$$
\begin{aligned}
& =\sqrt{\frac{3 a}{2}\left(\frac{3 a}{2}-a\right)\left(\frac{3 a}{2}-a\right)\left(\frac{3 a}{2}-a\right)} \\
& =\sqrt{\frac{3 a}{2} \times \frac{a}{2} \times \frac{a}{2} \times \frac{a}{2}} \\
& =\frac{\sqrt{3}}{4} a^{2} \ldots \text { (II) }
\end{aligned}
$$

According to the equation (I) and (II), get:

$$
\begin{aligned}
\frac{\sqrt{3}}{4} a^{2} & =15 a \\
a & =\frac{15 \times 4}{\sqrt{3}} \\
a & =\frac{60}{\sqrt{3}} \\
a & =20 \sqrt{3}
\end{aligned}
$$

Putting $a=20 \sqrt{3}$ in equation (II), get:

$$
\text { Area of triangle } \begin{aligned}
\mathrm{ABC} & =\frac{\sqrt{3}}{4} \times(20 \sqrt{3})^{2} \\
& =\frac{\sqrt{3}}{4} \times 400 \times 3 \\
& =300 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of an equilateral triangle is $300 \sqrt{3} \mathrm{~cm}^{2}$.

4 The perimeter of an isosceles triangle is 32 cm . The ratio of the equal side to its base is $3: 2$. Find the area of the triangle.

Solution:

Given: Perimeter of triangle $=32 \mathrm{~cm}$
The ratio of the equal side to its base of an isosceles triangle is $3: 2$. Let sides of an isosceles triangle be $3 \mathrm{x}, 3 \mathrm{x}$ and 2 x .

So, perimeter of the triangle $=3 x+3 x+2 x=8 x$

$$
32=8 x
$$

$x=\frac{32}{8}$
$x=4$
Since, the sides of the isosceles triangle are $3 \times 4=12,3 \times 4=12$ and $2 \times 4=8 \mathrm{~cm}$.
Now, semi-perimeter of triangle will be:

$$
\begin{aligned}
s & =\frac{12+12+8}{2} \\
& =\frac{32}{2} \\
& =16 \mathrm{~cm}
\end{aligned}
$$

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{16(16-12)(16-12)(16-8)} \\
& =\sqrt{16 \times 4 \times 4 \times 8} \\
& =4 \times 4 \times 2 \sqrt{2} \mathrm{~cm}^{2} \\
& =32 \sqrt{2}
\end{aligned}
$$

Therefore, the area of an isosceles triangle $\mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{16(16-12)(16-12)(16-8)} \\
& =\sqrt{16 \times 4 \times 4 \times 8} \\
& =32 \sqrt{2} \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of an isosceles triangle is $32 \sqrt{2} \mathrm{~cm}^{2}$.
5 Find the area of a parallelogram given in Fig. Also find the length of the altitude from vertex A on the side $D C$.

Solution:

Let the sides of a triangle BCD are $\mathrm{a}=12 \mathrm{~cm}, \mathrm{~b}=17 \mathrm{~cm}$ and $\mathrm{c}=25 \mathrm{~cm}$ and altitude of a parallelogram is h .
Area of parallelogram, $\mathrm{ABCD}=2$ (Area of triangle BCD)
Now, semi-perimeter(s) of triangle BCD will be:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{12+17+25}{2} \\
& =\frac{54}{2} \\
& =27 \mathrm{~cm}
\end{aligned}
$$

Area of triangle $\mathrm{BCD}=\sqrt{s(s-a)(s-b)(s-c)}$ [By heron's formula]

$$
\begin{aligned}
& =\sqrt{27(27-12)(27-17)(27-25)} \\
& =\sqrt{27 \times 15 \times 10 \times 2} \\
& =\sqrt{9 \times 3 \times 3 \times 5 \times 5 \times 2 \times 2} \\
& =3 \times 3 \times 5 \times 2 \mathrm{~cm}^{2} \\
& =90 \mathrm{~cm}^{2}
\end{aligned}
$$

So, area of parallelogram $\mathrm{ABCD}=2 \times$ Area of triangle BCD

$$
\begin{align*}
& =2 \times 90 \mathrm{~cm}^{2} \\
& =180 \mathrm{~cm}^{2} \tag{II}
\end{align*}
$$

As, Area of parallelogram $\mathrm{ABCD}=$ Base \times Altitude $180=\mathrm{DC} \times \mathrm{h}$
$180=12 \times h$

$$
h=\frac{180}{12}
$$

$$
h=15 \mathrm{~cm}
$$

Therefore, the area of parallelogram is $180 \mathrm{~cm}^{2}$ and the length of altitude is 15 cm .

6 A field in the form of a parallelogram has sides 60 m and 40 m and one of its diagonals is $\mathbf{8 0} \mathbf{~ m}$ long. Find the area of the parallelogram.

Solution:

Given: Let a field in the form of a parallelogram ABCD has sides 60 m and 40 m and one of its diagonals is 80 m long.

See the figure, in triangle $A B C$, let $a=40 m, b=60 \mathrm{~m}$ and $\mathrm{c}=80 \mathrm{~m}$.
Now, semi perimeter(s) of triangle ABC:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{40+60+80}{2} \\
& =\frac{180}{2} \\
& =90 \mathrm{~m}
\end{aligned}
$$

So, area of triangle ABC will be $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{90(90-40)(90-60)(90-80)} \\
& =\sqrt{90 \times 50 \times 30 \times 10} \\
& =\sqrt{3 \times 30 \times 5 \times 10 \times 30 \times 10} \\
& =300 \sqrt{15} \\
& =1161.895 \mathrm{~m}^{2}
\end{aligned}
$$

Now, from equation (I),
Area of parallelogram $\mathrm{ABCD}=2 \times 1161.895 \mathrm{~m}^{2}=2323.79 \mathrm{~m}^{2}$.
Therefore, the area of parallelogram ABCD is $2323.79 \mathrm{~m}^{2}$.

7 The perimeter of a triangular field is $\mathbf{4 2 0} \mathrm{m}$ and its sides are in the ratio 6 : 7:8. Find the area of the triangular field.

Solution:

Given: The perimeter of a triangular field is 420 m and its sides are in the ratio $6: 7: 8$.
According to the question, Let the sides in meters are $a=6 x, b=7 x$ and $c=8 x$.
So, perimeter of the triangle $=6 x+7 x+8 x$
$420=21 \mathrm{x}$
$x=\frac{420}{21}$
$x=20$
Since, the sides of the triangular field are $a=6 \times 20 \mathrm{~cm}=120 \mathrm{~m}, b=7 \times 20 \mathrm{~m}=140 \mathrm{~m}$ and $c=8 \times 20 \mathrm{~m}=160 \mathrm{~m}$.

Now, semi-perimeter(s) of triangle will be:

$$
\begin{aligned}
s & =\frac{1}{2} \times 420 \mathrm{~m} \\
& =210 \mathrm{~m}
\end{aligned}
$$

Area of the triangle field $=\sqrt{s(s-a)(s-b)(s-c)}$ [Using Heron's formula]

$$
\begin{aligned}
& =\sqrt{210(210-120)(210-140)(210-160)} \\
& =\sqrt{210 \times 90 \times 70 \times 50} \\
& =100 \sqrt{7 \times 3 \times 3^{2} \times 7 \times 5} \\
& =100 \times 7 \times 3 \times \sqrt{15} \\
& =2100 \sqrt{15}
\end{aligned}
$$

Therefore, the area of the triangular field is $2100 \sqrt{15}$.

8 The sides of a quadrilateral ABCD are $6 \mathrm{~cm}, 8 \mathrm{~cm}, 12 \mathrm{~cm}$ and 14 cm (taken in order) respectively, and the angle between the first two sides is a right angle. Find its area.

Solution:

Given: The sides of a quadrilateral ABCD are $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$, and $\mathrm{CD}=12 \mathrm{~cm}$ and $D A=14 \mathrm{~cm}$.
Construction: Join AC.

In the right triangle $A B C$, whose angle B is right angle. So,
$A C^{2}=A B^{2}+B C^{2} \quad[B y$ Pythagoras theorem $]$
$A C^{2}=6^{2}+8^{2}$
$A C^{2}=36+64$
$A C=\sqrt{100}$
$A C=10$

Area of quadrilateral $\mathrm{ABCD}=$ Area of triangle $\mathrm{ABC}+$ Area of triangle ACD
Now, area of triangle $\mathrm{ABC}=\frac{1}{2} \times A B \times A C$

$$
\begin{aligned}
& =\frac{1}{2} \times 6 \times 8 \\
& =24 \mathrm{~cm}^{2}
\end{aligned}
$$

In triangle ACD , let $\mathrm{AC}=\mathrm{a}=10 \mathrm{~cm}, \mathrm{CD}=\mathrm{b}=12 \mathrm{~cm}$, and $\mathrm{DA}=\mathrm{c}=14 \mathrm{~cm}$.
Now, semi-perimeter of triangle ACD will be:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{10+12+14}{2} \\
& =\frac{36}{2} \\
& =18 \mathrm{~cm}
\end{aligned}
$$

So, area of triangle $\mathrm{ACD}=\sqrt{s(s-a)(s-b)(s-c)}$ [By heron's formula]

$$
\begin{aligned}
& =\sqrt{18(18-10)(18-12)(18-14)} \\
& =\sqrt{18 \times 8 \times 6 \times 4} \\
& =\sqrt{(3)^{2} \times 2 \times 4 \times 2 \times 3 \times 2 \times 4} \\
& =3 \times 4 \times 2 \sqrt{3 \times 2} \\
& =24 \sqrt{6} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the quadrilateral ABCD is $24 \sqrt{6} \mathrm{~cm}^{2}$.
9 A rhombus shaped sheet with perimeter 40 cm and one diagonal 12 cm , is painted on both sides at the rate of Rs 5 per m^{2}. Find the cost of painting.

Solution:

Given: One diagonal $=12 \mathrm{~cm}$, Perimeter of rhombus $=40 \mathrm{~cm}$
So,
$4 \times$ Side $=40$
side $=\frac{40}{4}$
Side $=10 \mathrm{~cm}$

In triangle ABC , let $\mathrm{a}=10 \mathrm{~cm}, \mathrm{~b}=10 \mathrm{~cm}$, and $\mathrm{c}=12 \mathrm{~cm}$.
As we know that rhombus is also a parallelogram, so its diagonal divide it into two congruent triangles of equal area. So, Area of rhombus $=2($ Area of triangle $A B C)$

Now, Semi-perimeter of triangle ABC will be:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{10+10+12}{2} \\
& =\frac{32}{2} \\
& =16 \mathrm{~cm}
\end{aligned}
$$

So, area of triangle $\mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$

$$
=\sqrt{16(16-10)(16-10)(16-12)}
$$

$$
=\sqrt{16 \times 6 \times 6 \times 4}
$$

$$
=\sqrt{2304}
$$

$$
=48 \mathrm{~cm}^{2}
$$

Since, area of rhombus $=2($ Area of triangle ABC$)$

$$
\begin{aligned}
& =2 \times 48 \mathrm{~cm}^{2} \\
& =96 \mathrm{~cm}^{2}
\end{aligned}
$$

The cost of painting of the sheet is Rs. 5 per m^{2}.
Therefore, cost of painting both sides of rhombus shaped sheet $\mathrm{ABCD}=$ Rs. $(2 \times 5 \times 96)=$ Rs. 960 .

10 Find the area of the trapezium PQRS with height PQ given in Fig.

Solution:

Let PQRS is a trapezium, in which draw a line RT perpendicular to PS.

See the figure, $\mathrm{ST}=\mathrm{PS}-\mathrm{TP}=12-7=5 \mathrm{~cm}$
So, in right triangle STR,
$(S R)^{2}=(S T)^{2}+(T R)^{2}$ [By using Pythagoras theorem]
$(13)^{2}=(5)^{2}+(T R)^{2}$
$(T R)^{2}=169-25$
$(T R)^{2}=144$
$T R=12 m$
Now, area of triangle STR $=\frac{1}{2} \times T R \times T S$ [area of triangle $=\frac{1}{2} \times$ Base \times Height

$$
\begin{aligned}
& =\frac{1}{2} \times 12 \times 5 \\
& =30 \mathrm{~m}^{2}
\end{aligned}
$$

As, area of rectangle $\mathrm{PQRT}=P Q \times R Q=12 \times 7=84 \mathrm{~m}^{2}$
Now, area of trapezium $=$ Area of DSTR + Area of rectangle PQRT

$$
\begin{aligned}
& =30+84 \\
& =114 m^{2}
\end{aligned}
$$

Therefore, the area of trapezium is $114 \mathrm{~m}^{2}$.

Exercise No. 12.4

Long Answer Questions:

1. How much paper of each shade is needed to make a kite given in Fig., in which $A B C D$ is a square with diagonal 44 cm ?

Solution:

Given: Diagonal of square $\mathrm{ABCD}=44 \mathrm{~cm}$
Also, ABCD is a square. $\mathrm{So}, \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Now, in triangle ACD,

$$
\begin{aligned}
A C^{2} & =A D^{2}+D C^{2} \\
44^{2} & =A D^{2}+A D^{2} \\
2 A D^{2} & =44 \times 44 \\
2 A D^{2} & =22 \times 2 \times 22 \times 2 \\
A D^{2} & =22 \times 2 \times 22 \\
A D & =\sqrt{22 \times 2 \times 22} \\
A D & =22 \sqrt{2}
\end{aligned}
$$

Now, area of square $\mathrm{ABCD}=$ Side \times Side $=22 \sqrt{2} \times 22 \sqrt{2}=968 \mathrm{~cm}^{2}$
Since, area of square is divided into four parts.
Now, the area of paper of Red shade needed to make the kite is: $=\frac{1}{4} \times 968 \mathrm{~cm}^{2}=242 \mathrm{~cm}^{2}$
Also, area of green portion is:
$=\frac{1}{4} \times 968 \mathrm{~cm}^{2}$
$=242 \mathrm{~cm}^{2}$
Similarly, area of yellow portion is:
$=\frac{1}{2} \times 968 \mathrm{~cm}^{2}=484 \mathrm{~cm}^{2}$
In triangle PCQ , Let $\mathrm{PC}=\mathrm{a}=20 \mathrm{~cm}, \mathrm{CQ}=\mathrm{b}=20 \mathrm{~cm}$, and $\mathrm{PQ}=\mathrm{c}=14 \mathrm{~cm}$.
Now, semi-perimeter of triangle PCQ will be:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{20+20+14}{2} \\
& =\frac{54}{2} \\
& =27 \mathrm{~cm}
\end{aligned}
$$

So, area of triangle $\mathrm{PCQ}=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{27 \times(27-20) \times(27-20)(27-14)} \\
& =\sqrt{27 \times 7 \times 7 \times 13} \\
& =\sqrt{3 \times 3 \times 3 \times 7 \times 7 \times 13} \\
& =21 \sqrt{39} \\
& =21 \times 6.24 \\
& =131.04 \mathrm{~cm}^{2}
\end{aligned}
$$

Since, the total area of green portion $=242 \mathrm{~cm}^{2}+131.04 \mathrm{~cm}^{2}=373.04 \mathrm{~cm}^{2}$
Therefore, the paper required for each shade to make a kite is red paper $=242 \mathrm{~cm}^{2}$, yellow paper $=484 \mathrm{~cm}^{2}$, and green paper $=373.04 \mathrm{~cm}^{2}$.

2. The perimeter of a triangle is $\mathbf{5 0} \mathbf{~ c m}$. One side of a triangle is $\mathbf{4} \mathbf{~ c m}$ longer than the smaller side and the third side is $\mathbf{6} \mathbf{~ c m}$ less than twice the smaller side. Find the area of the triangle.

Solution:

Given: the perimeter of a triangle is 50 cm .
Now, semi-perimeter(s) of the triangle is $=\frac{\text { Perimeter of triangle }}{2}=\frac{50}{2}=25$
Suppose that the smaller side of the triangle be $a=x c m$. So, the second side will be $b=(x+4)$ cm and $3^{\text {rd }}$ side will be $\mathrm{c}=(2 \mathrm{x}-6) \mathrm{cm}$.

Now, perimeter of triangle $=a+b+c=x+(x+4)+(2 x-6)$
$50 \mathrm{~cm}=(4 \mathrm{x}-2) \mathrm{cm}$
$50=4 \mathrm{x}-2$
$4 \mathrm{x}=50+2$
$4 \mathrm{x}=52$
$x=\frac{52}{4}$
$x=13$

Since, the three side of the triangle are:
$a=x=13$,
$\mathrm{b}=\mathrm{x}+4=13+4=17$
$\mathrm{c}=2 \mathrm{x}-6=2 \times 13-6=26-6=20$.

So, area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{25 \times(25-13) \times(25-17) \times(25-20)} \\
& =\sqrt{25 \times 12 \times 8 \times 5} \\
& =\sqrt{5 \times 5 \times 4 \times 3 \times 4 \times 2 \times 5} \\
& =5 \times 4 \times 20 \sqrt{30} \mathrm{~cm}^{2} \\
& =20 \sqrt{30} \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of triangle is $20 \sqrt{30} \mathrm{~cm}^{2}$.
3. The area of a trapezium is $475 \mathrm{~cm}^{2}$ and the height is 19 cm . Find the lengths of its two parallel sides if one side is 4 cm greater than the other.

Solution:

Given:
Area of a trapezium $=475 \mathrm{~cm}^{2}$ and Height $=19 \mathrm{~cm}$.

According to the question, let one sides of trapezium is x . So, another side will be $\mathrm{x}+4$.
Now, Area of trapezium $=\frac{1}{2} \times($ Sum of the parallel sides $) \times$ Height

$$
\begin{aligned}
475 & =\frac{1}{2} \times(x+x+4) \times 19 \mathrm{~cm} \\
2 x+4 & =\frac{950}{19} \\
& =50 \\
2 x & =50-4 \\
2 x & =46 \\
x & =23
\end{aligned}
$$

Therefore, the length of the parallel side of trapezium are $x=23 \mathrm{~cm}$ and $\mathrm{x}+4=23+4=27$ cm.
4. A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a
minimum of 3 m , wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.

Solution:

Given: Let a rectangular plot ABCD is constructing a house, having a measurement of 40 m long and 15 m in the front.

According to the question,
Length of inner-rectangle (EF) $=40-3-3=34 \mathrm{~m}$
And breadth of inner rectangle $(\mathrm{FG})=15-2-2=11 \mathrm{~m}$
Now, area of inner rectangle (EFGH) will be $=$ Length \times Breadth

$$
\begin{aligned}
& =E F \times F G \\
& =34 \times 1 \mathrm{~lm}^{2} \\
& =374 \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, the largest area where house can be constructed $=374 \mathrm{~m}^{2}$.
5. A field is in the shape of a trapezium having parallel sides 90 m and 30 m . These sides meet the third side at right angles. The length of the fourth side is $\mathbf{1 0 0} \mathbf{m}$. If it costs Rs 4 to plough $\mathbf{1 m}^{\mathbf{2}}$ of the field, find the total cost of ploughing the field.

Solution:

Given: In the trapezium ABCD , the two parallel sides are $\mathrm{AB}=90 \mathrm{~m}, \mathrm{CD}=30 \mathrm{~m}$, and $E C \perp A B$.
So, $\mathrm{EB}=\mathrm{AB}-\mathrm{EA}=90 \mathrm{~m}-30 \mathrm{~m}=60 \mathrm{~m}$

Now, in triangle BEC,

$$
(B C)^{2}=(B E)^{2}+(E C)^{2}
$$

$$
\begin{aligned}
100^{2} & =60^{2}+(E C)^{2} \\
(E C)^{2} & =10000-3600 \\
(E C)^{2} & =6400 \\
E C & =\sqrt{6400} \\
E C & =80 \mathrm{~m}
\end{aligned}
$$

Now, area of trapezium $A B C D=\frac{1}{2} \times($ Sum of parallel sides $) \times($ Distance between parallel sides $)$

$$
\begin{aligned}
& =\frac{1}{2} \times(A B+C D) \times E C \\
& =\frac{1}{2} \times(90+30) \times 80 \\
& =\frac{1}{2} \times 120 \times 80 \\
& =4800 \mathrm{~m}^{2}
\end{aligned}
$$

The cost of ploughing the field of $1 \mathrm{~m}^{2}$ is Rs. 4.
Now, The cost of ploughing the field of $4800 \mathrm{~m}^{2}$ area $=4800 \times$ Rs. $4=$ Rs. 19200 .
Therefore, the total cost of plughing the field is Rs. 19200.
6. In Fig., $\triangle \mathrm{ABC}$ has sides $\mathrm{AB}=7.5 \mathrm{~cm}, \mathrm{AC}=6.5 \mathrm{~cm}$ and $\mathrm{BC}=7 \mathrm{~cm}$. On base $B C$ a parallelogram $D B C E$ of same area as that of $\triangle A B C$ is constructed. Find the height DF of the parallelogram.

Solution:

Given: in triangle ABC , the sides are $\mathrm{AB}=\mathrm{a}=7.5 \mathrm{~cm}, \mathrm{BC}=\mathrm{b}=7 \mathrm{~cm}$, and $\mathrm{CA}=\mathrm{c}=6.5 \mathrm{~cm}$. Now, semi-perimeter of a triangle will be:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{7.5+7+6.5}{2} \\
& =\frac{21}{2} \\
& =10.5
\end{aligned}
$$

So, area of triangle $\mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$ [By heron's formula]

$$
\begin{aligned}
& =\sqrt{10.5 \times(10.5-7.5)(10.5-7)(10.5-6.5)} \\
& =\sqrt{10.5 \times 3 \times 3.5 \times 4} \\
& =\sqrt{441} \\
& =21 \mathrm{~cm}^{2}
\end{aligned}
$$

Also, the area of parallelogram BCED will be $=$ Base \times Height

$$
\begin{aligned}
& =B C \times D F \\
& =7 \times D F
\end{aligned}
$$

Now, according to the question,
Area of triangle $\mathrm{ABC}=$ Area of parallelogram BCED

$$
21=7 \times D F
$$

$D F=\frac{21}{4}$
$D F=3 \mathrm{~cm}$
Hence, the height of parallelogram BCED is 3 cm .
7. The dimensions of a rectangle $A B C D$ are $51 \mathrm{~cm} \times 25 \mathrm{~cm}$. A trapezium $P Q C D$ with its parallel sides $Q C$ and $P D$ in the ratio $9: 8$, is cut off from the

rectangle as shown in the Fig. If the area of the trapezium PQCD is $\frac{5}{6}$ th part of the area of the rectangle, find the lengths QC and PD.

Solution:

Given: ABCD is a rectangle, where $\mathrm{AB}=51 \mathrm{~cm}$ and $\mathrm{BC}=25 \mathrm{~cm}$.
The parallel sides QC and PD of the trapezium PQCD are in the ratio of 9:8. Let $\mathrm{QC}=9 \mathrm{x}$ and $P D=8 x$.

Now, the area of trapezium PQCD:
$=\frac{1}{2} \times($ Sum of parallel sides $) \times($ Distance between parallel sides $)$
$=\frac{1}{2} \times(9 x+8 x) \times 25 \mathrm{~cm}^{2}$
$=\frac{1}{2} \times 17 x \times 25$
Again, area of rectangle $\mathrm{ABCD}=B C \times C D=51 \times 25$
Now, according to the question,
Area of trapezium $\mathrm{PQCD}=\frac{5}{6} \times$ Area of rectangle ABCD

$$
\begin{aligned}
\frac{1}{2} \times 17 x \times 25 & =\frac{5}{6} \times 51 \times 25 \\
x & =\frac{5}{6} \times 51 \times 25 \times 2 \times \frac{1}{17 \times 25} \\
x & =5
\end{aligned}
$$

Therefore, the length of the trapezium $\mathrm{PQCD}, \mathrm{QC}=9 \mathrm{x}=9 \times 5=45 \mathrm{~cm}$ and, $\mathrm{PD}=8 \mathrm{x}=$ $8 \times 5=40 \mathrm{~cm}$.
8. A design is made on a rectangular tile of dimensions $50 \mathrm{~cm} \times 70 \mathrm{~cm}$ as shown in Fig. The design shows 8 triangles, each of sides $26 \mathrm{~cm}, 17 \mathrm{~cm}$ and 25 cm . Find the total area of the design and the remaining area of the tile.

Solution:

Given: the dimension of the rectangular tile are $50 \mathrm{~cm} \times 70 \mathrm{~cm}$.
So, area of the rectangular tile $=50 \mathrm{~cm} \times 70 \mathrm{~cm}=3500 \mathrm{~cm}^{2}$.
See the given figure in the question, the sides of the triangle $A B C$ be: $a=25 \mathrm{~cm}, b=17 \mathrm{~cm}$, and $c=26 \mathrm{~cm}$

Since, semi-parameter(s) of triangle be:

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
& =\frac{25+17+26}{2} \\
& =\frac{68}{2} \\
& =34
\end{aligned}
$$

So, area of triangle $\mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$
[By heron's formula]
Since, Total area of eight triangle $=8 \times$ Area of triangle ABC

$$
\begin{aligned}
& =204 \times 8 \\
& =1632 \mathrm{~cm}^{2}
\end{aligned}
$$

The area of the design will be equal to the area of eight triangle that is $1632 \mathrm{~cm}^{2}$.

Now, remaining area of the tile $=$ Area of the rectangle - Area of the design $=$ $3500 \mathrm{~cm}^{2}-1632 \mathrm{~cm}^{2}=1868 \mathrm{~cm}^{2}$
Therefore, total area of the design is $1632 \mathrm{~cm}^{2}$ and the remaining area of the tile is $1868 \mathrm{~cm}^{2}$.

