12 Heron's Formula

EXERCISE 12.1

Q.1. A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side ' a '. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board?

Sol. Each side of the triangle $=a$
Perimeter of the triangle $=3 a$
$\therefore s=\frac{3 a}{2}$

\therefore Area of the signal board (triangle) $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{s(s-a)(s-a)(s-a)} \quad[\because a=b=c] \\
& =(s-a) \sqrt{s(s-a)}=\left(\frac{3 a}{2}-a\right) \sqrt{\frac{3 a}{2}\left(\frac{3 a}{2}-a\right)} \\
& =\frac{a}{2} \cdot \sqrt{\frac{3 a^{2}}{4}}=\frac{a \cdot a}{2} \sqrt{3}=\frac{a^{2}}{4} \sqrt{3}
\end{aligned}
$$

Hence, area of the signal board $=\frac{a^{2}}{4} \sqrt{3}$ sq units Ans.
Now, perimeter $=180 \mathrm{~cm}$
Each side of the triangle $=\frac{180}{3} \mathrm{~cm}=60 \mathrm{~cm}$
Area of the triangle $=\frac{(60)^{2}}{4} \times \sqrt{3} \mathrm{~cm}^{2}=\mathbf{9 0 0} \sqrt{\mathbf{3}} \mathbf{~ c m}^{2}$ Ans.
Q.2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m (see Fig.). The advertisements yield an earning of $R s 5000$ per m^{2} per year. A company hired one of its walls for 3 months. How much rent did it pay?

Sol. Here, we first find the area of the triangular side walls.
$a=122 \mathrm{~m}, \quad b=120 \mathrm{~m}$ and $c=22 \mathrm{~m}$
$\therefore s=\frac{122+120+22}{2} \mathrm{~m}=132 \mathrm{~m}$.

Area of the triangular side wall $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{132(132-122)(132-120)(132-22)} \mathrm{m}^{2} \\
& =\sqrt{132 \times 10 \times 12 \times 110} \mathrm{~m}^{2}=1320 \mathrm{~m}^{2}
\end{aligned}
$$

Rent of $1 \mathrm{~m}^{2}$ of the wall for 1 year $=\operatorname{Rs} 5000$
\therefore Rent of $1 \mathrm{~m}^{2}$ of the wall for 1 month $=\operatorname{Rs} \frac{5000}{12}$
\therefore Rent of the complete wall ($1320 \mathrm{~m}^{2}$) for 3 months

$$
=\operatorname{Rs} \frac{5000}{12} \times 1320 \times 3=\text { Rs } 16,50,000 \text { Ans. }
$$

Q.3. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN" (see Fig.). If the sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m , find the area painted

Sol. Here $a=15 \mathrm{~m}, b=11 \mathrm{~m}, c=6 \mathrm{~m}$
$\therefore s=\frac{a+b+c}{2}=\frac{15+11+6}{2} \mathrm{~m}=16 \mathrm{~m}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{16(16-15)(16-11)(16-6)} \mathrm{m}^{2} \\
& =\sqrt{16 \times 1 \times 5 \times 10} \mathrm{~m}^{2}=20 \sqrt{2} \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the area painted in colour $=20 \sqrt{2} \mathrm{~m}^{2}$ Ans.
Q.4. Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .
Sol. Here $a=18 \mathrm{~cm}, \quad b=10 \mathrm{~cm}, c=$?
Perimeter of the triangle $=42 \mathrm{~cm}$
$\Rightarrow a+b+c=42$
$\Rightarrow 18+10+c=42$
$\Rightarrow c=42-28=14$
Now, $s=\frac{a+b+c}{2}=\frac{42}{2} \mathrm{~cm}=21 \mathrm{~cm}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-18)(21-10)(21-14)} \mathrm{cm}^{2}$
$=\sqrt{21 \times 3 \times 11 \times 7} \mathrm{~cm}^{2}=\sqrt{7 \times 3 \times 3 \times 11 \times 7} \mathrm{~cm}^{2}$
$=7 \times 3 \sqrt{11} \mathrm{~cm}^{2}=21 \sqrt{11} \mathrm{~cm}^{2}$ Ans.
Q.5. Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.
Sol. Let the sides of the triangle be $12 x \mathrm{~cm} 17 x \mathrm{~cm}$ and $25 x \mathrm{~cm}$.
Perimeter of the triangle $=540 \mathrm{~cm}$

$$
\begin{aligned}
& \therefore 12 x+17 x+25 x=540 \\
& \Rightarrow 54 x=540 \\
& \quad \Rightarrow \quad x=\frac{540}{54}=10
\end{aligned}
$$

\therefore Sides of the triangle are $(12 \times 10) \mathrm{cm},(17 \times 10) \mathrm{cm}$ and $(25 \times 10) \mathrm{cm}$ i.e., $120 \mathrm{~cm}, 170 \mathrm{~cm}$ and 250 cm .
Now, suppose $a=120 \mathrm{~cm}, b=170 \mathrm{~cm}, c=250 \mathrm{~cm}$,

$$
\therefore \quad s=\frac{a+b+c}{2}=\frac{540}{2} \mathrm{~cm}=270 \mathrm{~cm}
$$

Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{270(270-120)(270-170)(270-250)} \mathrm{cm}^{2} \\
& =\sqrt{270 \times 150 \times 100 \times 20} \mathrm{~cm}^{2}=\mathbf{9 0 0 0} \mathbf{c m}^{2} \text { Ans. }
\end{aligned}
$$

Q.6. An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of the tirangle.
Sol. Here, $a=b=12 \mathrm{~cm}$,
Also, $\quad a+b+c=30 \Rightarrow 12+12+c=30 \Rightarrow c=30-24=6$
$\therefore \quad s=\frac{a+b+c}{2}=\frac{30}{2} \mathrm{~cm}=15 \mathrm{~cm}$
\therefore Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{15(15-12)(15-12)(15-6)} \mathrm{cm}^{2} \\
& =\sqrt{15 \times 3 \times 3 \times 9} \mathrm{~cm}^{2}=9 \sqrt{15} \mathbf{c m}^{2} \text { Ans. }
\end{aligned}
$$

12 Heron's Formula

EXERCISE 12.2

Q.1. A park, in the shape of a quadrilateral $A B C D$, has $\angle C=90^{\circ}$, $A B=9 m, B C=12 m, C D=5 m$ and $A D=8 \mathrm{~m}$. How much area does it оссиру?
Sol. ABCD is the park as shown in the figure.
Join BD.
In $\triangle \mathrm{DBC}$, we have
$\mathrm{DB}^{2}=\mathrm{BC}^{2}+\mathrm{CD}^{2} \quad[$ Pythagoras theorem]
$\Rightarrow \quad \mathrm{DB}^{2}=(12)^{2}+5^{2}$
$\Rightarrow \quad \mathrm{DB}=\sqrt{144+25}=\sqrt{169}$
$\Rightarrow \quad \mathrm{DB}=13 \mathrm{~m}$.
Area of $\triangle \mathrm{DBC}=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times 12 \times 5 \mathrm{~m}^{2}=30 \mathrm{~m}^{2}
$$

In $\triangle \mathrm{ABD}, a=9 \mathrm{~m}, b=8 \mathrm{~m}, c=13 \mathrm{~m}$
$\therefore \quad s=\frac{a+b+c}{2}=\frac{9+8+13}{2} \mathrm{~m}=15 \mathrm{~m}$

$$
\begin{aligned}
\therefore \quad \text { Area of } \triangle \mathrm{ABD} & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{15(15-9)(15-8)(15-13)} \mathrm{m}^{2} \\
& =\sqrt{15 \times 6 \times 7 \times 2} \mathrm{~m}^{2} \\
& =\sqrt{1260} \mathrm{~m}^{2}=35.5 \mathrm{~m}^{2} \text { (approx.) }
\end{aligned}
$$

\therefore Area of the park $=$ area of $\triangle \mathrm{DBC}+$ area of $\triangle \mathrm{ABD}$

$$
=(30+35.5) \mathrm{m}^{2}=65.5 \mathrm{~m}^{2} \text { Ans. }
$$

Q.2. Find the area of a quadrilateral $A B C D$ in which $A B=3 \mathrm{~cm}$, $B C=4 \mathrm{~cm}, C D=4 \mathrm{~cm}, D A=5 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.
Sol. In $\triangle \mathrm{ABC}$, we have

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =9+16=25 \\
& =\mathrm{AC}^{2}
\end{aligned}
$$

Hence, ABC is a right triangle, right angled at B
[By converse of Pythagoras theorem]
\therefore Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times 3 \times 4 \mathrm{~cm}^{2}=6 \mathrm{~cm}^{2} .
$$

In $\triangle \mathrm{ACD}, a=5 \mathrm{~cm}, b=4 \mathrm{~cm}, c=5 \mathrm{~cm}$.

$\therefore \quad s=\frac{a+b+c}{2}=\frac{5+4+5}{2} \mathrm{~cm}=7 \mathrm{~cm}$
\therefore Area of $\triangle \mathrm{ACD}=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{7 \times(7-5)(7-4)(7-5)} \mathrm{cm}^{2}=\sqrt{7 \times 2 \times 3 \times 2} \mathrm{~cm}^{2} \\
& =\sqrt{84} \mathrm{~cm}^{2}=9.2 \mathrm{~cm}^{2} \quad(\text { approx.) }
\end{aligned}
$$

$\therefore \quad$ Area of the quadrilateral $=$ area of $\triangle \mathrm{ABC}+$ area of $\triangle \mathrm{ACD}$

$$
=(6+9.2) \mathrm{cm}^{2}=15.2 \mathrm{~cm}^{2} \text { Ans. }
$$

Q.3. Radha made a picture of an aeroplane with coloured paper as shown in the figure. Find the total area of the paper used.

Sol. For the triangle marked I :

$a=5 \mathrm{~cm}, b=5 \mathrm{~cm}, c=1 \mathrm{~cm}$
$\therefore \quad s=\frac{a+b+c}{2}=\frac{5+5+1}{2} \mathrm{~cm}=\frac{11}{2} \mathrm{~cm}=5.5 \mathrm{~cm}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{5.5(5.5-5)(5.5-5)(5.5-1)} \mathrm{cm}^{2} \\
& =\sqrt{5.5 \times 0.5 \times 0.5 \times 4.5} \mathrm{~cm}^{2}=\sqrt{6.1875} \mathrm{~cm}^{2}=2.5 \mathrm{~cm}^{2}
\end{aligned}
$$

For the rectangle marked II :
Length $=6.5 \mathrm{~cm}$, Breadth $=1 \mathrm{~cm}$
Area of the rectangle $=6.5 \times 1 \mathrm{~cm}^{2}=6.5 \mathrm{~cm}^{2}$
For the trapezium marked III :
Draw AF \| DC and AE \perp BC.
$\mathrm{AD}=\mathrm{FC}=1 \mathrm{~cm}, \mathrm{DC}=\mathrm{AF}=1 \mathrm{~cm}$
$\therefore \mathrm{BF}=\mathrm{BC}-\mathrm{FC}=(2-1) \mathrm{cm}=1 \mathrm{~cm}$ Hence, $\triangle \mathrm{ABF}$ is equilateral.
Also, E is the mid-point of BF .

$\therefore \mathrm{BE}=\frac{1}{2} \mathrm{~cm}=0.5 \mathrm{~cm}$
Also, $\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2} \quad$ [Pythagoras theorem]
$\Rightarrow \mathrm{AE}^{2}=1^{2}-(0.5)^{2}=0.75$
$\Rightarrow \mathrm{AE}=0.9 \mathrm{~cm}$ (approx.)
Area of the trapezium $=\frac{1}{2}$ (sum of the parallel sides) \times distance between them.

$$
=\frac{1}{2} \times(\mathrm{BC}+\mathrm{AD}) \times \mathrm{AE}=\frac{1}{2} \times(2+1) \times 0.9 \mathrm{~cm}^{2}=1.4 \mathrm{~cm}^{2} .
$$

For the triangle marked IV :
It is a right-triangle
\therefore Area of the triangle $=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times 6 \times 1.5 \mathrm{~cm} \mathrm{~cm}^{2}=4.5 \mathrm{~cm}^{2}
$$

For the triangle marked V :
This triangle is congruent to the triangle marked IV.
Hence, area of the triangle $=4.5 \mathrm{~cm}^{2}$
Total area of the paper used $=(2.5+6.5+1.4+4.5+4.5) \mathrm{cm}^{2}$

$$
=19.4 \mathrm{~cm}^{2} \text { Ans. }
$$

Q.4. A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm and the parallelogram stands on the base 28 cm , find the height of the parallelogram.
Sol. In the figure, ABCD is a parallelogram and ABE is the triangle which stands on the base AB
For the triangle $\mathrm{ABE}, a=30 \mathrm{~cm}, b=28 \mathrm{~cm}, c=26 \mathrm{~cm}$.
$\therefore \quad s=\frac{a+b+c}{2}=\frac{30+28+26}{2} \mathrm{~cm}=42 \mathrm{~cm}$
\therefore Area of the $\triangle \mathrm{ABE}=\sqrt{s(s-a)(s-b)(s-c)}$

$$
=\sqrt{42(42-30)(42-28)(42-26)} \mathrm{cm}^{2}
$$

$$
\begin{aligned}
&=\sqrt{42 \times 12 \times 14 \times 16} \mathrm{~cm}^{2}=\sqrt{112896} \mathrm{~cm}^{2} \\
&=336 \mathrm{~cm}^{2} \\
& \text { Now, area of the parallelogram }=\text { base } \times \text { height } \\
& \Rightarrow \quad 336=28 \times \text { height } \quad \text { [Given, area of the triangle } \\
&=\text { area of the parallelogram] }
\end{aligned}
$$

\Rightarrow Height of the parallelogram $=\frac{336}{28} \mathrm{~cm}=12 \mathrm{~cm}$ Ans.
Q.5. A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each cow be getting?
Sol. Clearly, the diagonal AC of the rhombus divides it into two congruent triangles.
For triangle ABC, $a=b=30 \mathrm{~m}, c=48 \mathrm{~m}$.
$\therefore s=\frac{a+b+c}{2}=\frac{30+30+48}{2} \mathrm{~m}=54 \mathrm{~m}$
\therefore Area of the triangle

$$
\begin{aligned}
& =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{54(54-30)(54-30)(54-48)} \mathrm{m}^{2} \\
& =\sqrt{54 \times 24 \times 24 \times 6} \mathrm{~m}^{2}=432 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore Area of the rhombus $=2 \times 432 \mathrm{~m}^{2}=864 \mathrm{~m}^{2}$
Number of cows $=18$
Hence, area of the grass field which each cow gets

$$
=\frac{864}{18} \mathrm{~m}^{2}=48 \mathrm{~m}^{2} \text { Ans. }
$$

Q.6. An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see Fig.), each piece measuring $20 \mathrm{~cm}, 50 \mathrm{~cm}$, and 50 cm . How much cloth of each colour is required for the umbrella?
Sol. First we find the area of one triangular piece.
Here, $a=b=50 \mathrm{~cm}, c=20 \mathrm{~cm}$

$\therefore s=\frac{a+b+c}{2}=\frac{50+50+20}{2} \mathrm{~cm}=60 \mathrm{~m}$
\therefore Area of one triangular piece $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{60(60-50)(60-50)(60-20)} \mathrm{cm}^{2} \\
& =\sqrt{60 \times 10 \times 10 \times 40} \mathrm{~cm}^{2}=200 \sqrt{6} \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of 10 such triangular pieces $=10 \times 200 \sqrt{6} \mathrm{~cm}^{2}$

$$
=2000 \sqrt{6} \mathrm{~cm}^{2}
$$

Hence, cloth required for each colour $=\frac{2000 \sqrt{6}}{2} \mathrm{~cm}^{2}=\mathbf{1 0 0 0} \sqrt{\mathbf{6}} \mathbf{c m}^{2}$ Ans.
Q.7. A kite in the shape of a square with a diagonal 32 cm and an isosceles triangle of base 8 cm and sides 6 cm each is to be made of three different shades as shown in figure. How much paper of each shade has been used in it?
Sol. ABCD is a square.
$\mathrm{So}, \mathrm{AO}=\mathrm{OC}=\mathrm{OB}=\mathrm{OD}$ and $\angle \mathrm{AOB}=90^{\circ} \quad$ [Diagonals of a square bisect each other at right angles]
$\mathrm{BD}=32 \mathrm{~cm}$ (Given) $\Rightarrow \mathrm{OA}=\frac{32}{2} \mathrm{~cm}=16 \mathrm{~cm}$.
$\triangle \mathrm{ABD}$ is a right triangle.
So, area of $\triangle \mathrm{ABD}=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times 32 \times 16 \mathrm{~cm}^{2}=256 \mathrm{~cm}^{2}
$$

Thus, area of $\triangle \mathrm{BCD}=256 \mathrm{~cm}^{2}$
For triangle CEF, $a=b=6 \mathrm{~cm}, c=8 \mathrm{~cm}$.

$\therefore s=\frac{a+b+c}{2}=\frac{6+6+8}{2} \mathrm{~cm}=10 \mathrm{~cm}$
\therefore Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{10(10-6)(10-6)(10-8)} \mathrm{cm}^{2} \\
& =\sqrt{10 \times 4 \times 4 \times 2} \mathrm{~cm}^{2}=\sqrt{320} \mathrm{~cm}^{2}=17.92 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, paper needed for shade $I=256 \mathbf{~ c m}^{2}$, for shade II
$=256 \mathrm{~cm}^{2}$ and for shade III $=17.92 \mathrm{~cm}^{2}$ Ans.
Q.8. A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm (see figure). Find the cost of polishing the tiles at the rate of 50 p per cm^{2}.
Sol. We have lengths of the sides of 1 triangular tile are $a=35 \mathrm{~cm}, b=28 \mathrm{~cm}$, $c=9 \mathrm{~cm}$.
$\therefore s=\frac{a+b+c}{2}=\frac{35+28+9}{2} \mathrm{~cm}=36 \mathrm{~cm}$

\therefore Area of 1 triangular tile $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{36(36-35)(36-28)(36-9)} \mathrm{cm}^{2} \\
& =\sqrt{36 \times 1 \times 8 \times 27} \mathrm{~cm}^{2}=\sqrt{7776} \mathrm{~cm}^{2}=88.2 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of 16 such tiles $=16 \times 88.2 \mathrm{~cm}^{2}$

Cost of polishing $1 \mathrm{~cm}^{2}=50 \mathrm{p}=\operatorname{Re} 0.50$
\therefore Total cost of polishing the floral design $=$ Rs $16 \times 88.2 \times 0.50$
= Rs 705.60 Ans.
Q.9. A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m . The non-parallel sides are 14 m and 13 m . Find the area of the field.
Sol. In the figure ABCD is the field. Draw $\mathrm{CF} \| \mathrm{DA}$ and $\mathrm{CG} \perp \mathrm{AB}$.
$\mathrm{DC}=\mathrm{AF}=10 \mathrm{~m}, \mathrm{AD}=\mathrm{FC}=13 \mathrm{~m}$
For $\triangle \mathrm{BCF}, a=15 \mathrm{~m}, b=14 \mathrm{~m}, c=13 \mathrm{~m}$
$\therefore s=\frac{a+b+c}{2}=\frac{15+14+13}{2} \mathrm{~m}=21 \mathrm{~m}$
\therefore Area of $\triangle \mathrm{BCF}=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{21(21-15)(21-14)(21-13)} \mathrm{m}^{2} \\
& =\sqrt{21 \times 6 \times 7 \times 8} \mathrm{~m}^{2} \\
& =\sqrt{7056} \mathrm{~cm}^{2}=84 \mathrm{~m}^{2}
\end{aligned}
$$

Also, area of $\triangle \mathrm{BCF}=\frac{1}{2} \times$ base \times height

$$
\begin{array}{rlrl}
& & =\frac{1}{2} \times \mathrm{BF} \times \mathrm{CG} \\
\Rightarrow & & 84 & =\frac{1}{2} \times 15 \times \mathrm{CG} \\
\Rightarrow & & \mathrm{CG} & =\frac{84 \times 2}{15} \mathrm{~m}=11.2 \mathrm{~m}
\end{array}
$$

\therefore Area of the trapezium $=\frac{1}{2} \times$ sum of the parallel sides \times distance between them.

$$
\begin{aligned}
& =\frac{1}{2} \times(25+10) \times 11.2 \mathrm{~m}^{2} \\
& =196 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, area of the field $=196 \mathbf{~ m}^{2}$ Ans.

