Mathematics

(Chapter - 10) (Circles)
(Class X)
Exercise 10.1

Question 1:

How many tangents can a circle have?

Answer 1:

A circle can have infinite number of tangents because a circle have infinite number of points on it and at every point a tangent can be drawn.

Question 2:

Fill in the blanks:
(i) A tangent to a circle intersects it in \qquad point (s).
(ii) A line intersecting a circle in two points is called a \qquad .
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad .

Answer 2:

(i) A tangent to a circle intersects it in one point (s).
(ii) A line intersecting a circle in two points is called a Secant.
(iii) A circle can have two parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called point of contact.

Question 3:

A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=$ 12 cm . Length PQ is:
(A) 12 cm
(B) 13 cm
(C) 8.5 cm
(D) $\sqrt{119} \mathrm{~cm}$.

Answer 3:
(D) $\sqrt{119} \mathrm{~cm}$.

Solution:

In $\triangle \mathrm{OPQ}$, angle P is right angle. [Since radius is perpendicular to tangent]

Using Pythagoras theorem, $\mathrm{OQ}^{2}=\mathrm{PQ}^{2}+\mathrm{OP}^{2}$
$\Rightarrow 12^{2}=\mathrm{PQ}^{2}+5^{2}$
$\Rightarrow 144=\mathrm{PQ}^{2}+25$
$\Rightarrow \mathrm{PQ}^{2}=144-25=119$
$\Rightarrow \mathrm{PQ}=\sqrt{119}$
Hence, the option (D) is correct.

Mathematics

(Chapter - 10) (Circles)
(Class X)

Question 4:

Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Answer 4:

Consider a circle with centre O . Let AB is the given line.

Now draw a perpendicular from O to line $A B$, which intersect $A B$ at P.

Now take two points on the line PO, one at circle X and another Y inside the circle. Draw lines parallel to $A B$ and passing through X and $\mathrm{Y} . \mathrm{CD}$ and EF are the required lines.

Mathematics

(Chapter-10) (Circles)
(Class - X)

Exercise 10.2

Question 1:

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(A) 7 cm
(B) 12 cm
(C) 15 cm
(D) 24.5 cm

Answer 1:

Let O be the centre of the circle.
Given that,
$O Q=25 \mathrm{~cm}$ and $P Q=24 \mathrm{~cm}$
As the radius is perpendicular to the tangent at the point of contact,
Therefore, OP $\perp \mathrm{PQ}$
Applying Pythagoras theorem in $\triangle \mathrm{OPQ}$, we obtain
$O P^{2}+\mathrm{PQ}^{2}=O Q^{2}$
$\mathrm{OP}^{2}+24^{2}=25^{2}$
$O P^{2}=625-576$
$O P^{2}=49$
$\mathrm{OP}=7$
Therefore, the radius of the circle is 7 cm .
Hence, alternative (A) is correct

Question 2:

In the given figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is equal to
(A) 60°
(B) 70°
(C) 80°
(D) 90°

Answer 2:

It is given that TP and TQ are tangents.
Therefore, radius drawn to these tangents will be perpendicular to the tangents.
Thus, $\mathrm{OP} \perp \mathrm{TP}$ and $\mathrm{OQ} \perp \mathrm{TQ}$
$\angle \mathrm{OPT}=90^{\circ}$
$\angle O Q T=90^{\circ}$
In quadrilateral POQT,
Sum of all interior angles $=360^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{OPT}+\angle \mathrm{POQ}+\angle \mathrm{OQT}+\angle \mathrm{PTQ}=360^{\circ} \\
& \Rightarrow 90^{\circ}+110^{\circ}+90^{\circ}+\angle \mathrm{PTQ}=360^{\circ} \\
& \Rightarrow \angle \mathrm{PTQ}=70^{\circ}
\end{aligned}
$$

Hence, alternative (B) is correct

Question 3:

If tangents PA and PB from a point P to a circle with centre O are inclined to each other an angle of 80°, then $\angle \mathrm{POA}$ is equal to
(A) 50°
(B) 60°
(C) 70°
(D) 80°

Answer 3:

It is given that PA and PB are tangents.

Therefore, the radius drawn to these tangents will be perpendicular to the tangents. Thus, $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$
$\angle \mathrm{OBP}=90^{\circ}$ and $\angle \mathrm{OAP}=90^{\circ}$
In AOBP,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$
$90^{\circ}+80^{\circ}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ}$
$\angle B O A=100^{\circ}$
In $\triangle O P B$ and $\triangle O P A$,
$\mathrm{AP}=\mathrm{BP}$ (Tangents from a point)
$\mathrm{OA}=\mathrm{OB}$ (Radii of the circle)
OP = OP (Common side)
Therefore, $\triangle \mathrm{OPB} \cong \triangle \mathrm{OPA}$ (SSS congruence criterion)

And thus, $\angle \mathrm{POB}=\angle \mathrm{POA}$
$\angle \mathrm{POA}=\frac{1}{2} \angle \mathrm{AOB}=\frac{100^{\circ}}{2}=50^{\circ}$
Hence, alternative (A) is correct.

Question 4:

Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Answer 4:

Let $A B$ be a diameter of the circle. Two tangents $P Q$ and $R S$ are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.
Thus, $O A \perp R S$ and $O B \perp P Q$
$\angle \mathrm{OAR}=90^{\circ} \angle \mathrm{OAS}$
$=90^{\circ}$
$\angle O B P=90^{\circ}$
$\angle O B Q=90^{\circ}$
It can be observed that
$\angle \mathrm{OAR}=\angle \mathrm{OBQ}$ (Alternate interior angles)
$\angle \mathrm{OAS}=\angle \mathrm{OBP}$ (Alternate interior angles)
Since alternate interior angles are equal, lines PQ and RS will be parallel.

Question 5:

Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Answer 5:

Let us consider a circle with centre O. Let $A B$ be a tangent which touches the circle at P.

We have to prove that the line perpendicular to $A B$ at P passes through centre O. We shall prove this by contradiction method.
Let us assume that the perpendicular to $A B$ at P does not pass through centre O. Let it pass through another point O^{\prime}. Join OP and O'P.

As perpendicular to $A B$ at P passes through O^{\prime}, therefore, $\angle O^{\prime} \mathrm{PB}=90^{\circ}$
O is the centre of the circle and P is the point of contact. We know the line joining the centre and the point of contact to the tangent of the circle are perpendicular to each other.
$\therefore \angle \mathrm{OPB}=90^{\circ}$
Comparing equations (1) and (2), we obtain
$\angle O^{\prime}$ PB $=\angle$ OPB
From the figure, it can be observed that,
$\angle O^{\prime}$ PB $<\angle O P B$
Therefore, $\angle O^{\prime} P B=\angle O P B$ is not possible. It is only possible, when the line $O^{\prime} P$ coincides with OP.
Therefore, the perpendicular to $A B$ through P passes through centre O.

Question 6:

The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Answer 6:

Let us consider a circle centered at point O.
$A B$ is a tangent drawn on this circle from point A.
Given that,
$O A=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$
In $\triangle A B O$,
$\mathrm{OB} \perp \mathrm{AB}$ (Radius \perp tangent at the point of contact)
Applying Pythagoras theorem in $\triangle A B O$, we obtain
$A B^{2}+B O^{2}=O A^{2}$
$4^{2}+\mathrm{BO}^{2}=5^{2}$
$16+\mathrm{BO}^{2}=25$
$\mathrm{BO}^{2}=9$
$B O=3$
Hence, the radius of the circle is 3 cm .

Question 7:

Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Answer 7:

Let the two concentric circles be centered at point O. And let PQ be the chord of the larger circle which touches the smaller circle at point A. Therefore, $P Q$ is tangent to the smaller circle.
$\mathrm{OA} \perp \mathrm{PQ}(\mathrm{As} O A$ is the radius of the circle)
Applying Pythagoras theorem in $\triangle O A P$, we obtain
$O A^{2}+A P^{2}=O P^{2}$
$32+A P_{2}=52$
$9+\mathrm{AP}^{2}=25$
$A P^{2}=16$
$A P=4$
In $\triangle \mathrm{OPQ}$,
Since $O A \perp P Q$,
$A P=A Q$ (Perpendicular from the center of the circle bisects the chord)
$\therefore P Q=2 A P=2 \times 4=8$
Therefore, the length of the chord of the larger circle is 8 cm .

Question 8:

A quadrilateral $A B C D$ is drawn to circumscribe a circle (see given figure) Prove that $A B+C D=A D+B C$

Answer 8:

It can be observed that
$\mathrm{DR}=\mathrm{DS}$ (Tangents on the circle from point D)
$C R=C Q$ (Tangents on the circle from point C)
$B P=B Q$ (Tangents on the circle from point B)
$A P=A S$ (Tangents on the circle from point A)
Adding all these equations, we obtain
$D R+C R+B P+A P=D S+C Q+B Q+A S$
$(D R+C R)+(B P+A P)=(D S+A S)+(C Q+B Q)$
$C D+A B=A D+B C$

Question 9:

In the given figure, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B.
Prove that $\angle A O B=90^{\circ}$.

Answer 9:

Let us join point O to C .

In $\triangle O P A$ and $\triangle O C A$,
OP $=$ OC (Radii of the same circle)
$A P=A C$ (Tangents from point A)
$A O=A O$ (Common side)
$\triangle \mathrm{OPA} \cong \triangle \mathrm{OCA}$ (SSS congruence criterion)
$\angle \mathrm{POA}=\angle \mathrm{COA}$
Similarly, $\triangle O Q B \cong \triangle O C B$
$\angle \mathrm{QOB}=\angle \mathrm{COB}$
Since $P O Q$ is a diameter of the circle, it is a straight line.
Therefore, $\angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$
From equations (i) and (ii), it can be observed that
$2 \angle C O A+2 \angle C O B=180^{\circ}$
$\angle \mathrm{COA}+\angle \mathrm{COB}=90^{\circ}$
$\angle \mathrm{AOB}=90^{\circ}$

Question 10:

Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Answer 10:

Let us consider a circle centered at point O. Let P be an external point from which two tangents PA and PB are drawn to the circle which are touching the circle at point A and B respectively and $A B$ is the line segment, joining point of contacts A and B together such that it subtends $\angle A O B$ at center O of the circle.
It can be observed that
OA (radius) $\perp \mathrm{PA}$ (tangent)
Therefore, $\angle \mathrm{OAP}=90^{\circ}$
Similarly, OB (radius) $\perp \mathrm{PB}$ (tangent)
$\angle \mathrm{OBP}=90^{\circ}$
In quadrilateral OAPB,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$
$90^{\circ}+\angle \mathrm{APB}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ}$
$\angle A P B+\angle B O A=180^{\circ}$
Hence, it can be observed that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

Question 11:

Prove that the parallelogram circumscribing a circle is a rhombus.

Answer 11:

Since $A B C D$ is a parallelogram,
$A B=C D$
$B C=A D$

It can be observed that
$D R=D S \quad$ (Tangents on the circle from point $D)$
$C R=C Q \quad$ (Tangents on the circle from point $C)$
$B P=B Q \quad$ (Tangents on the circle from point B)
$A P=A S$ (Tangents on the circle from point A)

Adding all these equations, we obtain
$D R+C R+B P+A P=D S+C Q+B Q+A S$
$(D R+C R)+(B P+A P)=(D S+A S)+(C Q+B Q)$
$C D+A B=A D+B C$
On putting the values of equations (1) and (2) in this equation, we obtain
$2 A B=2 B C$
$A B=B C$
Comparing equations (1), (2), and (3), we obtain
$A B=B C=C D=D A$
Hence, $A B C D$ is a rhombus.

Question 12:

A triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see given figure). Find the sides $A B$ and $A C$.

Answer 12:

Let the given circle touch the sides $A B$ and $A C$ of the triangle at point E and F respectively and the length of the line segment $A F$ be x.
In $\triangle \mathrm{ABC}$,
$C F=C D=6 \mathrm{~cm} \quad$ (Tangents on the circle from point C)
$B E=B D=8 \mathrm{~cm}$ (Tangents on the circle from point B)
$A E=A F=x$
(Tangents on the circle from point A)
$A B=A E+E B=x+8$
$B C=B D+D C=8+6=14$
$C A=C F+F A=6+x$
$2 s=A B+B C+C A$
$=x+8+14+6+x$
$=28+2 x s=14+x$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ABC} & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{\{14+x\}\{(14+x)-14\}\{(14+x)-(6+x)\}\{(14+x)-(8+x)\}} \\
& =\sqrt{(14+x)(x)(8)(6)} \\
& =4 \sqrt{3\left(14 x+x^{2}\right)}
\end{aligned}
$$

Area of $\triangle \mathrm{OBC}=\frac{1}{2} \times \mathrm{OD} \times \mathrm{BC}=\frac{1}{2} \times 4 \times 14=28$
Area of $\triangle \mathrm{OCA}=\frac{1}{2} \times \mathrm{OF} \times \mathrm{AC}=\frac{1}{2} \times 4 \times(6+x)=12+2 x$
Area of $\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OE} \times \mathrm{AB}=\frac{1}{2} \times 4 \times(8+x)=16+2 x$
Area of $\triangle A B C=$ Area of $\triangle O B C+$ Area of $\triangle O C A+$ Area of $\triangle O A B$
$4 \sqrt{3\left(14 x+x^{2}\right)}=28+12+2 x+16+2 x$
$\Rightarrow 4 \sqrt{3\left(14 x+x^{2}\right)}=56+4 x$
$\Rightarrow \sqrt{3\left(14 x+x^{2}\right)}=14+x$
$\Rightarrow 3\left(14 x+x^{2}\right)=(14+x)^{2}$
$\Rightarrow 42 x+3 x^{2}=196+x^{2}+28 x$
$\Rightarrow 2 x^{2}+14 x-196=0$
$\Rightarrow x^{2}+7 x-98=0$
$\Rightarrow x^{2}+14 x-7 x-98=0$
$\Rightarrow x(x+14)-7(x+14)=0$
$\Rightarrow(x+14)(x-7)=0$
Either $x+14=0$ or $x-7=0$
Therefore, $x=-14$ and 7

However, $x=-14$ is not possible as the length of the sides will be negative.
Therefore, $x=7$
Hence,

$$
\begin{aligned}
& \mathrm{AB}=x+8=7+8=15 \mathrm{~cm} \\
& \mathrm{CA}=6+x=6+7=13 \mathrm{~cm}
\end{aligned}
$$

Question 13:

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Answer 13:

Let $A B C D$ be a quadrilateral circumscribing a circle centered at O such that it touches the circle at point P, Q, R, S. Let us join the vertices of the quadrilateral $A B C D$ to the center of the circle.

Consider $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OAS}$,
$A P=A S$
(Tangents from the same point)
$O P=O S$
(Radii of the same circle)
$O A=O A$
(Common side)
$\triangle \mathrm{OAP} \cong \triangle \mathrm{OAS}$
(SSS congruence criterion)

thus, $\angle \mathrm{POA}=\angle \mathrm{AOS}$
$\angle 1=\angle 8$
Similarly,
$\angle 2=\angle 3$
$\angle 4=\angle 5$
$\angle 6=\angle 7$
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}$
$2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}$
$2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$
$(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}$
$\angle A O B+\angle C O D=180^{\circ}$
Similarly, we can prove that $\mathrm{BOC}+\mathrm{DOA}=180^{\circ}$
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

