Chapter - 10

Construction

Exercise No. 10.1

Multiple Choice Questions:

Choose the correct answer from the given four options:

1. To divide a line segment $A B$ in the ratio 5:7, first a ray $A X$ is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is
(A) 8
(B) 10
(C) 11
(D) 12

Solution:

(D) 12

As given in the question,
A line segment AB in the ratio 5:7
So,
A:B = 5:7
We draw a ray AX making an acute angle $\angle B A X$,
And mark $\mathrm{A}+\mathrm{B}$ points at equal distance.
$\mathrm{A}=5$ and $\mathrm{B}=7$

Therefore,
Minimum number of these points $=\mathrm{A}+\mathrm{B}$

$$
=5+7=12
$$

2. To divide a line segment $A B$ in the ratio 4:7, a ray $A X$ is drawn first such that BAX is an acute angle and then points $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots$ are located at equal distances on the ray $A X$ and the point B is joined to
(A) A_{12}
(B) \mathbf{A}_{11}
(C) A_{10}
(D) \mathbf{A}_{9}

Solution:
(B) A_{11}

As given in the question,
A line segment $A B$ in the ratio 4:7

So,
A:B $=4: 7$
Now,
Draw a ray AX making an acute angle BAX
Minimum number of points located at equal distances on the ray,

$$
\begin{aligned}
\mathrm{AX} & =\mathrm{A}+\mathrm{B} \\
& =4+7 \\
& =11
\end{aligned}
$$

$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots$ are located at equal distances on the ray AX .
Point B is joined to the last point is A_{11}.
3. To divide a line segment $A B$ in the ratio $5: 6$, draw a ray $A X$ such that $\angle B A X$ is an acute angle, then draw a ray BY parallel to $A X$ and the points $A_{1}, A_{2}, A_{3}, \ldots$ and $B_{1}, B_{2}, B_{3}, \ldots$ are located at equal distances on ray $A X$ and $B Y$, respectively. Then the points joined are
(A) \mathbf{A}_{5} and B_{6}
(B) A_{6} and B_{5}
(C) \mathbf{A}_{4} and B_{5}
(D) \mathbf{A}_{5} and \mathbf{B}_{4}

Solution:

(A)
A_{5} and B_{6}
As given in the question,
A line segment $A B$ in the ratio 5:7
So,
$\mathrm{A}: \mathrm{B}=5: 7$
Steps of construction:

1. Draw a ray AX, an acute angle BAX.
2. Draw a ray $B Y \| A X$, angle $A B Y=$ angle $B A X$.
3. Now, locate the points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$ and A_{5} on AX and $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \mathrm{~B}_{5}$ and B_{6} (Because A: B =5:7)
4. Join $\mathrm{A}_{5} \mathrm{~B}_{6}$.
$\mathrm{A}_{5} \mathrm{~B}_{6}$ intersect AB at a point C .
AC : $\mathrm{BC}=5: 6$

5. To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle A B C$, first draw a ray $B X$ such that $\angle C B X$ is an acute angle and X lies on the opposite side of A with respect to $B C$. Then locate points $B_{1}, B_{2}, B_{3}, \ldots$ on $B X$ at equal distances and next step is to join
(A) B_{10} to C
(B) B_{3} to C
(C) B_{7} to C
(D) B_{4} to C

Solution:
(C)

In this, we locate points $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \mathrm{~B}_{5}, \mathrm{~B}_{6}$ and B_{7} on BX at equal distance and in next step join the last point B_{7} to C.
5. To construct a triangle similar to a given $\triangle A B C$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle A B C$ draw a ray $B X$ such that $\angle C B X$ is an acute angle and X is on the opposite side of A with respect to $B C$. The minimum number of points to be located at equal distances on ray $B X$ is
(A) 5
(B) 8
(C) 13
(D) 3

Solution:
(B)

To construct a triangle similar to a given triangle, with its sides $\frac{m}{n}$ of the n corresponding sides of given triangle the minimum number of points to be located at equal distance is equal to the greater of m and n in $\frac{m}{n}$. Here, $\frac{m}{n}=\frac{8}{5}$ So, the minimum number of point to be located at equal distance on ray BX is 8 .

6. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be

(A) 135°
(B) 90°
(C) 60°
(D) 120°

Solution:

(D)

The angle between them should be 120° because in that case the figure formed by the intersection point of pair of tangent, the two end points of those two radii (at which tangents are drawn) and the centre of the circle is a quadrilateral.

From figure POQR is a quadrilateral,

$$
\begin{aligned}
\angle \mathrm{POQ}+\angle \mathrm{PRQ} & =180^{\circ} \\
60^{\circ}+\theta & =180^{\circ} \\
\theta & =120^{\circ}
\end{aligned}
$$

Therefore, the required angle between them is 120 .

Short Answer Questions with Reasoning:

Write 'True' or 'False' and justify your answer in each of the following:

1. By geometrical construction, it is possible to divide a line segment in the ratio $\sqrt{3}: \frac{1}{\sqrt{3}}$.

Solution:

True
Explanation:
As given in the question,
Ratio $=\sqrt{3}: \frac{1}{\sqrt{3}}$
On solving,
$\sqrt{3}: \frac{1}{\sqrt{3}}=3: 1$
Required ratio $=3: 1$
Therefore, geometrical construction is possible to divide a line segment in the ratio 3:1.
2. To construct a triangle similar to a given $\triangle A B C$ with its sides $\frac{7}{3}$ of the corresponding sides of $\triangle \mathrm{ABC}$, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to $B C$. The points $B_{1}, B_{2}, \ldots, B_{7}$ are located at equal distances on $B X, B_{3}$ is joined to C and then a line segment $\mathrm{B}_{6} \mathrm{C}^{\prime}$ is drawn parallel to ${ }^{\mathrm{B}_{3} \mathrm{C}}$ where C^{\prime} lies on BC produced. Finally, line segment $A^{\prime} C^{\prime}$ is drawn parallel to $A C$.

Solution:

False

Steps of construction:

1. Draw a line segment BC with suitable length.
2. Taking B and C as centers draw two arcs of suitable radii intersecting each other at A.
3. Join BA and $\mathrm{CA} . \triangle \mathrm{ABC}$ is the required triangle.
4. From B draw any ray $B X$ downwards making an acute angle CBX.
5. Locate seven points $B_{1}, B_{2}, B_{3}, \ldots . B_{7}$ on $B X$ such that $B_{1}=B_{1} B_{2}=B_{1} B_{3}=B_{3} B_{4}=B_{4} B_{5}$ $=\mathrm{B}_{5} \mathrm{~B}_{6}=\mathrm{B}_{6} \mathrm{~B}_{7}$.
6. Join $\mathrm{B}_{3} \mathrm{C}$ and from B 7 draw a line $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ ॥ $\mid \mathrm{B} 3 \mathrm{C}$ intersecting the extended line segment BC at C'.
7. From point C^{\prime} draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}^{\prime}$ intersecting the extended line segment BA at A^{\prime}.

Then
$\Delta \mathrm{A}^{\prime} \mathrm{BC} C^{\prime}$ is the required triangle whose sides are $\frac{7}{3}$ of the corresponding sides of $\triangle \mathrm{ABC}$.
Given,
Segment $\mathrm{B}_{6} \mathrm{C}^{\prime}$ is drawn parallel to $\mathrm{B}_{3} \mathrm{C}$.
But from our construction is never possible that segment $\mathrm{B}_{6} \mathrm{C}^{\prime}$ is parallel to $\mathrm{B}_{3} \mathrm{C}$ because the similar triangle $A^{\prime} B^{\prime}$ ' has its sides $\frac{7}{3}$ of the corresponding sides of triangle $A B C$.
Therefore, $\mathrm{B}_{7} \mathrm{C}^{\prime}$ is parallel to $\mathrm{B}_{3} \mathrm{C}$.

3. A pair of tangents can be constructed from a point \mathbf{P} to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre.

Solution:

False
As, the radius of the circle is 3.5 cm
$\mathrm{r}=3.5 \mathrm{~cm}$ and a point P situated at a distance of 3 cm from the centre
So,
$\mathrm{d}=3 \mathrm{~cm}$.
We can see that $\mathrm{r}>\mathrm{d}$
Therefore, a point P lies inside the circle.
And, no tangent can be drawn to a circle from a point lying inside it.
4. A pair of tangents can be constructed to a circle inclined at an angle of 170°.

Solution:

True
As, the angle between the pair of tangents is always greater than 0 but less than 180°. Therefore, we can draw a pair of tangents to a circle inclined at an angle at 170°.

Exercise No. 10.3

Short Answer Questions:

Question:

1. Draw a line segment of length 7 cm . Find a point P on it which divides it in the ratio 3:5.

Solution:

Steps of construction:

1. Draw a line segment $A B=7 \mathrm{~cm}$.
2. Draw a ray $A X$, making an acute $\angle B A X$.
3. Along AX, mark $3+5=8$ points
$A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$
Such that $A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{6} A_{7}=A_{7} A_{8}$
4. Join $A_{8} B$.
5. From A_{3}, draw $A_{3} P \| A_{8} B$ meeting $A B$ at P.
[by making an angle equal to $\angle B \mathrm{~A}_{8} \mathrm{~A}$ at A_{3}]
So, P is the point on AB which divides it in the ratio $3: 5$.

Explanation:

Let
$\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=$ \qquad $=\mathrm{A}_{7} \mathrm{~A}_{8}=\mathrm{x}$

In $\triangle \mathrm{ABA}_{8}$, we have
$\mathrm{A}_{3} \mathrm{P} \| \mathrm{A}_{8} \mathrm{~B}$
$\frac{A P}{P B}=\frac{A A_{3}}{A_{3} A_{8}}=\frac{3 x}{5 x}$
Therefore, $\mathrm{AP}: \mathrm{PB}=3: 5$
2. Draw a right triangle $A B C$ in which $B C=12 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle B=$ 90°. Construct a triangle similar to it and of scale factor $\frac{2}{3}$. Is the new triangle also a right triangle?

Solution:

Steps of construction:

1. Draw a line segment $\mathrm{BC}=12 \mathrm{~cm}$.
2. From B draw a line $A B=5 \mathrm{~cm}$ which makes right angle at B.
3. Join $\mathrm{AC}, \triangle \mathrm{ABC}$ is the given right triangle.
4. From B draw an acute $\angle C B X$ downwards.
5. On ray $B X$, mark three points B_{1}, B_{2} and B_{3}, such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}$.
6. Join $B_{3} C$.
7. From point B_{2} draw $B_{2} N \| B_{3} C$ intersect $B C$ at N.
8. From point N draw $N M \| C A$ intersect $B A$ at $M . \triangle M B N$ is the required triangle. $\triangle \mathrm{MBN}$ is also a right angled triangle at B .

3. Draw a triangle $A B C$ in which $B C=6 \mathrm{~cm}, C A=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$.

 Construct a triangle similar to it and of scale factor $\frac{5}{3}$.
Solution:

Steps of construction:

1. Draw a line segment $\mathrm{BC}=6 \mathrm{~cm}$.
2. Taking B and C as centers, draw two arcs of radii 4 cm and 5 cm intersecting each other at A.
3. Join BA and $\mathrm{CA} . \triangle \mathrm{ABC}$ is the required triangle.
4. From B, draw any ray $B X$ downwards making at acute angle $\angle C B X$
5. Mark five points $B_{1}, B_{2}, B_{3}, B_{4}$ and B_{5} on $B X$, such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=$ $\mathrm{B}_{4} \mathrm{~B}_{5}$.

6. Join $B_{3} C$ and from B_{5} draw $B_{5} M \| B_{3} C$ intersecting the extended line segment $B C$ at M.
7. From point M draw $\mathrm{MN} \| \mathrm{CA}$ intersecting the extended line segment BA at N .

Therefore, $\triangle \mathrm{NBM}$ is the required triangle whose sides is equal to $\frac{5}{3}$ of the corresponding sides of the $\triangle \mathrm{ABC}$.

4. Construct a tangent to a circle of radius 4 cm from a point which is at a distance of 6 cm from its center.

Solution:

We have, a point M^{\prime} is at a distance of 6 cm from the centre of a circle of radius 4 cm . Steps of construction:

1. Draw a circle of radius 4 cm . Let the centre of this circle be O .
2. Join OM' and bisect it. Let M be mid-point of OM'.
3. Taking M as centre and $M O$ as radius draw a circle to intersect circle $(0,4)$ at two points, P and Q .
4. Join $\mathrm{PM}{ }^{\prime}$ and QM^{\prime}. $\mathrm{PM}{ }^{\prime}$ and QM^{\prime} are the required tangents from M^{\prime} to circle $\mathrm{C}(0,4)$.

Exercise No. 10.4

Long Answer Questions:

Question:

1. Two line segments $A B$ and $A C$ include an angle of 60° where $A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$. Locate points P and Q on $A B$ and $A C$, respectively such that $A P=\frac{3}{4} A B$ and $A Q=\frac{1}{4} A C . J o i n P$ and Q and measure the length $P Q$.

Solution:

Steps of construction:

1. Draw a line segment $\mathrm{AB}=5 \mathrm{~cm}$.
2. Also, make $\angle \mathrm{BAZ}=60^{\circ}$.
3. With center A and radius 7 cm , draw an arc cutting the line AZ at C .
4. Draw a ray AX, making an acute $\angle B A X$.
5. Divide $A X$ into four equal parts, namely $A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}$.
6. Join $A_{4} B$.
7. Draw $\mathrm{A}_{3} \mathrm{P} \| \mathrm{A}_{4} \mathrm{~B}$ meeting AB at P .
8. Therefore, P is the point on AB such that $\mathrm{AP}=\frac{3}{4} \mathrm{AB}$.
9. Now, draw a ray AY, such that it makes an acute $\angle C A Y$.
10. Divide $A Y$ into four parts, namely $A B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
11. Join B4C.
12. Draw $B_{1} Q \| B_{4} C$ meeting $A C$ at Q. We get, Q is the point on $A C$ such that $A Q=\frac{1}{4} A C$.
13. Join $P Q$ and measure it.
14. $P Q=3.25 \mathrm{~cm}$.

15. Draw a parallelogram $A B C D$ in which $B C=5 \mathrm{~cm}, A B=3 \mathrm{~cm}$ and angle $\angle A B C=60^{\circ}$, divide it into triangles $B C D$ and $A B D$ by the diagonal $B D$. Construct the triangle $\mathrm{BD}^{\prime} \mathrm{C}^{\prime}$ similar to triangle BDC with scale factor $\frac{4}{3}$.
Draw the line segment $D^{\prime} A^{\prime}$ parallel to $D A$ where A^{\prime} lies on extended side BA. Is $\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime}$ a parallelogram?

Solution:

Steps of constructions:

1. Draw a line $A B=3 \mathrm{~cm}$.
2. Now draw a ray $B Y$ making an acute $\angle A B Y=60^{\circ}$.
3. With centre B and radius 5 cm , draw an arc cutting the point C on $B Y$.
4. Draw a ray AZ making an acute $\angle Z A X=60^{\circ}$
$\left(\mathrm{BY} \| \mathrm{AZ}\right.$, as,$\left.\angle \mathrm{YBX}^{\prime}=\mathrm{ZAX}{ }^{\prime}=60^{\circ}\right)$
5. With centre A and radius 5 cm , draw an arc cutting the point D on AZ .
6. Join CD
7. We obtain a parallelogram ABCD .
8. Join BD , the diagonal of parallelogram ABCD .
9. Draw a ray BX downwards making an acute $\angle \mathrm{CBX}$.
10. Locate 4 points $B_{1}, B_{2}, B_{3}, B_{4}$ on $B X$, such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
11. Join $B_{4} C$ and from $B_{3} C$ draw a line $B_{4} C \| B_{3} C$ intersecting the extended line segment $B C$ at C^{\prime}.
12. Draw $C^{\prime} D^{\prime} \| C D$ intersecting the extended line segment $B D$ at D^{\prime}. Then, $\triangle D^{\prime} B C^{\prime}$ is the required triangle whose sides are $\frac{4}{3}$ of the corresponding sides of $\triangle \mathrm{DBC}$.
13. Now we draw a line segment $\mathrm{D}^{\prime} \mathrm{A}^{\prime} \| \mathrm{DA}$, where A^{\prime} lies on the extended side BA.
14. We observe that $\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime}$ is a parallelogram in which $\mathrm{A}^{\prime} \mathrm{D}^{\prime}=6.5 \mathrm{~cm} \mathrm{~A}^{\prime} \mathrm{B}=4 \mathrm{~cm}$ and $\angle A^{\prime} B D^{\prime}=60^{\circ}$ divide it into triangles $\mathrm{BC}^{\prime} \mathrm{D}^{\prime}$ and $\mathrm{A}^{\prime} \mathrm{BD}^{\prime}$ by the diagonal BD^{\prime}.

15. Draw two concentric circles of radii 3 cm and 5 cm . Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.

Solution:

We have, two concentric circles of radii 3 cm and 5 cm with centre O.
We draw pair of tangents from point P on outer circle to the other.

1. Draw two concentric circles with centre O and radii 3 cm and 5 cm .
2. Taking any point P on outer circle. Join OP.
3. Bisect OP, let M' be the mid-point of OP taking M' as centre and OM' as radius draw a circle dotted which cuts the inner circle at M and P^{\prime}.
4. Join PM and PP'. Thus, PM and PP' are the required tangents.
5. On measuring $P M$ and $P P^{\prime}$, we find that $P M=P P^{\prime}=4 \mathrm{~cm}$.

Now actual calculation:
In right angle $\triangle \mathrm{OMP}$,

$$
\begin{aligned}
\angle \mathrm{PMO} & =90^{\circ} \\
\mathrm{PM}^{2} & =\mathrm{OP}^{2}-\mathrm{OM}^{2} \\
\mathrm{PM}^{2} & =(5)^{2}-(3)^{2} \\
25-9 & =16 \\
\mathrm{PM} & =4 \mathrm{~cm}
\end{aligned}
$$

$$
\mathrm{PM}^{2}=\mathrm{OP}^{2}-\mathrm{OM}^{2} \quad[\text { by Pythagoras theorem] }
$$

Therefore, the length of both tangents is 4 cm .
4. Draw an isosceles triangle $A B C$ in which $A B=A C=6 \mathrm{~cm}$ and $B C=5$ cm . Construct a triangle $P Q R$ similar to triangle $A B C$ in which $P Q=8 \mathrm{~cm}$. Also justify the construction.

Solution:

Let $\triangle \mathrm{PQR}$ and $\triangle \mathrm{ABC}$ are similar triangles, then its scale factor between the corresponding sides is $\frac{P Q}{A B}=\frac{8}{6}=\frac{4}{3}$

Steps of construction:

1. Draw a line segment $\mathrm{BC}=5 \mathrm{~cm}$.
2. Construct $O Q$ the perpendicular bisector of line segment $B C$ meeting $B C$ at P '.
3. Taking B and C as centre we draw two arcs of equal radius 6 cm intersecting each other at A.
4. Join BA and CA . So, $\triangle \mathrm{ABC}$ is the required isosceles triangle.

5. From B, we draw any ray $B X$ making an acute $\angle C B X$.
6. Locate four points B_{1}, B_{2}, B_{3} and B_{4} on $B X$ such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
7. Now join $B_{3} C$ and from B_{4} draw a line $B_{4} R \| B_{3} C$ intersecting the extended line segment BC at R .
8. From point R , draw RP ॥ CA meeting BA produced at P .

Then, $\Delta \mathrm{PBR}$ is the required triangle.
Explanation,
As, we have,
$\mathrm{B}_{4} \mathrm{R} \| \mathrm{B}_{3} \mathrm{C}$
(by construction)
$\frac{B C}{C R}=\frac{3}{1}$
or,
$\frac{C R}{B C}=\frac{1}{3}$
Now,

$$
\begin{aligned}
\frac{B R}{B C} & =\frac{B C+C R}{B C} \\
& =1+\frac{C R}{B C} \\
& =1+\frac{1}{3} \\
& =\frac{4}{3}
\end{aligned}
$$

And,
$R P \square C A$
So, $\triangle A B C \square \triangle P B R$
Hence,
$\frac{P B}{A B}=\frac{R P}{C A}=\frac{B R}{B C}=\frac{4}{3}$
5. Draw a triangle ABC in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{ABC}=$ 60°.Construct a triangle similar to ABC with scale factor $\frac{5}{7}$. Justify the construction.

Solution:

Steps of construction:

1. Draw a line segment $A B=5 \mathrm{~cm}$.
2. From point B, draw $\angle A B Y=60^{\circ}$ on which take $B C=6 \mathrm{~cm}$.
3. Join $A C, \triangle A B C$ is the required triangle.
4. From A, draw any ray $A X$ downwards making an acute angle $\angle B A X$
5. Mark 7 points $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ and B_{7} on $A X$, such that $A B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=$ $\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}=\mathrm{B}_{6} \mathrm{~B}_{7}$.
6. Join $\mathrm{B}_{7} \mathrm{~B}$ and from B_{5} draw $\mathrm{B}_{5} \mathrm{M} \| \mathrm{B}_{7} \mathrm{~B}$ intersecting AB at M .
7. From point M draw $\mathrm{MN} \| \mathrm{BC}$ intersecting AC at N . Then, $\triangle \mathrm{AMN}$ is the required triangle whose sides are equal to $\frac{5}{7}$ of the corresponding sides of the $\triangle \mathrm{ABC}$.

Explanation:
Here,
$\mathrm{B}_{5} \mathrm{M}$ ॥ $\mathrm{B}_{7} \mathrm{~B}$
(by construction)
$\frac{A M}{B M}=\frac{5}{2}$
or,
$\frac{B M}{A M}=\frac{2}{5}$
$\frac{A B}{A M}=\frac{A M+B M}{A M}$
$=1+\frac{B M}{A M}$
$=1+\frac{2}{5}$
$=\frac{7}{5}$
Also, $M N \square B C$
So, $\triangle A M N \square \triangle A B C$
$\frac{A M}{A B}=\frac{A N}{A C}=\frac{N M}{B C}=\frac{5}{7}$
6. Draw a circle of radius $\mathbf{4 c m}$. Construct a pair of tangents to it, the angle between which is 60°. Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.

Solution:

Steps of construction:

1. Take a point O on the plane of the paper and draw a circle of radius $\mathrm{OA}=4 \mathrm{~cm}$.
2. Produce OA to B such that $\mathrm{OA}=\mathrm{AB}=4 \mathrm{~cm}$.
3. Taking A as the centre draw a circle of radius $A O=A B=4 \mathrm{~cm}$.

Suppose it cuts the circle drawn in step 1 at P and Q .
4. Join BP and BQ to get desired tangents.

Explanation:
In $\triangle \mathrm{OAP}$, we have
$\mathrm{OA}=\mathrm{OP}=4 \mathrm{~cm}$
(Radius)
Also,
$\mathrm{AP}=4 \mathrm{~cm}$
(As, Radius of circle with centre A)
$\triangle \mathrm{OAP}$ is equilateral triangle.
$\angle \mathrm{PAO}=60^{\circ}$
$\angle \mathrm{BAP}=120^{\circ}$

Therefore in $\triangle \mathrm{BAP}$, $\mathrm{BA}=\mathrm{AP}$
and $\angle \mathrm{BAP}=120^{\circ}$
So,
$\angle \mathrm{ABP}=\angle \mathrm{APB}$
$=30^{\circ}$
$\angle \mathrm{PBQ}=60^{\circ}$
7. Draw a triangle ABC in which $\mathrm{AB}=\mathbf{4 c m}, \mathrm{BC}=\mathbf{6} \mathrm{cm}$ and $\mathrm{AC}=9 \mathrm{~cm}$. Construct a triangle similar to $\triangle A B C$ with scale factor $\frac{3}{2}$. Justify the construction. Are the two triangles congruent? Note that all the three angles and two sides of the two triangles are equal.

Solution:

Steps of construction:

1. Firstly draw a line segment $\mathrm{BC}=6 \mathrm{~cm}$.
2. Taking B and C as centre, draw two arcs of radii 4 cm and 9 cm intersecting each other at A.
3. Join $B A$ and $C A . ~ \triangle A B C$ is the required triangle.
4. From B, draw any ray $B X$ downwards making an acute angle $\angle C B X$
5. Mark three points B_{1}, B_{2}, B_{3}, on $B X$, such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}$.

6. Join $B_{2} C$ and from B_{3} draw $B_{3} M \| B_{2} C$ intersecting $B C$ at M.
7. From point M , draw $\mathrm{MN} \| C A$ intersecting the extended line segment BA to N .

Then $\triangle \mathrm{NBM}$ is the required triangle whose sides are equal to ${ }^{\frac{3}{2}}$ of the $\triangle \mathrm{ABC}$.
Explanation:
$\mathrm{B}_{3} \mathrm{M} \square \mathrm{B}_{2} \mathrm{C}$
$\frac{\mathrm{BC}}{\mathrm{CM}}=\frac{2}{1}$
Now,

$$
\begin{aligned}
\frac{B M}{B C} & =\frac{B C+C M}{B C} \\
& =1+\frac{C M}{B C}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{1}{2} \\
& =\frac{3}{2}
\end{aligned}
$$

Also,
MN $\square \mathrm{CA}$
$\Delta \mathrm{ABC}: \triangle \mathrm{NBM}$
So,

$$
\frac{\mathrm{NB}}{\mathrm{AB}}=\frac{\mathrm{NM}}{\mathrm{AC}}=\frac{\mathrm{BM}}{\mathrm{BC}}=\frac{3}{2}
$$

The two triangles are not congruent because, if two triangles are congruent, then they have same shape and same size.

Therefore, all the three angles are same but three sides are not same that is one side is different.

