Circles

EXERCISE 10.1

Q.1. Fill in the blanks :
(i) The centre of a circle lies in \qquad of the circle. (exterior/ interior)
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in \qquad of the circle. (exterior/interior)
(iii) The longest chord of a circle is a \qquad of the circle.
(iv) An arc is a \qquad when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and \qquad of the circle.
(vi) A circle divides the plane, on which it lies in \qquad parts.
Sol. (i) interior (ii) exterior (iii) diameter (iv) semicircle (v) the chord (vi) three
Q.2. Write True or False: Give reasons for your answers.
(i) Line segment joining the centre to any point on the circle is a radius of the circle.
(ii) A circle has only finite number of equal chords.
(iii) If a circle is divided into three equal arcs, each is a major arc.
(iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
(v) Sector is the region between the chord and its corresponding arc.
(vi) A circle is a plane figure.

Sol. (i) True (ii) False (iii) False (iv) True (v) False (vi) True

10
 Circles

EXERCISE 10.2

Q.1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.
Sol. Given : Two congruent circles with centres O and O^{\prime}. AB and CD are equal chords of the circles with centres O and O^{\prime} respectively.
To Prove : $\angle \mathrm{AOB}=\angle \mathrm{COD}$
Proof : In triangles AOB and COD,

$$
\left.\left.\begin{array}{rlrl}
\mathrm{AB} & =\mathrm{CD} \quad \text { [Given] } \\
\mathrm{AO} & =\mathrm{CO}^{\prime} \\
\mathrm{BO} & =\mathrm{DO}^{\prime}
\end{array}\right\} \text { [Radii of congruent circle] }\right]
$$

Q.2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
Ans. Given : Two congruent circles with centres O and $\mathrm{O}^{\prime} . \mathrm{AB}$ and CD are chords of circles with centre O and O^{\prime} respectively such that $\angle \mathrm{AOB}$ $=\angle \mathrm{CO}^{\prime} \mathrm{D}$
To Prove : $\mathrm{AB}=\mathrm{CD}$
Proof : In triangles AOB and CO'D,

$$
\left.\left.\begin{array}{rlrl}
\mathrm{AO} & =\mathrm{CO}^{\prime} \\
\mathrm{BO} & =\mathrm{DO}^{\prime}
\end{array}\right\} \quad \text { [Radii of congruent circle] }\right] \text {] } \begin{array}{rlrl}
\angle \mathrm{AOB} & =\angle \mathrm{CO}^{\prime} \mathrm{D} & & {[\text { [Given }]} \\
\Rightarrow \triangle \mathrm{AOB} & \cong \triangle \mathrm{CO}^{\prime} \mathrm{D} & & {[\mathrm{SAS} \text { axiom }]} \\
\Rightarrow & \mathrm{AB} & =\mathrm{CD} & \\
\text { Proved. }[\mathrm{CPCT}]
\end{array}
$$

EXERCISE 10.3

Q.1. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

Ans.
(i)

(i) 0 point
(ii)

(ii) 1 point
(iii)

(iii) 2 points

Maximum number of common points $=2$ Ans.
Q.2. Suppose you are given a circle. Give a construction to find its centre.

Ans. Steps of Construction :

1. Take arc PQ of the given circle.
2. Take a point R on the arc $P Q$ and draw chords $P R$ and RQ.
3. Draw perpendicular bisectors of $P R$ and $R Q$. These perpendicular bisectors intersect at point 0 .
Hence, point 0 is the centre of the given circle.

Q.3. If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.
Ans. Given : AB is the common chord of two intersecting circles (O, r) and $\left(\mathrm{O}^{\prime}, r^{\prime}\right)$. To Prove : Centres of both circles lie on the perpendicular bisector of chord AB , i.e., AB is bisected at right angle by OO^{\prime}.
Construction : Join AO, BO, AO' and BO^{\prime}.
Proof : In $\triangle A O O^{\prime}$ and $\triangle \mathrm{BOO}^{\prime}$
$\mathrm{AO}=\mathrm{OB} \quad$ (Radii of the circle (O, r)
$\mathrm{AO}^{\prime}=\mathrm{BO}^{\prime} \quad$ (Radii of the circle $\left(\mathrm{O}^{\prime}, r^{\prime}\right)$)
$00^{\prime}=00^{\prime} \quad$ (Common)
$\therefore \quad \triangle \mathrm{AOO}^{\prime} \cong \triangle \mathrm{BOO}^{\prime} \quad$ (SSS congruency)
$\Rightarrow \quad \angle \mathrm{AOO}^{\prime}=\angle \mathrm{BOO}^{\prime}$ (CPCT)
Now in $\triangle A O C$ and $\triangle B O C$

$$
\begin{array}{cc}
\angle \mathrm{AOC} & =\angle \mathrm{BOC} \\
\mathrm{AO} & =\mathrm{BO} \\
& \left(\angle \mathrm{AOO}^{\prime}=\angle \mathrm{BOO}^{\prime}\right) \\
\mathrm{OC}=\mathrm{OC} & \\
\text { (Common) }
\end{array}
$$

$$
\begin{aligned}
& \therefore \quad \triangle \mathrm{AOC} \cong \triangle \mathrm{BOC} \quad \text { (SAS congruency) } \\
& \Rightarrow \quad \mathrm{AC}=\mathrm{BC} \text { and } \angle \mathrm{ACO}=\angle \mathrm{BCO} \\
& \Rightarrow \quad \text { (i) }(\mathrm{CPCT}) \\
& \Rightarrow \angle \mathrm{ACO}+\angle \mathrm{BCO}=180^{\circ} \\
& \\
& \Rightarrow \angle \mathrm{ACO}=\angle \mathrm{BCO}=90^{\circ} \\
& \text { Hence, } \mathrm{OO}^{\prime} \text { lie on the perpendicular bisector of } \mathrm{AB}
\end{aligned}
$$

Circles

EXERCISE 10.4

Q.1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.
Sol. In $\triangle \mathrm{AOO}^{\prime}$,

$$
\begin{aligned}
& \mathrm{AO}^{2}=5^{2}=25 \\
& \mathrm{AO}^{\prime 2}=3^{2}=9 \\
& \mathrm{OO}^{\prime 2}=4^{2}=16 \\
& \mathrm{AO}^{\prime 2}+\mathrm{OO}^{\prime 2}=9+16=25=\mathrm{AO}^{2} \\
& \Rightarrow \quad \angle \mathrm{AO}^{\prime} \mathrm{O} \\
& =90^{\circ}
\end{aligned}
$$

[By converse of pythagoras theorem]
Similarly, $\angle \mathrm{BO}^{\prime} \mathrm{O}=90^{\circ}$.

$\Rightarrow \angle \mathrm{AO}^{\prime} \mathrm{B}=90^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \mathrm{AO}^{\prime} \mathrm{B}$ is a straight line. whose mid-point is O .
$\Rightarrow \mathrm{AB}=(3+3) \mathrm{cm}=6 \mathrm{~cm}$ Ans.
Q.2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
Sol. Given : AB and CD are two equal chords of a circle which meet at E . To prove : $\mathrm{AE}=\mathrm{CE}$ and $\mathrm{BE}=\mathrm{DE}$
Construction : Draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$ and join OE. Proof : In $\triangle \mathrm{OME}$ and $\triangle \mathrm{ONE}$
$\mathrm{OM}=\mathrm{ON} \quad$ [Equal chords are equidistant]
$\mathrm{OE}=\mathrm{OE}$
[Common]
$\angle \mathrm{OME}=\angle \mathrm{ONE}$ [Each equal to 90°]
$\therefore \quad \Delta \mathrm{OME} \cong \Delta \mathrm{ONE}$
[RHS axiom]
$\Rightarrow \quad \mathrm{EM}=\mathrm{EN}$
[CPCT]
Now $\quad A B=C D$
[Given]

$$
\Rightarrow \quad \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD}
$$

..(ii) [Perpendicular from
centre bisects the chord]
Adding (i) and (ii), we get
$\mathrm{EM}+\mathrm{AM}=\mathrm{EN}+\mathrm{CN}$
$\Rightarrow \quad \mathrm{AE}=\mathrm{CE} \quad$..(iii)
Now, $\mathrm{AB}=\mathrm{CD} \quad$..(iv)
$\Rightarrow \mathrm{AB}-\mathrm{AE}=\mathrm{CD}-\mathrm{AE} \quad[$ From (iii)]
$\Rightarrow \quad \mathrm{BE}=\mathrm{CD}-\mathrm{CE} \quad$ Proved.
Q.3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
Sol. Given : AB and CD are two equal chords of a circle which meet at E within the circle and a line PQ joining the point of intersection to the centre.
To Prove : $\angle \mathrm{AEQ}=\angle \mathrm{DEQ}$

Construction : Draw OL $\perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{CD}$.
Proof : In $\triangle \mathrm{OLE}$ and $\triangle \mathrm{OME}$, we have
OL $=\mathrm{OM}$ [Equal chords are equidistant]
$\mathrm{OE}=\mathrm{OE}$
[Common]
$\angle \mathrm{OLE}=\angle \mathrm{OME} \quad\left[\right.$ Each $\left.=90^{\circ}\right]$
$\therefore \Delta \mathrm{OLE} \cong \triangle \mathrm{OME} \quad[$ RHS congruence]
$\Rightarrow \quad \angle \mathrm{LEO}=\angle \mathrm{MEO} \quad[\mathrm{CPCT}]$

Q.4. If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that $A B=C D$ (see Fig.)
Sol. Given : A line $A D$ intersects two concentric circles at A, B, C and D, where O is the centre of these circles.
To prove : $\mathrm{AB}=\mathrm{CD}$
Construction : Draw OM $\perp \mathrm{AD}$.
Proof : AD is the chord of larger circle.
$\therefore \quad \mathrm{AM}=\mathrm{DM} \quad$..(i) [OM bisects the chord] BC is the chord of smaller circle
$\therefore \quad \mathrm{BM}=\mathrm{CM} \quad$..(ii) [OM bisects the chord]
Subtracting (ii) from (i), we get

$\mathrm{AM}-\mathrm{BM}=\mathrm{DM}-\mathrm{CM}$
$\Rightarrow \mathrm{AB}=\mathrm{CD}$ Proved.
Q.5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?
Sol. Let Reshma, Salma and Mandip be represented by R, S and M respectively.
Draw OL $\perp \mathrm{RS}$,

$$
\begin{aligned}
& \mathrm{OL}^{2}=\mathrm{OR}^{2}-\mathrm{RL}^{2} \\
& \mathrm{OL}^{2}=5^{2}-3^{2}[\mathrm{RL}=3 \mathrm{~m}, \text { because } \mathrm{OL} \perp \mathrm{RS}] \\
&=25-9=16 \\
& \mathrm{OL}=\sqrt{16}=4 \\
& \text { Now, area of triangle } \mathrm{ORS}=\frac{1}{2} \times \mathrm{KR} \times 05
\end{aligned}
$$

$$
=\frac{1}{2} \times \mathrm{KR} \times 05
$$

Also, area of $\Delta \mathrm{ORS}=\frac{1}{2} \times \mathrm{RS} \times \mathrm{OL}=\frac{1}{2} \times 6 \times 4=12 \mathrm{~m}^{2}$
$\Rightarrow \frac{1}{2} \times \mathrm{KR} \times 5=12$
$\Rightarrow \mathrm{KR}=\frac{12 \times 2}{5}=\frac{24}{5}=4.8 \mathrm{~m}$
$\Rightarrow \mathrm{RM}=2 \mathrm{KR}$
$\Rightarrow \mathrm{RM}=2 \times 4.8=9.6 \mathrm{~m}$
Hence, distance between Reshma and Mandip is 9.6 m Ans.
Q.6. A circular park of radius $20 m$ is situated in a colony. Three boys Ankur, Syed and David are siting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.
Sol. Let Ankur, Syed and David be represented by A, S and D respectively.
Let $\mathrm{PD}=\mathrm{SP}=\mathrm{SQ}=\mathrm{QA}=\mathrm{AR}=\mathrm{RD}=x$
In $\triangle \mathrm{OPD}$,

$$
\begin{aligned}
\mathrm{OP}^{2} & =400-x^{2} \\
\Rightarrow \quad \mathrm{OP} & =\sqrt{400-x^{2}} \\
\Rightarrow \quad \mathrm{AP} & =2 \sqrt{400-x^{2}}+\sqrt{400-x^{2}}
\end{aligned}
$$

$[\because$ centroid divides the median in the ratio $2: 1]$

$$
=3 \sqrt{400-x^{2}}
$$

Now, in $\triangle \mathrm{APD}$,
$\mathrm{PD}^{2}=\mathrm{AD}^{2}-\mathrm{DP}^{2}$
$\Rightarrow \quad x^{2}=(2 x)^{2}-\left(3 \sqrt{400-x^{2}}\right)^{2}$
$\Rightarrow \quad x^{2}=4 x^{2}-9\left(400-x^{2}\right)$
$\Rightarrow \quad x^{2}=4 x^{2}-3600+9 x^{2}$
$\Rightarrow 12 x^{2}=3600$
$\Rightarrow \quad x^{2}=\frac{3600}{12}=300$
$\Rightarrow \quad x=10 \sqrt{3}$
Now, $\mathrm{SD}=2 x=2 \times 10 \sqrt{3}=20 \sqrt{3}$
\therefore ASD is an equilateral triangle.
$\Rightarrow \mathrm{SD}=\mathrm{AS}=\mathrm{AD}=20 \sqrt{3}$
Hence, length of the string of each phone is $20 \sqrt{3} \mathrm{~m}$ Ans.

10 Clicles

EXERCISE 10.5

Q.1. In the figure, A, B and C are three points on a circle with centre O such that $\angle B O C=30^{\circ}$ and $\angle A O B=60^{\circ}$. If D is a point on the circle other than the arc $A B C$, find $\angle A D C$.
Sol. We have, $\angle \mathrm{BOC}=30^{\circ}$ and $\angle \mathrm{AOB}=60^{\circ}$

$$
\angle \mathrm{AOC}=\angle \mathrm{AOB}+\angle \mathrm{BOC}=60^{\circ}+30^{\circ}=90^{\circ}
$$

We know that angle subtended by an arc at the centre
 of a circle is double the angle subtended by the same arc on the remaining part of the circle.
$\therefore 2 \angle \mathrm{ADC}=\angle \mathrm{AOC}$
$\Rightarrow \angle \mathrm{ADC}=\frac{1}{2} \angle \mathrm{AOC}=\frac{1}{2} \times 90^{\circ} \quad \Rightarrow \angle \mathrm{ADC}=45^{\circ} \quad$ Ans.
Q.2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Sol. We have, $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$
Therefore, $\triangle \mathrm{OAB}$ is a equilateral triangle.
$\Rightarrow \quad \angle \mathrm{AOB}=60^{\circ}$
We know that angle subtended by an arc at the centre of a circle is double the angle subtended by the same arc on the remaining part of the circle.

$$
\begin{array}{rlrl}
\therefore & \angle \mathrm{AOB} & =2 \angle \mathrm{ACB} \\
\Rightarrow & \angle \mathrm{ACB} & =\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 60^{\circ} \\
\Rightarrow & \angle \mathrm{ACB} & =30^{\circ} \\
& \text { Also, } & \angle \mathrm{ADB} & =\frac{1}{2} \text { reflex } \angle \mathrm{AOB} \\
& & & \frac{1}{2}\left(360^{\circ}-60^{\circ}\right)=\frac{1}{2} \times 300^{\circ}=150^{\circ}
\end{array}
$$

Hence, angle subtended by the chord at a point on the minor arc is 150° and at a point on the major arc is 30° Ans.
Q.3. In the figure, $\angle P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre O. Find $\angle O P R$.
Sol. Reflex angle $\mathrm{POR}=2 \angle \mathrm{PQR}$

$$
=2 \times 100^{\circ}=200^{\circ}
$$

Now, angle $\operatorname{POR}=360^{\circ}-200=160^{\circ}$
Also,

$$
\begin{gathered}
\mathrm{PO}=\mathrm{OR} \quad[\text { Radii of a circle }] \\
\angle \mathrm{OPR}=\angle \mathrm{ORP} \quad[\text { Opposite angles of isosceles triangle }] \\
\mathrm{In} \triangle \mathrm{OPR}, \angle \mathrm{POR}=160^{\circ} \\
\therefore \quad \angle \mathrm{OPR}=\angle \mathrm{ORP}=10^{\circ}
\end{gathered}
$$

[Angle sum property of a triangle]. Ans.
Q.4. In the figure, $\angle A B C=69^{\circ}, \angle A C B=31^{\circ}$, find $\angle B D C$.

Sol. In $\triangle A B C$, we have

$$
\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ}
$$

[Angle sum property of a triangle]
$\Rightarrow \quad 69^{\circ}+31^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{BAC}=180^{\circ}-100^{\circ}=80^{\circ}$
Also, $\angle \mathrm{BAC}=\angle \mathrm{BDC}$ [Angles in the same segment]
$\Rightarrow \quad \angle \mathrm{BDC}=80^{\circ}$ Ans.

Q.5. In the figrue, A, B, C and D are four points on a circle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$.

Sol. $\angle \mathrm{BEC}+\angle \mathrm{DEC}=180^{\circ} \quad$ [Linear pair]
$\Rightarrow 130^{\circ}+\angle \mathrm{DEC}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{DEC}=180^{\circ}-130^{\circ}=50^{\circ}$
Now, in $\triangle \mathrm{DEC}$,
$\Rightarrow \angle \mathrm{DEC}+\angle \mathrm{DCE}+\angle \mathrm{CDE}=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 50^{\circ}+20^{\circ}+\angle \mathrm{CDE}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{CDE}=180^{\circ}-70^{\circ}=110^{\circ}$

Also, $\quad \angle \mathrm{CDE}=\angle \mathrm{BAC}$ [Angles in same segment]
$\Rightarrow \quad \angle \mathrm{BAC}=110^{\circ}$ Ans.
Q.6. $A B C D$ is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle D B C=70^{\circ}, \angle B A C=30^{\circ}$, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$.
Sol. $\angle \mathrm{CAD}=\angle \mathrm{DBC}=70^{\circ} \quad$ [Angles in the same segment]
Therefore,$\quad \angle \mathrm{DAB}=\angle \mathrm{CAD}+\angle \mathrm{BAC}$

$$
=70^{\circ}+30^{\circ}=100^{\circ}
$$

But, $\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
[Opposite angles of a cyclic quadrilateral]
So,

$$
\angle \mathrm{BCD}=180^{\circ}-100^{\circ}=80^{\circ}
$$

Now, we have $A B=B C$

Therefore, $\angle \mathrm{BCA}=30^{\circ}$ [Opposite angles of an isosceles triangle] Again, $\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
[Opposite angles of a cyclic quadrilateral]
$\Rightarrow 100^{\circ}+\angle \mathrm{BCA}+\angle \mathrm{ECD}=180^{\circ} \quad[\because \angle \mathrm{BCD}=\angle \mathrm{BCA}+\angle \mathrm{ECD}]$
$\Rightarrow 100^{\circ}+30^{\circ}+\angle \mathrm{ECD}=180^{\circ}$
$\Rightarrow 130^{\circ}+\angle \mathrm{ECD}=180^{\circ}$
$\Rightarrow \angle \mathrm{ECD}=180^{\circ}-130^{\circ}=50^{\circ}$
Hence, $\angle \mathrm{BCD}=80^{\circ}$ and $\angle \mathrm{ECD}=50^{\circ}$ Ans.
Q.7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
Sol. Given : ABCD is a cyclic quadrilateral, whose diagonals AC and BD are diameter of the circle passing through A, B, C and D.
To Prove : ABCD is a rectangle.
Proof : In $\triangle A O D$ and $\triangle C O B$

$$
\left.\begin{array}{rlrl}
\mathrm{AO} & =\mathrm{CO} & & \text { [Radii of a circle] } \\
& \mathrm{OD} & =\mathrm{OB} & \\
& & \text { [Radii of a circle] } \\
& & \angle \mathrm{AOD} & =\angle \mathrm{COB} \\
& & \text { [Vertically opposite angles] } \\
\therefore & & \angle \mathrm{AOD} & \cong \Delta \mathrm{COB}
\end{array}\right) \text { [SAS axiom] }
$$

But these are alternate interior angles made by the transversal AC, intersecting AD and BC .
$\therefore \mathrm{AD} \| \mathrm{BC}$
Similarly, $A B|\mid C D$.
Hence, quadrilateral ABCD is a parallelogram.
Also, $\angle \mathrm{ABC}=\angle \mathrm{ADC} \quad$..(i) \quad [Opposite angles of a \|gm are equal]
And, $\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ}$...(ii)
[Sum of opposite angles of a cyclic quadrilateral is 180°]
$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{ADC}=90^{\circ} \quad[$ From (i) and (ii)]
$\therefore \mathrm{ABCD}$ is a rectangle. [A \|gm one of whose angles is
90° is a rectangle] Proved.
Q.8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Sol. Given : A trapezium ABCD in which $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$.
To Prove : ABCD is a cyclic trapezium.
Construction : Draw $\mathrm{DE} \perp \mathrm{AB}$ and $\mathrm{CF} \perp \mathrm{AB}$.
Proof : In $\triangle \mathrm{DEA}$ and $\triangle \mathrm{CFB}$, we have

$$
\mathrm{AD}=\mathrm{BC} \quad[\text { Given }]
$$

$\angle \mathrm{DEA}=\angle \mathrm{CFB}=90^{\circ} \quad[\mathrm{DE} \perp \mathrm{AB}$ and $\mathrm{CF} \perp \mathrm{AB}]$

$$
\mathrm{DE}=\mathrm{CF}
$$

[Distance between parallel lines remains constant]
$\therefore \quad \triangle \mathrm{DEA} \cong \triangle \mathrm{CFB}$
[RHS axiom]
$\Rightarrow \quad \angle \mathrm{A}=\angle \mathrm{B} \quad$...(i) $[\mathrm{CPCT}]$
and, $\quad \angle \mathrm{ADE}=\angle \mathrm{BCF} \quad$..(ii) $[\mathrm{CPCT}]$
Since, $\quad \angle \mathrm{ADE}=\angle \mathrm{BCF} \quad$ [From (ii)]
$\Rightarrow \quad \angle \mathrm{ADE}+90^{\circ}=\angle \mathrm{BCF}+90^{\circ}$
$\Rightarrow \angle \mathrm{ADE}+\angle \mathrm{CDE}=\angle \mathrm{BCF}+\angle \mathrm{DCF}$
$\Rightarrow \quad \angle \mathrm{D}=\angle \mathrm{C}$
..(iii)
$[\angle \mathrm{ADE}+\angle \mathrm{CDE}=\angle \mathrm{D}, \angle \mathrm{BCF}+\angle \mathrm{DCF}=\angle \mathrm{C}]$
$\therefore \angle \mathrm{A}=\angle \mathrm{B}$ and $\angle \mathrm{C}=\angle \mathrm{D} \quad$ [From (i) and (iii)] (iv)
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$ [Sum of the angles of a quadrilateral is 360°]
$\Rightarrow 2(\angle \mathrm{~B}+\angle \mathrm{D})=360^{\circ} \quad$ [Using (iv)]
$\Rightarrow \angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
\Rightarrow Sum of a pair of opposite angles of quadrilateral ABCD is 180°.
$\Rightarrow \mathrm{ABCD}$ is a cyclic trapezium Proved.
Q.9. Two circles intersect at two points B and C. Through B, two line segments $A B D$ and $P B Q$ are drawn to intersect the circles at A, D and P, Q respectively (see Fig.). Prove that $\angle A C P=\angle Q C D$.
Sol. Given : Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively.
To Prove : $\angle \mathrm{ACP}=\angle \mathrm{QCD}$.
Proof : $\angle \mathrm{ACP}=\angle \mathrm{ABP}$
[Angles in the same segment]

$$
\begin{equation*}
\angle \mathrm{QCD}=\angle \mathrm{QBD} \tag{i}
\end{equation*}
$$

[Angles in the same segment]
But, $\quad \angle \mathrm{ABP}=\angle \mathrm{QBD}$..(iii) [Vertically opposite angles] By (i), (ii) and (ii) we get $\angle \mathrm{ACP}=\angle \mathrm{QCD} \quad$ Proved.
Q.10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
Sol. Given : Sides AB and AC of a triangle ABC are diameters of two circles which intersect at D .
To Prove : D lies on BC.
Proof : Join AD
$\angle \mathrm{ADB}=90^{\circ} \quad$...(i) [Angle in a semicircle]

Also, $\angle \mathrm{ADC}=90^{\circ}$..(ii)
Adding (i) and (ii), we get
$\angle \mathrm{ADB}+\angle \mathrm{ADC}=90^{\circ}+90^{\circ}$
$\Rightarrow \quad \angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$
$\Rightarrow \mathrm{BDC}$ is a straight line.
\therefore D lies on BC
Hence, point of intersection of circles lie on the third side BC. Proved.
Q.11. $A B C$ and $A D C$ are two right triangles with common hypotenuse $A C$. Prove that $\angle C A D=\angle C B D$.
Sol. Given : ABC and ADC are two right triangles with common hypotenuse AC.
To Prove : $\angle \mathrm{CAD}=\angle \mathrm{CBD}$

Proof : Let O be the mid-point of AC.
Then $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}$
Mid point of the hypotenuse of a right triangle is equidistant from its vertices with O as centre and radius equal to OA , draw a circle to pass through A, B, C and D.

We know that angles in the same segment of a circle are equal.
Since, $\angle \mathrm{CAD}$ and $\angle \mathrm{CBD}$ are angles of the same segment.
Therefore, $\angle \mathrm{CAD}=\angle \mathrm{CBD}$. Proved.
Q.12. Prove that a cyclic parallelogram is a rectangle.

Sol. Given : ABCD is a cyclic parallelogram.
To prove : ABCD is a rectangle.
Proof : $\angle \mathrm{ABC}=\angle \mathrm{ADC}$...(i)
[Opposite angles of a $\| \mathrm{gm}$ are equal]
But, $\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ}$
[Sum of opposite angles of a cyclic quadrilateral is
 180°]
$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{ADC}=90^{\circ} \quad[$ From (i) and (ii)]
$\therefore \mathrm{ABCD}$ is a rectangle
[A \|gm one of whose angles is 90° is a rectangle] Hence, a cyclic parallelogram is a rectangle. Proved.

10 Circles

EXERCISE 10.6 (Optional)

Q.1. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
Sol. Given : Two intersecting circles, in which OO^{\prime} is the line of centres and A and B are two points of intersection.
To prove : $\angle \mathrm{OAO}^{\prime}=\angle \mathrm{OBO}^{\prime}$

Construction : Join AO, BO, AO^{\prime} and BO^{\prime}.
Proof : In $\triangle \mathrm{AOO}^{\prime}$ and $\triangle \mathrm{BOO}^{\prime}$, we have

$$
\begin{array}{rlrl}
\mathrm{AO} & =\mathrm{BO} & & \text { [Radii of the same circle] } \\
\mathrm{AO}^{\prime} & =\mathrm{BO}^{\prime} & & \text { [Radii of the same circle] } \\
\mathrm{OO}^{\prime} & =\mathrm{OO}^{\prime} & & \text { [Common] } \\
\therefore & \Delta \mathrm{AOO}^{\prime} & \cong \Delta \mathrm{BOO}^{\prime} & {[\text { [SSS axiom }]} \\
\Rightarrow & \angle \mathrm{OAO}^{\prime} & =\angle \mathrm{OBO}^{\prime} & \\
& {[\mathrm{CPCT}]}
\end{array}
$$

Hence, the line of centres of two intersecting circles subtends equal angles at the two points of intersection. Proved.
Q.2. Two chords $A B$ and $C D$ of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between $A B$ and $C D$ is 6 cm , find the radius of the circle.
Sol. Let O be the centre of the circle and let its radius be $r \mathrm{~cm}$.
Draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{OL} \perp \mathrm{CD}$.
Then, $\quad \mathrm{AM}=-\frac{1}{2} \mathrm{AB}=\frac{5}{2} \mathrm{~cm}$
and,

$$
\mathrm{CL}=\frac{1}{2} \mathrm{CD}=\frac{11}{2} \mathrm{~cm}
$$

Since, $\mathrm{AB} \| \mathrm{CD}$, it follows that the points $\mathrm{O}, \mathrm{L}, \mathrm{M}$ are

collinear and therefore, $\mathrm{LM}=6 \mathrm{~cm}$.
Let $\mathrm{OL}=x \mathrm{~cm}$. Then $\mathrm{OM}=(6-x) \mathrm{cm}$
Join OA and OC. Then $\mathrm{OA}=\mathrm{OC}=r \mathrm{~cm}$.
Now, from right-angled $\triangle \mathrm{OMA}$ and $\triangle \mathrm{OLC}$, we have $\mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2}$ and $\mathrm{OC}^{2}=\mathrm{OL}^{2}+\mathrm{CL}^{2}$ [By Pythagoras Theorem]
$\Rightarrow r^{2}=(6-x)^{2}+\left(\frac{5}{2}\right)^{2} \quad$..(i) and $r^{2}=x^{2}+\left(\frac{11}{2}\right)^{2}$

$$
\begin{aligned}
& \Rightarrow(6-x)^{2}+\left(\frac{5}{2}\right)^{2}=x^{2}+\left(\frac{11}{2}\right)^{2} \quad[\text { From (i) and (ii)] } \\
& \Rightarrow 36+x^{2}-12 x+\frac{25}{4}=x^{2}+\frac{121}{4} \\
& \Rightarrow-12 x=\frac{121}{4}-\frac{25}{4}-36 \\
& \Rightarrow-12 x=\frac{96}{4}-36 \\
& \Rightarrow-12 x=24-36 \\
& \Rightarrow-12 x=-12 \\
& \Rightarrow \quad x=1
\end{aligned}
$$

Substituting $x=1$ in (i), we get

$$
\begin{aligned}
r^{2} & =(6-x)^{2}+\left(\frac{5}{2}\right)^{2} \\
\Rightarrow & r^{2}=(6-1)^{2}+\left(\frac{5}{2}\right)^{2} \\
\Rightarrow & r^{2}=(5)^{2}+\left(\frac{5}{2}\right)^{2}=25+\frac{25}{4} \\
\Rightarrow & r^{2}=\frac{125}{4} \\
\Rightarrow r & =\frac{5 \sqrt{5}}{2}
\end{aligned}
$$

Hence, radius $r=\frac{5 \sqrt{5}}{2} \mathrm{~cm}$, Ans.
Q.3. The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?
Sol. Let PQ and RS be two parallel chords of a circle with centre O .
We have, $\mathrm{PQ}=8 \mathrm{~cm}$ and $\mathrm{RS}=6 \mathrm{~cm}$.
Draw perpendicular bisector OL of RS which meets PQ in M. Since, $\mathrm{PQ} \| \mathrm{RS}$, therefore, OM is also perpendicular bisector of PQ .
Also, $\mathrm{OL}=4 \mathrm{~cm}$ and $\mathrm{RL}=\frac{1}{2} \mathrm{RS} \Rightarrow \mathrm{RL}=3 \mathrm{~cm}$
and $\mathrm{PM}=\frac{1}{2} \mathrm{PQ} \Rightarrow \mathrm{PM}=4 \mathrm{~cm}$
In \triangle ORL, we have

$$
\mathrm{OR}^{2}=\mathrm{RL}^{2}+\mathrm{OL}^{2} \quad[\text { Pythagoras theorem }]
$$

$\Rightarrow \mathrm{OR}^{2}=3^{2}+4^{2}=9+16$
$\Rightarrow \mathrm{OR}^{2}=25 \Rightarrow \mathrm{OR}=\sqrt{25}$
$\Rightarrow \mathrm{OR}=5 \mathrm{~cm}$
$\therefore \mathrm{OR}=\mathrm{OP} \quad$ [Radii of the circle]
$\Rightarrow \mathrm{OP}=5 \mathrm{~cm}$
Now, in $\triangle \mathrm{OPM}$
$\mathrm{OM}^{2}=\mathrm{OP}^{2}-\mathrm{PM}^{2} \quad$ [Pythagoras theorem]
$\Rightarrow \mathrm{OM}^{2}=5^{2}-4^{2}=25-16=9$
$\mathrm{OM}=\sqrt{9}=3 \mathrm{~cm}$
Hence, the distance of the other chord from the centre is 3 cm . Ans.
Q.4. Let the vertex of an angle $A B C$ be located outside a circle and let the sides of the angle intersect equal chords $A D$ and $C E$ with the circle. Prove that $\angle A B C$ is equal to half the difference of the angles subtended by the chords $A C$ and $D E$ at the centre.
Sol. Given : Two equal chords AD and CE of a circle with centre O. When meet at B when produced.

To Prove : $\angle \mathrm{ABC}=\frac{1}{2}(\angle \mathrm{AOC}-\angle \mathrm{DOE})$

Proof: Let $\angle \mathrm{AOC}=x, \angle \mathrm{DOE}=y, \angle \mathrm{AOD}=z$
$\angle \mathrm{EOC}=z$
$\therefore x+y+2 z=36^{\circ}$
[Equal chords subtends equal angles at the centre]
$\mathrm{OA}=\mathrm{OD} \Rightarrow \angle \mathrm{OAD}=\angle \mathrm{ODA}$
\therefore In DOAD, we have
$\angle \mathrm{OAD}+\angle \mathrm{ODA}+z=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{OAD}=180^{\circ}-z \quad[\because \angle \mathrm{OAD}=\angle \mathrm{OBA}]$
$\Rightarrow \angle \mathrm{OAD}=90^{\circ}-\frac{z}{2}$
Similarly $\angle \mathrm{OCE}=90^{\circ}-\frac{z}{2} \quad \ldots$ (iii)
$\Rightarrow \angle \mathrm{ODB}=\angle \mathrm{OAD}+\angle \mathrm{ODA}$
$\Rightarrow \angle \mathrm{OEB}=90^{\circ}-\frac{z}{2}+z$
$\Rightarrow \angle \mathrm{ODB}=90^{\circ}+\frac{z}{2}$
Also, $\angle \mathrm{OEB}=\angle \mathrm{OCE}+\angle \mathrm{COE} \quad$ [Exterior angle property]
$\Rightarrow \angle \mathrm{OEB}=90^{\circ}-\frac{z}{2}+z \quad[$ From (iii)]
$\Rightarrow \angle \mathrm{OEB}=90^{\circ}+\frac{z}{2}$

Also, $\angle \mathrm{OED}=\angle \mathrm{ODE}=90^{\circ}-\frac{y}{2}$
O from (iv), (v) and (vi), we have
$\angle \mathrm{BDE}=\angle \mathrm{BED}=90^{\circ}+\frac{z}{2}-\left(90^{\circ}-\frac{y}{2}\right)$
$\Rightarrow \angle \mathrm{BDE}=\angle \mathrm{BED}=\frac{y+z}{2}$
$\Rightarrow \angle \mathrm{BDE}=\angle \mathrm{BED}=y+z$
$\therefore \quad \angle \mathrm{BDE}=180^{\circ}-(y+z)$
$\Rightarrow \angle \mathrm{ABC}=180^{\circ}-(y+z)$
Now, $\frac{y-z}{2}=\frac{360^{\circ}-y-2 z-y}{2}=180^{\circ}-(y+z)$
From (viii) and (ix), we have
$\angle \mathrm{ABC}=\frac{x-y}{2}$ Proved.
Q.5. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
Sol. Given : A rhombus ABCD whose diagonals intersect each other at O.
To prove : A circle with AB as diameter passes through O .
Proof : $\angle \mathrm{AOB}=90^{\circ}$
[Diagonals of a rhombus bisect each other at 90°]
$\Rightarrow \triangle \mathrm{AOB}$ is a right triangle right angled at O .
$\Rightarrow \mathrm{AB}$ is the hypotenuse of $\mathrm{A} B$ right $\triangle \mathrm{AOB}$.
\Rightarrow If we draw a circle with AB as diameter, then it will pass through O. because angle is a semicircle is 90° and $\angle \mathrm{AOB}=90^{\circ}$ Proved.

Q.6. $A B C D$ is a parallelogram. The circle through A, B and C intersect $C D$ (produced if necessary) at E. Prove that $A E=A D$.
Sol. Given : ABCD is a parallelogram.
To Prove : AE = AD.
Construction : Draw a circle which passes through ABC and intersect CD (or CD produced) at E.
Proof : For fig (i)

$$
\begin{equation*}
\angle \mathrm{AED}+\angle \mathrm{ABC}=180^{\circ} \tag{ii}
\end{equation*}
$$

[Linear pair]
But $\angle \mathrm{ACD}=\angle \mathrm{ADC}=\angle \mathrm{ABC}+\angle \mathrm{ADE}$
$\Rightarrow \quad \angle \mathrm{ABC}+\angle \mathrm{ADE}=180^{\circ} \quad[$ From (ii) $] \quad \ldots$ (iii)
From (i) and (iii)

$$
\begin{aligned}
& & \angle \mathrm{AED}+\angle \mathrm{ABC} & =\angle \mathrm{ABC}+\angle \mathrm{ADE} \\
\Rightarrow & & \angle \mathrm{AED} & =\angle \mathrm{ADE} \\
\Rightarrow & & \angle \mathrm{AD} & =\angle \mathrm{AE} \quad[\text { Sides opposite to equal angles are equal] }
\end{aligned}
$$

Similarly we can prove for Fig (ii) Proved.
Q.7. $A C$ and $B D$ are chords of a circle which bisect each other. Prove that (i) $A C$ and $B D$ are diameters, (ii) $A B C D$ is rectangle.
Sol. Given : A circle with chords AB and CD which bisect each other at O.
To Prove : (i) AC and BD are diameters
(ii) ABCD is a rectangle.

Proof : In $\triangle \mathrm{OAB}$ and $\triangle \mathrm{OCD}$, we have

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OC} \\
& \mathrm{OB}=\mathrm{OD} \\
& \angle \mathrm{AOB}=\angle \mathrm{COD} \\
& \Rightarrow \quad \triangle \mathrm{AOB} \cong \angle \mathrm{COD} \\
& \Rightarrow \quad \angle \mathrm{ABO}=\angle \mathrm{CDO} \text { and } \angle \mathrm{BAO}=\angle \mathrm{BCO} \\
& \Rightarrow \quad \mathrm{AB}|\mid \mathrm{DC} \\
& \text { Similarly, we can prove } \mathrm{BC}|\mid \mathrm{AD} \quad \ldots \text { (i) }
\end{aligned}
$$

[Given]
[Given]

[Vertically opposite angles] [SAS congruence]
[CPCT]

But ABCD is a cyclic parallelogram.
$\therefore \mathrm{ABCD}$ is a rectangle.
Hence, ABCD is a parallelogram.
$\Rightarrow \quad \angle \mathrm{ABC}=90^{\circ}$ and $\angle \mathrm{BCD}=90^{\circ}$
$\Rightarrow \quad \mathrm{AC}$ is a diameter and BD is a diameter
[Angle in a semicircle is 90°] Proved.
Q.8. Bisectors of angles A, B and C of a triangle $A B C$ intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are
$90^{\circ}-\frac{1}{2} A, 90^{\circ}-\frac{1}{2} B$ and $90^{\circ}-\frac{1}{2} C$.
Sol. Given : $\triangle \mathrm{ABC}$ and its circumcircle. AD, BE, CF are bisectors of $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ respectively. Construction : Join DE, EF and FD.
Proof : We know that angles in the same segment are equal.

$$
\begin{array}{rlrl}
\therefore & \angle 5 & =\frac{\angle \mathrm{C}}{2} \text { and } \angle 6=\frac{\angle \mathrm{B}}{2} \\
\angle 1 & =\frac{\angle \mathrm{A}}{2} \text { and } \angle 2=\frac{\angle \mathrm{C}}{2} \tag{ii}\\
\angle 4 & =\frac{\angle \mathrm{A}}{2} \text { and } \angle 3=\frac{\angle \mathrm{B}}{2}
\end{array}
$$

From (i), we have

$$
\begin{align*}
\angle 5+\angle 6 & =\frac{\angle \mathrm{C}}{2}+\frac{\angle \mathrm{B}}{2} \\
\Rightarrow \quad \angle \mathrm{D} & =\frac{\angle \mathrm{C}}{2}+\frac{\angle \mathrm{B}}{2} \tag{iv}
\end{align*}
$$

$\begin{array}{rlrl}\text { But } & \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\ \Rightarrow & & \angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}-\angle \mathrm{A}\end{array}$
$\Rightarrow \quad \frac{\angle \mathrm{B}}{2}+\frac{\angle \mathrm{C}}{2}=90^{\circ}-\frac{\angle \mathrm{A}}{2}$
\therefore (iv) becomes,
$\angle \mathrm{D}=90^{\circ}-\frac{\angle \mathrm{A}}{2}$.
Similarly, from (ii) and (iii), we can prove that
$\angle \mathrm{E}=90^{\circ}-\frac{\angle \mathrm{B}}{2}$ and $\angle \mathrm{F}=90^{\circ}-\frac{\angle \mathrm{C}}{2} \quad$ Proved.
Q.9. Two congruent circles intersect each other at points A and B. Through A any line segment $P A Q$ is drawn so that P, Q lie on the two circles. Prove that $B P=B Q$.
Sol. Given : Two congruent circles which intersect at A and B. PAB is a line through A.
To Prove : BP = BQ.
Construction : Join AB.
Proof : AB is a common chord of both the circles.
But the circles are congruent -
\Rightarrow arc $\mathrm{ADB}=\operatorname{arc} \mathrm{AEB}$

$\Rightarrow \quad \angle \mathrm{APB}=\angle \mathrm{AQB} \quad$ Angles subtended
$\Rightarrow \quad B P=B Q \quad$ [Sides opposite to equal angles are equal] Proved.
Q.10. In any triangle $A B C$, if the angle bisector of $\angle A$ and perpendicular bisector of $B C$ intersect, prove that they intersect on the circumcircle of the triangle $A B C$.
Sol. Let angle bisector of $\angle \mathrm{A}$ intersect circumcircle of $\triangle \mathrm{ABC}$ at D .
Join DC and DB.
$\angle \mathrm{BCD}=\angle \mathrm{BAD}$
[Angles in the same segment]
$\Rightarrow \angle \mathrm{BCD}=\angle \mathrm{BAD} \frac{1}{2} \angle \mathrm{~A}$
[AD is bisector of $\angle \mathrm{A}$]

Similarly $\angle \mathrm{DBC}=\angle \mathrm{DAC} \frac{1}{2} \angle \mathrm{~A}$
From (i) and (ii) $\angle \mathrm{DBC}=\angle \mathrm{BCD}$
$\Rightarrow \mathrm{BD}=\mathrm{DC} \quad$ [sides opposite to equal angles are equal]
$\Rightarrow \mathrm{D}$ lies on the perpendicular bisector of BC .
Hence, angle bisector of $\angle \mathrm{A}$ and perpendicular bisector of BC intersect on the circumcircle of $\triangle \mathrm{ABC}$ Proved.

