Chapter 10

Circles

Exercise No. 10.1

Multiple Choice Questions:

1. $A D$ is a diameter of a circle and $A B$ is a chord. If $A D=34 \mathrm{~cm}, A B=30 \mathrm{~cm}$, the distance of $A B$ from the centre of the circle is:
(A) 17 cm
(B) 15 cm
(C) 4 cm
(D) 8 cm

Solution:

Construction: Draw OP $\perp \mathrm{AB}$.

As perpendicular from the center to a chord bisect. So,
$A P=\frac{1}{2} \times A B=\frac{1}{2} \times 30=15 \mathrm{~cm}$
Radius $=O A=\frac{1}{2} \times 34=17 \mathrm{~cm}$
Now, in right triangle OPA,

$$
\begin{aligned}
O P & =\sqrt{O A^{2}-A P^{2}} \\
& =\sqrt{(17)^{2}-(15)^{2}} \\
& =\sqrt{289-225} \\
& =\sqrt{64} \\
& =8 \mathrm{~cm}
\end{aligned}
$$

Hence, the correct option is (D).
2. In Fig., if $\mathrm{OA}=5 \mathrm{~cm}, \mathrm{AB}=8 \mathrm{~cm}$ and OD is perpendicular to AB , then CD is equal to:

(A) 2 cm
(B) 3 cm
(C) 4 cm
(D) 5 cm

Solution:

As the perpendicular from the centre of a circle to a chord bisects the chord.
$\mathrm{AC}=\mathrm{CB}=\frac{1}{2} \times \mathrm{AB}=\frac{1}{2} \times 8=4 \mathrm{~cm}$
Given $\mathrm{OA}=5 \mathrm{~cm}$

$$
\begin{aligned}
A O^{2} & =A C^{2}+O C^{2} \\
(5)^{2} & =(4)^{2}+O C^{2} \\
25 & =16+O C^{2} \\
O C^{2} & =25-16 \\
& =9
\end{aligned}
$$

So, $\mathrm{OC}=3 \mathrm{~cm}$ [Length is always positive]
$\mathrm{OA}=\mathrm{OD}$ [same radius of a circle]
$\mathrm{OD}=5 \mathrm{~cm}$
$\mathrm{CD}=\mathrm{OD}-\mathrm{OC}$
$=5-3$
$=2 \mathrm{~cm}$
Hence, the correct option is (A).
3. If $A B=12 \mathrm{~cm}, B C=16 \mathrm{~cm}$ and $A B$ is perpendicular to $B C$, then the radius of the circle passing through the points A, B and C is :
(A) 6 cm
(B) 8 cm
(C) 10 cm
(D) 12 cm

Solution:

Given in the question, $\mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{BC}=16 \mathrm{~cm}$.
In a circle, $B C \perp A B$. So, that means AC will be a diameter of circle.
Now, by using Pythagoras theorem in right angled triangle ABC.
$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=(12)^{2}+(16)^{2}$
$A C^{2}=144+256$
$A C^{2}=400$
$A C=20 \mathrm{~cm}$
So, radius of circle $=\frac{1}{2} \times A C=\frac{1}{2} \times 20=10 \mathrm{~cm}$.
Therefore, the radius of circle is 10 cm .
Hence, the correct option is (C).

4. In Fig., if $\angle A B C=20^{\circ}$, then $\angle A O C$ is equal to:

(A) 20°
(B) 40°
(C) 60°
(D) 10°

Solution:
Given: $\angle A B C=20^{\circ}$
As angle subtended at the centre by an arc is twice the angle subtended by it at the remaining part of circle. So,
$\angle A O C=2 \angle A B C=2 \times 20^{\circ}=40^{\circ}$.
Hence, the correct option is (B).
5. In Fig., if $A O B$ is a diameter of the circle and $A C=B C$, then $\angle C A B$ is equal to:

(A) $\mathbf{3 0}^{\mathbf{o}}$
(B) 60°
(C) 90°
(D) 45°

Solution:

Given: AOB is a diameter of the circle and $\mathrm{AC}=\mathrm{BC}$.
So, $\angle C=90^{\circ}$ [Angle on the semicircle is 90°]
Now, $\mathrm{AC}=\mathrm{BC}$
So, $\angle A=\angle B$ [Angles opposite to equal sides of triangle are equal]
Now, by using the sum property of a triangle,

$$
\begin{aligned}
\angle A+\angle B+\angle C & =180^{\circ} \\
2 \angle A+90^{\circ} & =180^{\circ} \\
2 \angle A & =180^{\circ}-90^{\circ} \\
2 \angle A & =90^{\circ} \\
\angle A & =\frac{90^{\circ}}{2} \\
\angle A & =45^{\circ}
\end{aligned}
$$

Hence, the correct option is (D).
6. In Fig., if $\angle \mathrm{OAB}=40^{\circ}$, then $\angle \mathrm{ACB}$ is equal to:

(A) 50°
(B) 40°
(C) 60°
(D) 70°

Solution:

Given: $\angle \mathrm{OAB}=40^{\circ}$
Now, in triangle OAB ,
$\mathrm{OA}=\mathrm{OB}$ [Radii of circle]
So, $\angle O A B=\angle O B A=40^{\circ}$
[Angle opposite to equal sides are equal]
So,

$$
\begin{aligned}
\angle A O B & =180^{\circ}-\left(40^{\circ}+40^{\circ}\right) \\
& =100^{\circ}
\end{aligned}
$$

As we know that angle subtended by an arc of a circle at the center is double the angle subtended by it at any point on the remaining part of the circle. So,
$\angle A C B=\frac{1}{2} \angle A O B=\frac{1}{2} \times 100^{\circ}=50^{\circ}$
Hence, the correct option is (A).
7. In Fig., if $\angle \mathrm{DAB}=\mathbf{6 0} 0^{\circ}, \angle \mathrm{ABD}=50^{\circ}$, then $\angle \mathrm{ACB}$ is equal to:

(A) 60°
(B) 50°
(C) 70°
(D) 80°

Solution:

In triangle ABC ,

$$
\begin{aligned}
\angle A+\angle B+\angle D & =180^{\circ} \quad \text { [Angle sum property of a triangle] } \\
60^{\circ}+50^{\circ}+\angle D & =180^{\circ} \\
\angle D & =180^{\circ}-110^{\circ} \\
\angle D & =70^{\circ}
\end{aligned}
$$

That is $\angle A B D=70^{\circ}$
Now, $\angle A C B=\angle A D B=70^{\circ}$ [Angle in the same segment of a circle are equal]
Hence, the correct option is (C).

8. $A B C D$ is a cyclic quadrilateral such that $A B$ is a diameter of the circle circumscribing it and
 $\angle \mathrm{ADC}=140^{\circ}$, then $\angle \mathrm{BAC}$ is equal to:
 (A) 80°
 (B) 50°
 (C) 40°
 (D) 30°

Solution:

Given: ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and $\angle \mathrm{ADC}=140^{\circ}$.
Construction: Join AC.

See in the figure,
$\angle A D C+\angle A B C=180^{\circ} \quad$ [Given]
$140^{\circ}+\angle A B C=180^{\circ}$
So, $\angle A B C=180^{\circ}-140^{\circ}=40^{\circ}$
Now, $\angle C=90^{\circ} \quad$ [Angle in semicircle is a right angle]
In triangle ABC ,

$$
\begin{aligned}
\angle B A C & =180^{\circ}-\left(90^{\circ}+40^{\circ}\right) \\
& =50^{\circ}
\end{aligned}
$$

Hence, the correct option is (B).
9. In Fig., $B C$ is a diameter of the circle and $\angle B A O=60^{\circ}$. Then $\angle A D C$ is equal to:

(A) 30°
(B) 45°
(C) 60°
(D) $\mathbf{1 2 0}^{\circ}$

Solution:

Given: BC is a diameter of the circle and $\angle \mathrm{BAO}=60^{\circ}$.

Now, in triangle OAB,
$\mathrm{OA}=\mathrm{OB}$ [Radii of the same circle]
So, $\angle A B O=\angle B A O$
[Angle opposite to equal sides are equal]
$\angle A B O=\angle B A O=60^{\circ} \quad$ [Given]
Now, $\angle A D C=\angle A B C=60^{\circ}$ [$\angle A D C$ and $\angle A B C$ are angles in the same segment of a circle are equal]
Therefore, $\angle A D C=60^{\circ}$.
Hence, the correct option is (C).
10. In Fig. 10.9, $\angle \mathrm{AOB}=90^{\circ}$ and $\angle \mathrm{ABC}=30^{\circ}$, then $\angle \mathrm{CAO}$ is equal to:

(A) 30°
(B) 45°
(C) 90°
(D) 60°

Solution:

In triangle OAB ,
$\mathrm{OA}=\mathrm{OB} \quad$ [Radii of the same circle]
So, $\angle O A B=\angle O B A$
Now, in triangle OAB ,
$\angle O A B+\angle O B A+\angle A O B=180^{\circ}$
So,
$2 \angle O A B=180^{\circ}-\angle A O B$
$=\left(180^{\circ}-90^{\circ}\right)$
$=90^{\circ}$ [Sum of angle of triangle is 180°]
So, $\angle O A B=\frac{1}{2} \times 90^{\circ}=45^{\circ}$
Also, $\angle A C B=\frac{1}{2} \angle A O B=\frac{1}{2} \times 90^{\circ}=45^{\circ}$

Now, in triangle CAB,

$$
\begin{aligned}
\angle C A B & =180^{\circ}-(\angle A B C+\angle A C B) \\
& =180^{\circ}-\left(30^{\circ}+45^{\circ}\right)=105^{\circ}
\end{aligned}
$$

Now, $\angle C A O=\angle C A B-\angle O A B$ $\angle C A O=105^{\circ}-45^{\circ}$
Hence, the correct option is (D).

Exercise No. 10.2

Short Answer Questions with Reasoning:

Write True or False and justify your answer in each of the following:

1. Two chords $A B$ and $C D$ of a circle are each at distances 4 cm from the center. Then $A B=C D$.

Solution:

As we know that the chords equidistant from the centre of circle are equal in length.

Hence, the given statement is true.
2. Two chords $A B$ and $A C$ of a circle with center O are on the opposite side of OA. Then $\angle \mathrm{OAB}=\angle \mathrm{OAC}$.

Solution:

In this question, two chords AB and AC are not given equal.
Hence, the given statement is false because the angles will be equal if $\mathrm{AB}=\mathrm{AC}$.
3. Two congruent circles with center's O and O^{\prime} intersect at two points A and B. Then $\angle A O B=\angle A O^{\prime} B$.

Solution:

The equal chords of congruent circle subtend equal angles at the respective centers.
Hence, the given statement is true.
4. Through three collinear points a circle can be drawn.

Solution:
A circle can pass through only two collinear points but not through three collinear points.
Hence, the given statement is false.
5. A circle of radius 3 cm can be drawn through two points A, B such that $A B=6 \mathrm{~cm}$.

Solution:

As we know that radii of circle is half of the diameter. So,
Radii of circle $=\frac{6}{2} \mathrm{~cm}=3 \mathrm{~cm}$
Hence, the given statement is true.

6. If $A O B$ is a diameter of a circle and C is a point on the circle, then $\mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{AB}^{2}$.

Solution:

Given: AOB is a diameter of a circle and C is a point on the circle.
So, $\angle A C B=90^{\circ} \quad$ [Angle in a semicircle is a right angle]
In right triangle ABC ,

$$
\mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{AB}^{2} \quad[\mathrm{By} \text { Pythagoras theorem }]
$$

Hence, the correct option is true.
7. ABCD is a cyclic quadrilateral such that $\angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=70^{\circ}, \angle \mathrm{C}=95^{\circ}$ and $\angle \mathrm{D}=105^{\circ}$.

Solution:

Given: ABCD is a cyclic quadrilateral such that $\angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=70^{\circ}, \angle \mathrm{C}=95^{\circ}$ and $\angle \mathrm{D}=105^{\circ}$.

Now, sum of the opposite site of angle of quadrilateral is:

$$
\angle A+\angle C=90^{\circ}+95^{\circ}=185^{\circ}
$$

And, $\angle B+\angle D=70^{\circ}+105^{\circ}=175^{\circ}$
Since, sum of opposite angles is not equal to 180°. So, ABCD is not a cyclic quadrilateral.
Hence, the given statement is true.
8. If $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are four points such that $\angle \mathrm{BAC}=30^{\circ}$ and $\angle \mathrm{BDC}=60^{\circ}$, then \mathbf{D} is the center of the circle through A, B and C.

Solution:

There can be many points D , such that $\angle \mathrm{BDC}=60^{\circ}$ and each such point cannot be the centre of the circle through A, B and C.
Hence, the given statement is false.
9. If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are four points such that $\angle \mathrm{BAC}=45^{\circ}$ and $\angle \mathrm{BDC}=45^{\circ}$, then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are concyclic.

Solution:

Given: $\angle B A C=45^{\circ}$ and $\angle B D C=45^{\circ}$

As we know that, angles in the same segment of a circle are equal. Hence, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are concyclic.
Hence, the given statement is true.
10. In Fig., if AOB is a diameter and $\angle \mathrm{ADC}=120^{\circ}$, then $\angle \mathrm{CAB}=30^{\circ}$.

Solution:
See the given figure, $A O B$ is a diameter of circle with center O.
$\angle A D C+\angle A B C=180^{\circ}$
[ABCD is a cyclic quadrilateral]
$120^{\circ}+\angle A B C=180^{\circ}$

In triangle ABC , $\angle A C B=90^{\circ} \quad$ [Angle in a semicircle and $\angle A B C=60^{\circ}$ (proved above)]
So, $\angle C A B=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)=30^{\circ}$
Hence, the given statement is true.

Exercise No. 10.3

Short Answer Questions:

1. If arcs $A X B$ and $C Y D$ of a circle are congruent, find the ratio of $A B$ and CD.

Solution:

As we know that if two arcs of a circle are congruent, then their corresponding arcs are equal. So, we have chord $A B=$ chord $C D$.

Hence, the ratio of $A B$ and $C D$ is $1: 1$.

2. If the perpendicular bisector of a chord $A B$ of a circle $P X A Q B Y$ intersects

 the circle at P and Q, prove that $\operatorname{arc} P X A \cong \operatorname{arc} P Y B$.
Solution:

Given: PQ is the perpendicular bisector of AB .
To prove that $\operatorname{arcPXA} \cong \operatorname{arcPYB}$.

Proof: See the above figure,
$\mathrm{AM}=\mathrm{BM}$
In triangle APM and triangle BPM,
AM $=\mathrm{BM} \quad$ [Proved above]
$\angle A M P=\angle B M P \quad\left[\mathrm{Each}=90^{\circ}\right]$
$\mathrm{PM}=\mathrm{PM}$ [Common side]
So, $\triangle A P M \cong \triangle B P M$ [By SAS congruence rule]
$\mathrm{So}, \mathrm{AP}=\mathrm{BP} \quad[\mathrm{By} \mathrm{CPCT}]$
Hence, $\operatorname{arcPXA} \cong \operatorname{arcPYB}$. [If two chords of a circle are equal, then their corresponding arcs are congruent]

3. A, B and C are three points on a circle. Prove that the perpendicular bisectors of $A B, B C$ and $C A$ are concurrent.

Solution:

Given: A, B and C are three points on a circle.

To prove that perpendicular bisector of AB, BC and CA .
Construction: Draw perpendicular bisectors ST of AB, PM of BC and QR of CA . Join AB, BC, and CA.

Proof: $\mathrm{OA}=\mathrm{OB} \quad \ldots$ (I) [O lies on ST , the perpendicular bisector of AB]
Again, $\mathrm{OB}=\mathrm{OC} \ldots$..II) [O lies on PM the perpendicular bisector of BC]
And, $\mathrm{OC}=\mathrm{OA} \ldots$..III) [O lies on QR , the perpendicular bisector of CA]
Now, from equation (I), (II), and (III),
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{r}$
So, draw a circle with center O and radius r , that will pass through A, B and C .
That means a circle passing through the point A, B and C. Since, ST, PM or QR can cut each other at one and only one point O.
Therefore, O is the only one point which is equidistance from A, B and C .
Hence, the perpendicular bisector of AB, BC and CA are concurrent.

4. $A B$ and $A C$ are two equal chords of a circle. Prove that the bisector of the angle $B A C$ passes through the center of the circle.

Solution:

Given: AB and AC are two equal chords of a circle.
To prove that AM passing through O .
Construction: Let AM intersect BC at P. Join BC.

Proof: In triangle BAP and triangle CAP.
$\mathrm{AB}=\mathrm{AC} \quad$ [Given]
$\angle B A P=\angle C A P \quad$ [Given]
And, $\mathrm{AP}=\mathrm{BP}$ [Common side]
So, $\triangle B A P \cong \triangle C A P \quad$ [By SAS congruency]
Again, $\angle B A P=\angle C P A \quad$ [CPCT]
And, $\mathrm{CP}=\mathrm{PB}$
But, $\angle B P A+\angle C P A=180^{\circ} \quad$ [linear pair angles]
Now, $\angle B P A=\angle C P A=90^{\circ}$
Since, AP is perpendicular bisector of the chord BC, which will pass through the center O on being produced.
Hence, AM passes through O.

5. If a line segment joining mid-points of two chords of a circle passes through the center of the circle, prove that the two chords are parallel.

Solution:

Given: The diameter PQ passes through the center O of the circle. AB and CD are two chords of a circle whose center of O , and PQ is a diameter bisecting the chord AB and CD at L and M respectively.

To prove that $\mathrm{AB}|\mid \mathrm{CD}$
Proof: See the figure, the mid-point of $A B$ is L.
So, $\mathrm{OL} \perp \mathrm{AB}$ [The line joining the center of circle to the mid-point of a chord is perpendicular to the chord]
$\angle A L O=90^{\circ}$
Again, $\mathrm{OM} \perp \mathrm{CD}$
So, $\angle O M D=90^{\circ}$
Now, from equation (I) and (II), get:
$\angle A L O=\angle O M D=90^{\circ}$
Since, there are alternating angles. So, $\mathrm{AB} \| \mathrm{CD}$
Hence proved.
6. $A B C D$ is such a quadrilateral that A is the centre of the circle passing through B, C and D. Prove that
$\angle \mathrm{CBD}+\angle \mathrm{CDB}=\frac{1}{2} \angle \mathrm{BAD}$

Solution:

In a circle, ABCD is a quadrilateral having center A .
To prove $\angle C B D+\angle C D B=\frac{1}{2} \angle B A D$

Construction: join AC.
Proof: As we know that angle subtended by an arc at the center is double the angle subtended by it at point on the remaining part of the circle.
So, $\angle C A D=2 \angle C B D \ldots$ (I)
And $\angle B A C=2 \angle C D B$
Now, adding equation (I) and (II), get:

$$
\begin{align*}
\angle C A D+\angle B A C & =2(\angle C B D+\angle C D B) \tag{II}\\
\angle B A D & =2(\angle C B D+\angle C D B)
\end{align*}
$$

Hence, $\angle C B D+\angle C D B=\frac{1}{2} \angle B A D$.

7. O is the circumventer of the triangle $A B C$ and D is the mid-point of the

 base $B C$. Prove that $\angle \angle \mathrm{BOD}=\angle \mathrm{A}$
Solution:

Given: $O D \perp B C$ and O is the circumcenter of $\triangle A B C$.
To prove that $\angle B O D=\angle A$

Construction: join OD and OC.
Proof: In triangle OBD and triangle OCD,
$\mathrm{OB}=\mathrm{OC}$ [Each equal to radius of the circumcircle]
$\angle O D B=\angle O D C \quad\left[\right.$ Each of $\left.90^{\circ}\right]$
$\mathrm{OD}=\mathrm{OD} \quad$ [Common]
So, $\angle O B D \cong \angle O C D$ [By SAS congruency]
Since, $\angle B O D=\angle C O D \quad[\mathrm{By} \mathrm{CPCT}]$
$\angle B O C=2 \angle B O D=2 \angle C O D$
Therefore, $\angle B O C=2 \angle A$
Now, $2 \angle B O D=2 \angle A[\angle B O C=2 \angle B O D]$
$\angle B O D=\angle A$
Hence, proved.
8. On a common hypotenuse $A B$, two right triangles $A C B$ and $A D B$ are situated on opposite sides. Prove that $\angle \mathrm{BAC}=\angle \mathrm{BDC}$.

Solution:
To prove that $\angle \mathrm{BAC}=\angle \mathrm{BDC}$.
Proof: In right triangle ACB and ADB ,

$\angle A C B=90^{\circ}$ and $\angle A D B=90^{\circ}$
So, $\angle A C B+\angle A D B=90^{\circ}+90^{\circ}=180^{\circ}$
As we know that if the sum of any pair of opposite angle of a quadrilateral is 180°, then the quadrilateral is cyclic. So, ADBC is a cyclic quadrilateral.
Join CD. Now, angle $\angle B A C$ and $\angle B D C$ are made by arc BC in the same segment BDAC.
Hence, $\angle B A C=\angle B D C$. [Angle in the same segment are equal]
9. Two chords AB and AC of a circle subtends angles equal to $\mathbf{9 0}^{\circ}$ and 150°, respectively at the center. Find $\angle B A C$, if $A B$ and $A C$ lie on the opposite sides of the center.

Solution:

In triangle BOA,
$\mathrm{OB}=\mathrm{OA}$ [Both are the radius of circle]
$\angle O A B=\angle O B A$
... (I) [Angle opposite to equal sides are equal]

Now, In triangle OAB ,
$\angle O B A+\angle O A B+\angle A O C=180^{\circ}$
[By angle sum property of a triangle]
$\angle O A B+\angle O A B+90^{\circ}=180^{\circ}$
[From equation (I)]
$2 \angle O A B=180^{\circ}-90^{\circ}$
$2 \angle O A B=90^{\circ}$
$\angle O A B=45^{\circ}$

Again, in triangle AOC,
$\mathrm{AO}=\mathrm{OC}$ [radii or circle]
$\angle O C A=\angle O A C \quad \ldots$ (II) [Angle opposite to equal sides are equal]
Now, by angle sum property of a triangle:
$\angle A O C+\angle O A C+\angle O C A=180^{\circ}$
$150^{\circ}+2 \angle O A C=180^{\circ} \quad$ [From equation (II)]
$2 \angle O A C=180^{\circ}-150^{\circ}$
$2 \angle O A C=30^{\circ}$
$\angle O A C=15^{\circ}$
$\angle B A C=\angle O A B+\angle O A C=45^{\circ}+15^{\circ}=60^{\circ}$

10. If $B M$ and $C N$ are the perpendiculars drawn on the sides $A C$ and $A B$ of the triangle $A B C$, prove that the points B, C, M and N are concyclic.

Solution:

Given: In $\triangle \mathrm{ABC}, \mathrm{BM} \perp \mathrm{AC}$ and $\mathrm{CN} \perp \mathrm{AB}$.
To prove that points $\mathrm{B}, \mathrm{C}, \mathrm{M}$ and N are con-cyclic.
Construction: Draw a circle passing through the points B, C, M and N.

Proof suppose, we consider SC as a diameter of the circle. Also, we know that SC subtends a 90° to the circle.
So, the points M and N should be on a circle.
Hence, BCMN form a con-cyclic quadrilateral.
Hence proved.

11. If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral so formed is cyclic.

Solution:

Given: In triangle ABC is an isosceles triangle such that $\mathrm{AB}=\mathrm{AC}$ and also $\mathrm{DE} \mid \mathrm{SC}$.
To prove that quadrilateral BCDE is a cyclic quadrilateral.
Construction: Draw a circle passes through the point B, C, D and E.

Proof: In triangle ABC :
$\mathrm{AB}=\mathrm{AC} \quad$ [Equal sides of an isosceles triangle]
$\angle A C B=\angle A B C \quad \ldots$ (I) [Angles opposite to the equal sides are equal]
Now, DE||BC
$\angle A D E=\angle A C B \quad$ [Corresponding angles]
Now, adding equation (I) and (II), get:
$\angle A D E+\angle E D C=\angle A C B+\angle E D C$
$180^{\circ}=\angle A C B+\angle E D C \quad[\angle A D E$ and $\angle E D C$ from linear pair aniom]
$\angle E D C+\angle A C B=180^{\circ} \quad$ [From equation (I)]
Hence, BCDE is a cyclic quadrilateral because sum of the opposite angles is 180°.

12. If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal.

Solution:

Given: let ABCD be a cyclic quadrilateral and $\mathrm{AD}=\mathrm{BC}$.

Construction: Join AC and BD.
To prove that $\mathrm{AC}=\mathrm{BD}$
Proof: In triangle AOD and triangle BOC,
$\angle O A D=\angle O B C$ and $\angle \mathrm{ODA}=\angle O C B \quad$ [Same segments subtends equal angle to the circle]
$\mathrm{AB}=\mathrm{BC} \quad$ [Given]
$\triangle A O D=\triangle B O C \quad$ [By ASA congruence rule $]$
Now, adding $\triangle D O C$ on both sides, get:
$\triangle A O D+\triangle D O C \cong \triangle B O C+\triangle D O C$
$\triangle A D C \cong \triangle B C D$
$\mathrm{AC}=\mathrm{BD} \quad[\mathrm{By} \mathrm{CPCT}]$
Hence, proved.
13. The circumcentre of the triangle $A B C$ is O. Prove that $\angle \mathrm{OBC}+\angle \mathrm{BAC}=90^{\circ}$

Solution:

Given: A circle is circumscribed on a triangle ABC having center O .

To prove that $\angle O B C+\angle B A C=90^{\circ}$
Construction: Join BO and CO.
Proof: Suppose $\angle O B C=\angle O C B=\theta$
Now, in triangle $\mathrm{OBC}, \angle B O C+\angle O C B+\angle C B O=180^{\circ} \quad[\mathrm{By}$ angle sum property of a triangle is 180°]

$$
\begin{aligned}
& \angle B O C+\theta+\theta=180^{\circ} \\
& \angle B O C=180^{\circ}-2 \theta
\end{aligned}
$$

As we know that, in a circle, the angle subtended by an arc at the center is twice the angle subtended by it at the remaining part of the circle.

$$
\begin{aligned}
\angle B O C & =2 \angle B A C \\
\angle B A C & =\frac{\angle B O C}{2} \\
& =\frac{180^{\circ}-2 \theta}{2} \\
& =90^{\circ}-\theta
\end{aligned}
$$

$$
\angle B A C+\theta=90^{\circ}
$$

$\angle B A C+\angle O B C=90^{\circ}$
Hence, proved.

14. A chord of a circle is equal to its radius. Find the angle subtended by this chord at a point in major segment.

Solution:

Given: AB is a chord of a circle, which is equal to the radius of the circle that is:
$\mathrm{AB}=\mathrm{BO}$
Construction: Join OA, AC and BC
$\mathrm{As}, \mathrm{OA}=\mathrm{OB}=$ Radius of circle
$\mathrm{So}, \mathrm{OA}=\mathrm{AS}=\mathrm{BO}$
Therefore, triangle OAB is an equilateral triangle,
$\angle A O B=60^{\circ}$ [Each angle of an equilateral triangle is 60°.

As using the theorem, in a circle, the angle subtended by an arc at the center is twice the angle subtended by it at the remaining part of the circle. So,
$\angle A O B=2 \angle A C B$
$\angle A C B=\frac{60^{\circ}}{2}=30^{\circ}$
Hence, the angle subtended by this chord at a point in major segment is 30°.
15. In Fig., $\angle A D C=130^{\circ}$ and chord $B C=$ chord BE. Find $\angle C B E$.

Solution:

Given: $\angle \mathrm{ADC}=130^{\circ}$ and chord $\mathrm{BC}=$ chord BE .
Let the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D form a cyclic quadrilateral.
As, the sum of opposite angles of a cyclic quadrilateral $\triangle \mathrm{DCB}$ is 180°.
$\angle \mathrm{ADC}+\angle \mathrm{OBC}=180^{\circ}$
$130^{\circ}+\angle \mathrm{OBC}=180^{\circ}$
$\angle \mathrm{OBC}=180^{\circ}-130^{\circ}=50^{\circ}$
In triangle BOC and triangle BOE,
$\mathrm{BC}=\mathrm{BE} \quad$ [given equal chord]
$\mathrm{OC}=\mathrm{OE}$ [both are the radius of the circle]
And $\mathrm{OB}=\mathrm{OB}$ [common side]
$\triangle \mathrm{BOC} \cong \triangle \mathrm{BOE}$
$\angle \mathrm{OBC}=\angle \mathrm{OBE}=50^{\circ}$ [by CPCT]
$\angle \mathrm{CBE}=\angle \mathrm{CBO}+\angle \mathrm{EBO}=50^{\circ}+50^{\circ}=100^{\circ}$
Hence, the angle $\angle \mathrm{CBE}$ is 100°

16. In Fig., $\angle A C B=40^{\circ}$. Find $\angle O A B$.

Solution:

Given: $\angle A C B=40^{\circ}$
As we know that, a segment subtends an angle to the circle is half the angle subtends to the centre.
$\angle A O B=2 \angle A C B$

Exercise No. 10.4

Long Answer Questions:

1. If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord.

Solution:

Given: let AB and CD are two equal chords of a circle that are meet at point E .
TP prove that:
(1) $\mathrm{AE}=\mathrm{CE}$
(2) $\mathrm{BE}=\mathrm{DE}$

Construction: Draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$ and join OE where O is the center of circle.

Proof: In triangle OME and triangle ONE,
$\mathrm{OM}=\mathrm{ON} \quad$ [Equal chords of equidistance from the centre]
$\mathrm{OE}=\mathrm{OE} \quad$ [Common side]
$\angle O M E=\angle O N E \quad\left[\right.$ Each $\left.90^{\circ}\right]$
So, $\triangle O M E \cong \triangle O N E$ [By RHS congruence rule]
$\mathrm{EM}=\mathrm{EN} \quad[\mathrm{By} \mathrm{CPCT}] \quad . .(\mathrm{I})$
$\mathrm{AB}=\mathrm{CD}$
Now, dividing both side by 2 in the above equation, get:
$\frac{A B}{2}=\frac{C D}{2}$
$A M=C N \quad \ldots$ (II) [Perpendicular drawn from centre to chord bisect the chord that is AM
$=\mathrm{MB}$ and $\mathrm{CN}=\mathrm{ND}$]
Now, adding equation (I) and (II), get:
$\mathrm{EM}+\mathrm{AM}=\mathrm{EN}+\mathrm{CN}$
$\mathrm{AE}=\mathrm{CE} \quad$...(II) $\quad[$ Prove part (1)]
$A B=C D$
Now, subtracting both sides by AE, get:
$\mathrm{AB}-\mathrm{AE}=\mathrm{CD}-\mathrm{AE}$
$\mathrm{BE}=\mathrm{CD}-\mathrm{CE} \quad[$ From equation (II)]
$\mathrm{BE}=\mathrm{DE} \quad$ [Prove part (2)]
Hence, proved.

2. If non-parallel sides of a trapezium are equal, prove that it is cyclic.

Solution:

Given: ABCD is a trapezium which $\mathrm{AD} \| \mathrm{BC}$ and whose non-parallel sides AD and BC are equal that is $A B=D C$

To prove that trapezium ABCD is cyclic.
Construction: Draw $A M \perp B C$ and $D N \perp B C$.

Proof: In right triangle AMB and DNC.

$\angle A M B=\angle D N C$	$\left[\right.$ Each $\left.90^{\circ}\right]$
$\mathrm{AB}=\mathrm{DC}$	$[$ Given $]$

$\mathrm{AM}=\mathrm{DN}$ [Perpendicular distance between two parallel lines are same]
$\triangle A M B \cong \triangle D N C \quad$ [By RHS congruence rule]
$\angle B=\angle C$
[By CPCT]
Also, $\mathrm{BM}=\mathrm{CN} \quad[$ By CPCT $]$
Therefore, $\angle 1=\angle 2$ [Angles opposite to equal sides are equal]
So, $\angle B A D=\angle 1+90^{\circ}$

$$
\begin{aligned}
\angle B A D & =\angle 2+90^{\circ} \quad[\angle 1=\angle 2 \text { Prove above }] \\
& =\angle C D A
\end{aligned}
$$

Now, in quadrilateral ABCD ,
$\angle B+\angle C+\angle C D A+\angle B A D=360^{\circ}$
$\angle B+\angle C+\angle C D A+\angle B A D=360^{\circ} \quad$ [As, $\angle B=\angle C$ and $\angle C D A=\angle B A D$ prove above]
$2(\angle B+\angle C D A)=360^{\circ}$
$\angle B+\angle C D A=180^{\circ}$
As, if the same of any pair of opposite angles of a quadrilateral is 180° then the quadrilateral is cyclic.
Hence, the trapezium ABCD is cyclic.
3. If P, Q and R are the mid-points of the sides $B C, C A$ and $A B$ of a triangle and $A D$ is the perpendicular from A on $B C$, prove that P, Q, R and D are concyclic.

Solution:

To prove that R, D, P and Q are concyclie.

Construction: Join RD, QD, $P R$ and $P Q$. So, RP join to R and P, the mid-point of $A B$ and $B C$.
Proof: $\mathrm{RP} \| \mathrm{AC} \quad$ [Mid-point theorem]
Also, $\mathrm{PQ} \| \mathrm{AB}$
Now, ARPQ is a parallelogram. So,
$\angle R A Q=\angle R P Q \quad$ [opposite angles of a parallelogram] ...(I)
In triangle ABD , angle D is right angle and DR is a median. So,
$\mathrm{RA}=\mathrm{DR}$ and $\angle 1=\angle 2$
Also, $\angle 3=\angle 4$
Now, adding equation (II) and (III), get:

$$
\begin{aligned}
\angle 1+\angle 3 & =\angle 2+\angle 4 \\
\angle R D Q & =\angle R A Q \\
& =\angle R P Q
\end{aligned}
$$

Hence, R, D, P and Q are concyclie.

4. $A B C D$ is a parallelogram. A circle through A, B is so drawn that it intersects $A D$ at P and $B C$ at Q. Prove that P, Q, C and D are concyclic.

Solution:

Given: ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and $B C$ at Q .
A circle through A, B is so drawn that it intersects AD at P and BC at Q . Construction: Join PQ.

Proof:
$\angle 1=\angle A$
[Exterior angle property of cyclic quadrilateral]

Also, $\angle A=\angle C \quad$ [Opposite angles of a parallelogram]
So, $\angle 1=\angle C$
As, $\angle C+\angle D=180^{\circ} \quad$ [sum of cointerior angles on same side is 180°]
$\angle 1+\angle \mathrm{D}=180^{\circ}$ [from equation (I)]
Since, the quadrilateral QCDP is cyclic.
Therefore, the points $\mathrm{P}, \mathrm{Q}, \mathrm{C}$ and D are con-cyclic.
Hence proved.

5. Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side if intersect, they will intersect on the circumcircle of the triangle.

Solution:

Given: In triangle $\mathrm{ABC}, 1$ is perpendicular bisector of BC .
To prove that angle bisector of $\angle A$ and perpendicular bisector of BC intersect on the circumcircle of triangle ABC .

Proof: See the figure, the angle bisector of $\angle A$ intersect circumcircle of triangle ABC at D . Join BP and CP.
$\angle B A P=\angle B C P \quad$ [Angle in the same segment are equal]
$\angle B A P=\angle B C P=\frac{1}{2} \angle A \quad \ldots$ (I) $\quad[\mathrm{AP}$ is bisector of $\angle A$]
Also,
$\angle P A C=\angle P B C=\frac{1}{2} \angle A$
Now, from equation (I) and (II), get:

$\angle B C P=\angle P B C$

$\mathrm{BP}=\mathrm{CP} \quad$ [If the angles subtended by two chords of a circle at the center are equal, the chords are equal]
As, P is on perpendicular of BC .
Hence, angle bisector of $\angle A$ and perpendicular bisector of BC intersect on the circumcircle of triangle ABC .

6. If two chords AB and CD of a circle AYDZBWCX intersect at right angle (see Fig.), prove that $\operatorname{arc} \mathbf{C X A}+\operatorname{arc} \mathrm{DZB}=\operatorname{arc} \mathbf{A Y D}+\operatorname{arc} B W C=$ semicircle .

Solution:

Given: In the given circle AYDZBWCX, two chords AB and CD intersect at right angles.
To prove that $\operatorname{arc} \mathrm{CXA}+\operatorname{arc} \mathrm{DZB}=\operatorname{arc} \mathrm{AYD}+\operatorname{arc} \mathrm{BWC}=$ Semi-circle.
Construction: Draw a diameter EF parallel to CD having centre M.
Proof: As, CD||EF $\operatorname{arc} \mathrm{EC}=\operatorname{arc} \mathrm{PD}$
arc ECXA = arc EWB [symmetrical about diameter of a circle]
$\operatorname{arc} \mathrm{AF}=\operatorname{arc} \mathrm{BF}$.

Also, know that: arc ECXAYDF = Semi-circle

Arc EA $+\operatorname{arc}$ AF $=$ Semi-circle
Arc EC $+\operatorname{arc} \mathrm{CXA}+\operatorname{arc} \mathrm{FB}=$ Semi-circle $\quad[$ From equation (II)]
Arc DF $+\operatorname{arc}$ CXA $+\operatorname{arc} \mathrm{FB}=$ Semi-circle [From equation (I)]
Arc DF $+\operatorname{arc} \mathrm{FB}+\operatorname{arc} \mathrm{CXA}=$ Semi-circle
Arc DZB $+\operatorname{arc}$ CXA $=$ Semi-circle
As we know that, circle divides itself in two semi-circles, therefore the remaining portion of the circle is also equal to the semi-circle.
So, arc AYD + arc BWC = Semi-circle
Hence, proved.

7. If ABC is an equilateral triangle inscribed in a circle and P be any point on the minor arc $B C$ which does not coincide with B or C, prove that $P A$ is angle bisector of $\angle B P C$.

Solution:

Given $\triangle \mathrm{ABC}$ is an equilateral triangle inscribed in a circle and P be any point on the minor arc BC which does not coincide with B or C .
To prove that PA is an angle bisector of $\angle \mathrm{BPC}$.
Construction: Join PB and PC.

Proof: ABC is an equilateral triangle. So,
$\angle 3=\angle 4=60^{\circ}$
And, $\angle 1=\angle 4=60^{\circ} \quad$ [Angle in the same segment AB]
Now, $\angle 2=\angle 3=60^{\circ}$ [Angle in the same segment AC]
Also, $\angle 1=\angle 2=60^{\circ}$
Therefore, PA is the bisector of triangle BPC.
Hence, prove.

8. In Fig., AB and CD are two chords of a circle intersecting each other at point E. Prove that

$\angle \mathrm{AEC}=\frac{1}{2}\binom{$ Angle subtended by arc CXA at centre }{+ angle subtended by arc DYB at the centre }

Solution:

Given: AB and CD are two chords of a circle intersecting each other at point E .
To prove that $\angle A E C=\frac{1}{2} \quad$ [Angles subtended by an arc CXA at the centre + angle subtended by arc DYB at the centre]

Construction: Join AC, BC and BD.
As we known that, the angles subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle, now arc CXA subtends $\angle A O C$ at the centre and $\angle A B C$ at the remaining part of the circle. So,
$\angle A O C=2 \angle A B C$
Also, $\angle B O D=\angle B C D$
Now, adding equation (I) and (II), get:
$\angle A O C+\angle B O D=2(\angle A B C+\angle B C D)$

As, exterior angle of a triangle is equal to the sum of interior opposite angles. So, in triangle CEB:
$\angle A E C=\angle A B C+\angle B C D$
Now, from equation (III) and (IV), get:
$\angle A O C+\angle B O D=2 \angle A E C$
$\angle A E C=\frac{1}{2}(\angle A O C+\angle B O D)$
or
$\angle A E C=\frac{1}{2}$ (Angle subtended by an arc CXA at the centre + angle subtended by an arc DYB at the centre)
Hence, proved.

9. If bisectors of opposite angles of a cyclic quadrilateral $A B C D$ intersect the circle, circumscribing it at the points P and Q, prove that $P Q$ is a diameter of the circle.

Solution:

Given: ABCD is a cyclic quadrilateral.
DP and QB are the bisectors of $\angle \mathrm{D}$ and $\angle \mathrm{B}$, respectively.
To prove that PQ is the diameter of a circle.
Construction: Join QD and QC.

Proof: As, ABCD is a cyclic quadrilateral. So,
$\angle C D A+\angle C B A=180^{\circ} \quad$ [Sum of opposite angles of cyclic quadrilateral is 180°]
Now, dividing the above equation by 2 , get:
$\frac{1}{2} \angle C D A+\frac{1}{2} \angle C B A=\frac{1}{2} \times 180^{\circ}$
$\angle 1+\angle 2=90^{\circ} \quad \ldots$ (I) $\quad\left[\right.$ As, $\angle 1=\frac{1}{2} \angle C D A$ and $\left.\angle 2=\frac{1}{2} \angle C B A\right]$
$\angle 2=\angle 3 \quad$ [Angles in the same augment QC are equal] ...(II)
$\angle 1+\angle 3=90^{\circ}$
Now, from equation (I) and (II), get:
$\angle P D Q=90^{\circ}$
Hence, PQ is a diameter of a circle, because diameter of the circle.
10. A circle has radius $\sqrt{2} \mathrm{~cm}$. It is divided into two segments by a chord of length 2 cm . Prove that the angle subtended by the chord at a point in major segment is $\mathbf{4 5}^{\circ}$.

Solution:

Draw a circle having centre O and radius $\sqrt{2} \mathrm{~cm}$. let chord $\mathrm{BC}, 2 \mathrm{~cm}$ long divides the circle into two segments. And $\angle B A C$ lies in the major segment.

To prove that $\angle B A C=50^{\circ}$
Construction: Join OB and OC.
$B C^{2}=(2)^{2}=4=2+2=(\sqrt{2})^{2}+(\sqrt{2})^{2}$
$B C^{2}=O B^{2}+O C^{2}$
In triangle BOC, get:
$B C^{2}=O B^{2}+O C^{2}$
So, $\angle B O C=90^{\circ} \quad$ [By converse of Pythagoras theorem]
Since, arc Bc subtends $\angle B O C$ at the centre O and $\angle B A C$ at the remaining part of the circle.
So,

$$
\begin{aligned}
\angle B A C & =\frac{1}{2} \angle B O C \\
& =\frac{1}{2} \times 90^{\circ} \\
& =45^{\circ}
\end{aligned}
$$

Hence, proved.
11. Two equal chords $A B$ and $C D$ of a circle when produced intersect at a point P. Prove that $P B=P D$.

Solution:

Given: Two equal chords AB and CD of a circle when produced intersect at a point P .
To prove that $\mathrm{PB}=\mathrm{PD}$.
Construction: Join OP and draw $\mathrm{OL} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{CD}$.

Proof: $\mathrm{AB}=\mathrm{CD}$
$\mathrm{OL}=\mathrm{OM} \quad$ [Equal chords are equidistance from the centre]
In triangle OLP and triangle OMP,
$\mathrm{OL}=\mathrm{OM} \quad$ [above prove]
$\angle O L P=\angle O M P \quad\left[\right.$ Each $\left.90^{\circ}\right]$
$\mathrm{OP}=\mathrm{OP} \quad$ [Common side]
So, $\triangle O L P \cong \triangle O M P \quad$ [By RHS congruence rule]
$\mathrm{LP}=\mathrm{MP} \quad[\mathrm{By} \mathrm{CPCT}] \ldots(\mathrm{I})$
As, $A B=C D$
Now, dividing both side by 2 in the above equation, get:
$\frac{1}{2} A B=\frac{1}{2} C D$
$\mathrm{BL}=\mathrm{DM} \quad$ [Perpendicular distance from centre to the circle bisectors the chord that is AL $=\mathrm{LB}$ and $\mathrm{CM}=\mathrm{MD}]$

Now, subtracting equation (II) from equation (I), get:
$\mathrm{LP}-\mathrm{BL}=\mathrm{MP}-\mathrm{DM}$
Or PB =PD
Hence, proved.
12. $A B$ and $A C$ are two chords of a circle of radius r such that $A B=2 A C$. If p and q are the distances of $A B$ and $A C$ from the centre, prove that $4 q^{2}=p^{2}+3 r^{2}$.

Solution:

Given: In a circle of radius r, there are two chords $A b$ and $A C$ sch that $A B=2 A C$. Also, the distance of AB and AC from the centre are P and q , respectively.

To prove that $4 q^{2}=p^{2}+3 r^{2}$

Proof: Suppose $\mathrm{AC}=\mathrm{a}$, then $\mathrm{AB}=2 \mathrm{a}$
At centre O , perpendicular is drawn to the chords AC and AB at M and N , respectively.
$\mathrm{AM}=\mathrm{MC}=\frac{a}{2}$
$\mathrm{AN}=\mathrm{NB}=\mathrm{a}$
In triangle OAM,
$A O^{2}=A M^{2}+M O^{2} \quad$ [By Pythagoras theorem $]$
$A O^{2}=\left(\frac{a}{2}\right)^{2}+q^{2}$
In triangle OAN, using Pythagoras throrem:

$$
\begin{aligned}
& A O^{2}=(A N)^{2}+(N O)^{2} \\
& A O^{2}=(a)^{2}+(p)^{2}
\end{aligned}
$$

From equation (I) and (II), get:

$$
\begin{aligned}
\left(\frac{a}{2}\right)^{2}+q^{2} & =a^{2}+p^{2} \\
\frac{a^{2}}{4}+q^{2} & =a^{2}+p^{2} \\
a^{2}+4 q^{2} & =4 a^{2}+4 p^{2} \\
4 q^{2} & =3 a^{2}+4 p^{2} \\
4 q^{2} & =p^{2}+3\left(a^{2}+p^{2}\right)
\end{aligned}
$$

$4 q^{2}=p^{2}+3 r^{2} \quad\left[\right.$ In right angled triangle OAN, $\left.r^{2}=a^{2}+p^{2}\right]$
Hence, proved.
13. In Fig., O is the centre of the circle, $\angle B C O=30^{\circ}$. Find x and y.

