Chapter - 9

Circles

Exercise No. 9.1

Multiple Choice Questions:

Choose the correct answer from the given four options:

1. If radii of two concentric circles are $\mathbf{4 \mathrm { cm }}$ and 5 cm , then the length of each chord of one circle which is tangent to the other circle is
(A) 3 cm
(B) 6 cm
(C) 9 cm
(D) $\mathbf{1 ~ c m}$

Solution:

> As given in the question,
> $\mathrm{OA}=4 \mathrm{~cm}$,
> $\mathrm{OB}=5 \mathrm{~cm}$
> And,
> $\mathrm{OA} \perp \mathrm{BC}$

> Therefore,
> $\mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}$
> $5^{2}=4^{2}+\mathrm{AB}^{2}$
> $\mathrm{AB}=3 \mathrm{~cm}$
> And,
> $\mathrm{BC}=2 \mathrm{AB}$
> $\quad=2 \times 3 \mathrm{~cm}$
> $=6 \mathrm{~cm}$
2. In Fig., if $\mathrm{AOB}=\mathbf{1 2 5}^{\circ}$, then COD is equal to
(A) 62.5°
(B) 45°
(C) 35°
(D) 55°

Solution:

ABCD is a quadrilateral circumscribing the circle
And we know that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the center of the circle.

So,
$\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$

$$
\begin{aligned}
125^{\circ}+\angle \mathrm{COD} & =180^{\circ} \\
\angle \mathrm{COD} & =55^{\circ}
\end{aligned}
$$

3. In Fig., $A B$ is a chord of the circle and $A O C$ is its diameter such that $\angle A C B=50^{\circ}$. If $A T$ is the tangent to the circle at the point A, then $\angle \angle B A T$ is equal to
(A) 65°
(B) 60°
(C) 50°
(D) 40°

Solution:

As given in the question,
A circle with centre O , diameter AC and $\angle \mathrm{ACB}=50^{\circ}$

AT is a tangent to the circle at point A
As, angle in a semicircle is a right angle
$\angle \mathrm{CBA}=90^{\circ}$
So using angle sum property of a triangle,
$\angle \mathrm{ACB}+\angle \mathrm{CAB}+\angle \mathrm{CBA}=180^{\circ}$

$$
\begin{gather*}
50^{\circ}+\angle \mathrm{CAB}+90^{\circ}=180^{\circ} \\
\angle \mathrm{CAB}=40^{\circ} \tag{1}
\end{gather*}
$$

As, tangent to at any point on the circle is perpendicular to the radius through point of contact,

We get,
$\mathrm{OA} \perp \mathrm{AT}$
$\angle \mathrm{OAT}=90^{\circ}$
$\angle \mathrm{OAT}+\angle \mathrm{BAT}=90^{\circ}$
$\angle \mathrm{CAT}+\angle \mathrm{BAT}=90^{\circ}$
$40^{\circ}+\angle \mathrm{BAT}=90^{\circ}$
[from equation (1)]
$\angle \mathrm{BAT}=50^{\circ}$
4. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents $P Q$ and $P R$ to the circle are drawn. Then the area of the quadrilateral $P Q O R$ is
(A) $60 \mathrm{~cm}^{2}$
(B) $65 \mathrm{~cm}^{2}$
(C) $30 \mathrm{~cm}^{2}$
(D) $32.5 \mathrm{~cm}^{2}$

Solution:

Construction: Draw a circle of radius 5 cm with center O .
Let P be a point at a distance of 13 cm from O .
Draw a pair of tangents, PQ and $P R$.
$\mathrm{OQ}=\mathrm{OR}=$ radius $=5 \mathrm{~cm}$
...equation (1)
And $\mathrm{OP}=13 \mathrm{~cm}$

Also, tangent to at any point on the circle is perpendicular to the radius through point of contact,

We get,
$\mathrm{OQ} \perp \mathrm{PQ}$ and $\mathrm{OR} \perp \mathrm{PR}$
$\triangle \mathrm{POQ}$ and $\triangle \mathrm{POR}$ are right-angled triangles.
By using Pythagoras Theorem in $\triangle \mathrm{PQO}$,
$(\text { Base })^{2}+(\text { Perpendicular })^{2}=(\text { Hypotenuse })^{2}$
$(\mathrm{PQ})^{2}+(\mathrm{OQ})^{2}=(\mathrm{OP})^{2}$
$(\mathrm{PQ})^{2}+(5)^{2}=(13)^{2}$

$$
(\mathrm{PQ})^{2}+25=169
$$

$(\mathrm{PQ})^{2}=144$

$$
\mathrm{PQ}=12 \mathrm{~cm}
$$

Tangents through an external point to a circle are equal.
So,
$\mathrm{PQ}=\mathrm{PR}=12 \mathrm{~cm}$
Therefore,
Area of quadrilateral PQRS, $\mathrm{A}=$ area of $\triangle \mathrm{POQ}+$ area of $\triangle \mathrm{POR}$
Area of right angled triangle $=1 / 2 \mathrm{x}$ base x height

```
\(\mathrm{A}=(1 / 2 \times \mathrm{OQ} \times \mathrm{PQ})+(1 / 2 \times \mathrm{OR} \times \mathrm{PR})\)
\(A=(1 / 2 \times 5 \times 12)+(1 / 2 \times 5 \times 12)\)
\(\mathrm{A}=30+30\)
    \(=60 \mathrm{~cm}^{2}\)
```

5. At one end A of a diameter $A B$ of a circle of radius 5 cm , tangent XAY isdrawn to the circle. The length of the chord $C D$ parallel to $X Y$ and at adistance 8 cm from A is
(A) 4 cm
(B) 5 cm
(C) 6 cm
(D) 8 cm

Solution:

As given the question,
Radius of circle,
$\mathrm{AO}=\mathrm{OC}=5 \mathrm{~cm}$
AM=8CM
$\mathrm{AM}=\mathrm{OM}+\mathrm{AO}$
$\mathrm{OM}=\mathrm{AM}-\mathrm{AO}$
Putting these values in the equation,

$$
\mathrm{OM}=(8-5)
$$

$=3 \mathrm{CM}$
OM is perpendicular to the chord CD.
In $\triangle \mathrm{OCM}<\mathrm{OMC}=90^{\circ}$
By Pythagoras theorem,
$\mathrm{OC}^{2}=\mathrm{OM}^{2}+\mathrm{MC}^{2}$
Therefore,
$\mathrm{CD}=2 \times \mathrm{CM}$

$$
=8 \mathrm{~cm}
$$

6. In Fig., AT is a tangent to the circle with centre O such that $O T=4 \mathrm{~cm}$ and $\angle \angle \mathrm{OTA}=30^{\circ}$. Then AT is equal to
(A) 4 cm
(B) 2 cm
(C) $2 \sqrt{3} \mathrm{~cm}$
(D) $4 \sqrt{3} \mathrm{~cm}$

Solution:

(C)

Join OA
We know that, the tangent at any point of a circle is perpendicular to the radius through the point of contact.

$\angle O A T=90^{\circ}$
InOAT,
$\cos 30^{\circ}=\frac{O T}{A T}$
$\frac{\sqrt{3}}{2}=\frac{A T}{4}$
$A T=2 \sqrt{3} \mathrm{~cm}$
7. In Fig., if O is the centre of a circle, $P Q$ is a chord and the tangent $P R$ at Pmakes an angle of 50° with $P Q$, then $\angle P O Q$ is equal to
(A) 100°
(B) 80°
(C) 90°
(D) 75°

Solution:

(A)

Given,
$\angle \mathrm{QPR}=50^{\circ}$
We know that, the tangent at any point of a circle is perpendicular to the radius through the point of contact.
$\angle \mathrm{OPR}=90^{\circ}$
$\angle \mathrm{OPQ}+\angle \mathrm{QPR}=90^{\circ}$
$\angle \mathrm{OPQ}=90^{\circ}-50^{\circ}$

$$
=40^{\circ}
$$

[as, $\angle \mathrm{QPR}=50^{\circ}$]

Now,
$\mathrm{OP}=\mathrm{OQ}=$ radius of circle
$\angle \mathrm{OQP}=\angle \mathrm{OPQ}$

$$
=40^{\circ}
$$

[Angles opposite to equal sides are equal]
In $\triangle \mathrm{OPQ}$,
$\angle \mathrm{O}+\angle \mathrm{OPQ}+\angle \mathrm{Q}=180^{\circ}$
[Angle sum property]
$\angle \mathrm{POQ}=180^{\circ}-\left(40+40^{\circ}\right)$

$$
=180^{\circ}-80^{\circ}
$$

$$
\left[\angle \mathrm{OPQ}=40^{\circ}=\angle \mathrm{Q}\right]
$$

$\angle \mathrm{POQ}=100^{\circ}$
8. In Fig., if PA and PB are tangents to the circle with centre O such that \angle $\angle \mathrm{APB}=50^{\circ}$, then $\angle \angle \mathrm{OAB}$ is equal to
(A) 25°
(B) 30°
(C) 40°
(D) 50°

Solution:

(A)

Given,
PA and PB are tangent lines.
$\mathrm{PA}=\mathrm{PB}$
[as, Length of tangents drawn from an external point to a circle is equal]
Let,
$\angle \mathrm{PBA}=\angle \mathrm{PAB}=\theta$
In $\triangle \mathrm{PAB}$,

$$
\begin{array}{r}
\angle \mathrm{P}+\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ} \\
50^{\circ}+\theta+\theta=180^{\circ} \\
2 \theta=180^{\circ}-50^{\circ}=130^{\circ} \\
\theta=65^{\circ}
\end{array}
$$

[Angle sum property]

Also,
$\mathrm{OA} \perp \mathrm{PA}$
[as,tangent at any point of a circle is perpendicular to the radius through the point of contact]

$$
\begin{aligned}
& \text { So, } \\
& \angle \mathrm{PAO}=90^{\circ} \\
& \angle \mathrm{PAB}+\angle \mathrm{BAO}=90^{\circ} \\
& 65^{\circ}+\angle \mathrm{BAO}=90^{\circ} \\
& \angle \mathrm{BAO}=90^{\circ}-65^{\circ} \\
& =25^{\circ} \\
& \angle \mathrm{OAB}=25^{\circ}
\end{aligned}
$$

9. If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm , then length of each tangent is equal to

(A) $\frac{3}{2} \sqrt{3} \mathrm{~cm}$
(B) 6 cm
(C) 3 cm
(D) $3 \sqrt{3} \mathrm{~cm}$

Solution:

(D)

Let P be an external point and a pair of tangents is drawn from point P such that the angle between two tangents is 60°.

Join OA and OP.
Also,
OP is a bisector line of $\angle \mathrm{APC}$.
$\angle \mathrm{APO}=\angle \mathrm{CPO}=30^{\circ}$
And,
$\mathrm{OA} \perp \mathrm{AP}$
[Tangent at any point of a circle is perpendicular to the radius through the point of contact.]
$\angle \mathrm{OAP}=90^{\circ}$
In right angled $\triangle \mathrm{OAP}$,
$\tan 30^{\circ}=\frac{O A}{A P}$
$\frac{1}{\sqrt{3}}=\frac{3}{A P}$
$A P=3 \sqrt{3} \mathrm{~cm}$

So, the length of each tangent is $3 \sqrt{3} \mathrm{~cm}$.
10. In Fig., if $P Q R$ is the tangent to a circle at Q whose centre is $O, A B$ is a chord parallel to PR and $\angle \mathrm{BQR}=70^{\circ}$, then $\angle \angle \mathrm{AQB}$ is equal to
(A) 20°
(B) 40°
(C) 35°
(D) 45°

Solution:

(B) Given,

AB 11 PR

Therefore,
$\angle \mathrm{ABQ}=\angle \mathrm{BQR}=70^{\circ}$ [Alternate angles]
Also,
$Q D$ is perpendicular to $A B$ and $Q D$ bisects $A B$.
In $\triangle \mathrm{QDA}$ and $\triangle \mathrm{QDB}$,
$\angle \mathrm{QDA}=\angle \mathrm{QDB} \quad\left[90^{\circ} \mathrm{each}\right]$
$\mathrm{AD}=\mathrm{BD}$
$\mathrm{QD}=\mathrm{QD}$
[Common side]
So,
$\Delta \mathrm{ADQ} \cong \triangle \mathrm{BDQ} \quad$ [by SAS congruency]
Therefore,
$\angle \mathrm{QAD}=\angle \mathrm{QBD}[\mathrm{CPCT}]$
But,
$\angle \mathrm{QBD}=\angle \mathrm{ABQ}=70^{\circ}$
$\angle \mathrm{QAD}=70^{\circ}$
Now, in $\triangle \mathrm{ABQ}$,

$$
\begin{aligned}
\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{AQB} & =180^{\circ} . \\
\angle \mathrm{AQB} & =180^{\circ}-\left(70^{\circ}+70^{\circ}\right) \\
& =40^{\circ}
\end{aligned}
$$

[From (i)]
[Angle sum property]

Exercise No. 9.2

Short Answer Questions with Reasoning:

Write 'True' or 'False' and justify your answer in each of the following:

1. If a chord $A B$ subtends an angle of 60° at the centre of a circle, then angle between the tangents at A and B is also 60°.

Solution:

False
Explanation:
Let us consider the given figure. In which we have a circle with centre O and $A B$ a chord with $\angle \mathrm{AOB}=60^{\circ}$

As, tangent to any point on the circle is perpendicular to the radius through point of contact,
We get,
$\mathrm{OA} \perp \mathrm{AC}$ and $\mathrm{OB} \perp \mathrm{CB}$
$\angle \mathrm{OBC}=\angle \mathrm{OAC}=90^{\circ}$
Using angle sum property of quadrilateral in Quadrilateral AOBC,
We get,

$$
\begin{array}{r}
\angle \mathrm{OBC}+\angle \mathrm{OAC}+\angle \mathrm{AOB}+\angle \mathrm{ACB}=360^{\circ} \\
90^{\circ}+90^{\circ}+60^{\circ}+\angle \mathrm{ACB}=360^{\circ} \\
\angle \mathrm{ACB}=120^{\circ}
\end{array}
$$

Therefore, the angle between two tangents is 120°.

And, we can conclude that,the given statement is false.

2. The length of tangent from an external point on a circle is always greater than the radius of the circle.

Solution:

False
Explanation:
Length of tangent from an external point P on a circle may or may not be greater than the radius of the circle.

3. The length of tangent from an external point P on a circle with centre O is always less than OP.

Solution:

True
Explanation:
Consider the figure of a circle with centre 0 .
Let PT be a tangent drawn from external point P.
Now, Joint OT.
$\mathrm{OT} \perp \mathrm{PT}$

We know that,
Tangent at any point on the circle is perpendicular to the radius through point of contact Therefore, OPT is a right-angled triangle formed.

We also know that,
In a right angled triangle, hypotenuse is always greater than any of the two sides of the triangle.

So,
$\mathrm{OP}>\mathrm{PT}$ or $\mathrm{PT}<\mathrm{OP}$
Hence, length of tangent from an external point P on a circle with center O is always less than OP.

4. The angle between two tangents to a circle may be 0°.

Solution:

True
Explanation:
The angle between two tangents to a circle may be 0° only when both tangent lines coincide or are parallel to each other.

5. If angle between two tangents drawn from a point P to a circle of radius

 a and centre \mathbf{O} is 90°, then $\mathrm{OP}=a \sqrt{2}$.
Solution:

True.
Tangent is always perpendicular to the radius at the point of contact.
So, \angle OTP $=90$
If 2 tangents are drawn from an external point, then they are equally inclined to the line segment joining the centre to that point.

Let us consider the following figure,

From point P , two tangents are drawn.
Given,
$\mathrm{OT}=\mathrm{a}$

Also, line OP bisects the $\angle \mathrm{RPT}$
$\angle \mathrm{TPO}=\angle \mathrm{RPO}=45^{\circ}$
Also,
$\mathrm{OT} \perp \mathrm{TP}$
$\angle \mathrm{OTP}=90^{\circ}$
In right angled $\Delta \mathrm{OTP}$,

$$
\sin 45^{\circ}=\frac{O T}{O P}
$$

$$
\frac{1}{\sqrt{2}}=\frac{a}{O P}
$$

$$
O P=a \sqrt{2}
$$

6. If angle between two tangents drawn from a point P to a circle of radius a and centre \mathbf{O} is 60°, then $\mathrm{OP}=a \sqrt{3}$.

Solution:

False
Explanation:
From point P , two tangents are drawn.
Given,
$\mathrm{OT}=\mathrm{a}$

Also, line OP bisects the $\angle \mathrm{RPT}$.
$\angle \mathrm{TPO}=\angle \mathrm{RPO}=30^{\circ}$
Also,
OT \perp PT
$\angle \mathrm{OTP}=90^{\circ}$
In right angled $\triangle \mathrm{OTP}$,

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{\mathrm{OT}}{\mathrm{OP}} \\
\frac{1}{2} & =\frac{\mathrm{a}}{\mathrm{OP}} \\
\mathrm{OP} & =2 \mathrm{a} \\
\mathrm{OP} & =2 \mathrm{a}
\end{aligned}
$$

7. The tangent to the circumcircle of an isosceles triangle ABC at A , in which $A B=A C$, is parallel to $B C$.

Solution:

True
Explanation:
Let EAF be tangent to the circumcircle of $\triangle \mathrm{ABC}$.

To prove: EAF ॥ BC
We have, $\angle \mathrm{EAB}=\angle \mathrm{ACB}$
[Angle between tangent and chord is equal to angle made by chord in the alternate segment]

Here, $\mathrm{AB}=\mathrm{AC}$
$\angle A B C=\angle A C B$

From equation (i) and (ii), we get
$\angle \mathrm{EAB}=\angle \mathrm{ABC}$
Alternate angles are equal.
EAF ॥ BC

8. If a number of circles touch a given line segment $P Q$ at a point A, then their centres lie on the perpendicular bisector of PQ.

Solution:

False
Explanation:
Given that PQ is any line segment and $S_{1}, S_{2}, S_{3}, S_{4}$, \qquad circles touch the line segment PQ at a point A. Let the centres of the circles $S_{1}, S_{2}, S_{3}, S_{4}$, \qquad be $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$, respectively.

To prove: Centres of the circles lie on the perpendicular bisector of PQ .
Joining each centre of the circles to the point A on the line segment PQ by line segment i.e., $\mathrm{C}_{1} \mathrm{~A}, \mathrm{C}_{2} \mathrm{~A}, \mathrm{C}_{3} \mathrm{~A}, \mathrm{C}_{4} \mathrm{~A}, \ldots$ and so on.

We know that, if we draw a line from the centre of a circle to its tangent line, then the line is always perpendicular to the tangent line. But it does not bisect the line segment PQ .

9. If a number of circles pass through the end points P and Q of a line segment $P Q$, then their centres lie on the perpendicular bisector of $P Q$.

Solution:

True
Explanation:
We draw two circles with centre C_{1} and C_{2} passing through the end points P and Q of a line segment PQ. We know that the perpendicular bisector of a chord of circle always passes through the centre of the circle.

Thus, perpendicular bisector of PQ passes through C_{1} and C_{2}. Similarly, all the circle passing through the end points of line segment PQ , will have their centres on the perpendicular bisector of PQ .
10. $A B$ is a diameter of a circle and $A C$ is its chord such that $\angle B A C=30^{\circ}$. If the tangent at C intersects $A B$ extended at D, then $B C=B D$.

Solution:

True
To prove: $\mathrm{BC}=\mathrm{BD}$

Join BC and OC.
Given,
$\angle \mathrm{BAC}=30^{\circ}$
$\angle \mathrm{BCD}=30^{\circ}$
[Angle between tangent and chord is equal to angle made by chord in the alternate segment] $\mathrm{OC} \perp \mathrm{CD}$ and
$\mathrm{OA}=\mathrm{OC}=$ radius
$\angle \mathrm{OAC}=\angle \mathrm{OCA}=30^{\circ}$

So,
$\angle \mathrm{ACD}=\angle \mathrm{ACO}+\angle \mathrm{OCD}$

$$
=30^{\circ}+90^{\circ}
$$

$$
=120^{\circ}
$$

Now,
In $\triangle \mathrm{ACD}$,
$\angle \mathrm{DAC}+\angle \mathrm{ACD}+\angle \mathrm{CDA}=180^{\circ}$ [Angle sum property]
$30^{\circ}+120^{\circ}+\angle \mathrm{CDA}=180^{\circ}$

$$
\begin{aligned}
\angle \mathrm{CDA}= & 180^{\circ}-\left(30^{\circ}+120^{\circ}\right) \\
& =30^{\circ}
\end{aligned}
$$

$\angle \mathrm{CDA}=\angle \mathrm{BCD}$
$\mathrm{BC}=\mathrm{BD}$
[as, Sides opposite to equal angles are equal]

Exercise No. 9.3

Short Answer Questions:

Question:

1. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord $A C$ of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.

Solution:

Let C_{1} and C_{2} be the two circles having same centre O. AC is a chord which touches C_{1} at point D.

Join OD.
Also, OD \perp AC
$\mathrm{AD}=\mathrm{DC}=4 \mathrm{~cm}$
[Perpendicular line OD bisects the chord]
In right angled $\triangle \mathrm{AOD}$,
$\mathrm{OA}^{2}=\mathrm{AD}^{2}+\mathrm{OD}^{2}[$ By Pythagoras theorem $]$
$\mathrm{OD}^{2}=5^{2}-4^{2}$
$\mathrm{OD}^{2}=25-16$

$$
=9
$$

$\mathrm{OD}=3 \mathrm{~cm}$
Radius of the inner circle is $\mathrm{OD}=3 \mathrm{~cm}$
2. Two tangents $P Q$ and $P R$ are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral.

Solution:

We know that,
Radius \perp Tangent $=\mathrm{OR} \perp \mathrm{PR}$

$\angle \mathrm{ORP}=90^{\circ}$
Similarily,
Radius \perp Tangent $=\mathrm{OQ} \perp \mathrm{PQ}$
$\angle \mathrm{OQP}=90^{\circ}$
In quadrilateral ORPQ,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{ORP}+\angle \mathrm{RPQ}+\angle \mathrm{PQO}+\angle \mathrm{QOR}=360^{\circ}$ $90^{\circ}+\angle \mathrm{RPQ}+90^{\circ}+\angle \mathrm{QOR}=360^{\circ}$

So,
$\angle \mathrm{O}+\angle \mathrm{P}=180^{\circ}$
PROQ is a cyclic quadrilateral.
3. If from an external point B of a circle with centre O, two tangents $B C$ and $B D$ are drawn such that $\angle \angle D B C=120^{\circ}$, prove that $\mathbf{B C}+\mathbf{B D}=\mathbf{B O}$, i.e., $B O=2 B C$.

Solution:

As given in the question,
By RHS rule,
$\triangle \mathrm{OBC}$ and $\triangle \mathrm{OBD}$ are congruent
\{Ву CPCT \}

$\angle \mathrm{OBC}$ and $\angle \mathrm{OBD}$ are equal
Therefore,
$\angle \mathrm{OBC}=\angle \mathrm{OBD}=60^{\circ}$
In triangle OBC ,
$\cos 60^{\circ}=\mathrm{BC} / \mathrm{OB}$
$1 / 2=\mathrm{BC} / \mathrm{OB}$
$\mathrm{OB}=2 \mathrm{BC}$
Hence proved.

4. Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

Solution:

Let us take the lines be l_{1} and l_{2}.

Assume that O touches l_{1} and l_{2} at M and N ,
So,
$\mathrm{OM}=\mathrm{ON}$
(Radius of the circle)
Therefore,
From the centre "O" of the circle, it has equal distance from $1_{1} \& 1_{2}$
In \triangle OPM \& OPN,

$$
\begin{aligned}
\mathrm{OM} & =\mathrm{ON} \\
\angle \mathrm{OMP} & =\angle \mathrm{ONP} \\
\mathrm{OP} & =\mathrm{OP}
\end{aligned}
$$

Therefore,
$\Delta \mathrm{OPM}=\Delta \mathrm{OPN}$
(SSS congruence rule)
By C.P.C.T,
$\angle \mathrm{MPO}=\angle \mathrm{NPO}$
So, 1 bisects $\angle \mathrm{MPN}$.
Hence, O lies on the bisector of the angle between $1_{1} \& 1_{2}$.
Also,
Centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

5. In Fig. 9.13, AB and CD are common tangents to two circles of unequal radii.

Prove that $\mathrm{AB}=\mathbf{C D}$.

Solution:

As given in the question,
$A B=C D$

Construction: Produce AB and CD , to intersect at P .
Proof:
Consider the circle with greater radius.
Tangents drawn from an external point to a circle are equal
$\mathrm{AP}=\mathrm{CP}$
Also,
Consider the circle with smaller radius.
Tangents drawn from an external point to a circle are equal
$\mathrm{BP}=\mathrm{BD}$
Subtract Equation (ii) from (i),
$\mathrm{AP}-\mathrm{BP}=\mathrm{CP}-\mathrm{BD}$
$A B=C D$
Hence Proved.

6. In Question 5 above, if radii of the two circles are equal, prove that $\mathrm{AB}=$ CD.

Solution:

Join OO,
Since, $\mathrm{OA}=\mathrm{O}^{\prime} \mathrm{B}$ [Given]
And,
$\angle \mathrm{OAB}=\angle \mathrm{O}^{\prime} \mathrm{BA}=90^{\circ}$
[Tangent at any point of a circle is perpendicular to the radius at the point of contact]
Since, perpendicular distance between two straight lines at two different points is same.
AB is parallel to OO^{\prime}
Also,
CD is parallel to OO^{\prime}
AB 11 CD
Now,
$\angle \mathrm{OAB}=\angle \mathrm{OCD}=\angle \mathrm{O}^{\prime} \mathrm{BA}=\angle \mathrm{O}^{\prime} \mathrm{DC}=90^{\circ}$
$A B C D$ is a rectangle.
Hence,
$A B=C D$.
7. In Fig., common tangents AB and CD to two circles intersect at E .

Prove that $\mathrm{AB}=\mathbf{C D}$.

Solution:

Given, common tangents AB and CD to two circles intersecting at E .
To prove:
$\mathrm{AB}=\mathrm{CD}$
We have,
The length of tangents drawn from an external point to a circle is equal
$\mathrm{EB}=\mathrm{ED}$ and
$E A=E C$
On adding, we get

$$
\begin{aligned}
\mathrm{EA}+\mathrm{EB} & =\mathrm{EC}+\mathrm{ED} \\
\mathrm{AB} & =\mathrm{CD}
\end{aligned}
$$

8. A chord $P Q$ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc PRQ.

Solution:

Given, chord PQ is parallel to tangent at R .
To prove : R bisects the arc PRQ.

$\angle 1=\angle 2$
[Alternate interior angles]
$\angle 1=\angle 3$
[Angle between tangent and chord is equal to angle made by chord in alternate segment] $\angle 2=\angle 3$

$$
\mathrm{PR}=\mathrm{QR}
$$

As,
$\operatorname{arc} \mathrm{PR}=\operatorname{arc} \mathrm{QR}$
Therefore, R bisects PQ .

9. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.

Solution:

To prove : $\angle 1=\angle 2$
Let RQ be a chord of the circle. Tangents are drawn at the points R and Q .

Let P be another point on the circle, then join PQ and PR.
As, at point Q , there is a tangent.
$\angle 2=\angle \mathrm{P}$
Also, at point R, there is a tangent.
$\angle 1=\angle \mathrm{P}$
$\angle 1=\angle 2=\angle \mathrm{P}$
$\angle 1=\angle 2$

10. Prove that a diameter $A B$ of a circle bisects all those chords which are parallel to the tangent at the point A.

Solution:

Given, AB is a diameter of the circle.
A tangent is drawn at point A .
Draw a chord CD parallel to tangent MAN.

Therefore, CD is a chord of the circle and OA is radius of the circle.
$\angle \mathrm{MAO}=90^{\circ}$
[tangent at any point of a circle is perpendicular to the radius through the point of contact]
$\angle C E O=\angle M A O$
[Corresponding angles]
$\angle \mathrm{CEO}=90^{\circ}$
So,
OE bisects CD,
[Perpendicular from centre of circle to chord bisects the chord]
Similarily,
Diameter AB bisects all chords which are parallel to the tangent at the point A .

Exercise No. 9.4

Long Answer Questions:

Question:

1. If a hexagon ABCDEF circumscribe a circle, prove that $\mathrm{AB}+\mathrm{CD}+\mathrm{EF}=$ BC + DE + FA.

Solution:

As given in the question,
A Hexagon ABCDEF circumscribe a circle.

To prove:

$$
\mathrm{AB}+\mathrm{CD}+\mathrm{EF}=\mathrm{BC}+\mathrm{DE}+\mathrm{FA}
$$

We know that,
Tangents drawn from an external point to a circle are equal.
So,

$\mathrm{AM}=\mathrm{RA}$	\ldots i $[\operatorname{tangents}$ from point A$]$
$\mathrm{BM}=\mathrm{BN}$	\ldots ii [tangents from point B$]$
$\mathrm{CO}=\mathrm{NC}$	\ldots iii $[$ tangents from point C$]$
$\mathrm{OD}=\mathrm{DP}$	\ldots iv [tangents from point D$]$
$\mathrm{EQ}=\mathrm{PE}$	$\ldots \mathrm{v}[\operatorname{tangents}$ from point E$]$
$\mathrm{QF}=\mathrm{FR}$	\ldots vi $[\operatorname{tangents}$ from point F$]$

Now, adding,
$[$ eq i $]+[$ eq ii] $]+[$ eq iii] $+[$ eq iv] $][$ eq v]+[eq vi]
$\mathrm{AM}+\mathrm{BM}+\mathrm{CO}+\mathrm{OD}+\mathrm{EQ}+\mathrm{QF}=\mathrm{RA}+\mathrm{BN}+\mathrm{NC}+\mathrm{DP}+\mathrm{PE}+\mathrm{FR}$
On solving, we get,

$$
\begin{gathered}
(\mathrm{AM}+\mathrm{BM})+(\mathrm{CO}+\mathrm{OD})+(\mathrm{EQ}+\mathrm{QF})=(\mathrm{BN}+\mathrm{NC})+(\mathrm{DP}+\mathrm{PE})+(\mathrm{FR}+\mathrm{RA}) \\
\mathrm{AB}+\mathrm{CD}+\mathrm{EF}=\mathrm{BC}+\mathrm{DE}+\mathrm{FA}
\end{gathered}
$$

Hence Proved!
2. Let s denote the semi-perimeter of a triangle ABC in which $\mathrm{BC}=a, \mathrm{CA}$ $=b, \mathrm{AB}=c$. If a circle touches the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ at $\mathrm{D}, \mathrm{E}, \mathrm{F}$, respectively, prove that $\mathrm{BD}=s-b$.

Solution:

As given in the question,
A triangle ABC with $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{c}$. Also, a circle is inscribed which touches the sides BC, CA and AB at D, E and F respectively and s is semi- perimeter of the triangle

To Prove: $\mathrm{BD}=\mathrm{s}-\mathrm{b}$
We have,
Semi Perimeter $=\mathrm{s}$
Perimeter $=2 \mathrm{~s}$

$$
\begin{equation*}
2 \mathrm{~s}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC} \tag{i}
\end{equation*}
$$

We know that,
Tangents drawn from an external point to a circle are equal
So,
$\mathrm{AF}=\mathrm{AE}$
[ii] [Tangents from point A]
$\mathrm{BF}=\mathrm{BD}$
[iii] [Tangents From point B]
$C D=C E$
[iv] [Tangents From point C]

Adding [ii] [iii] and [iv],

$$
\begin{aligned}
\mathrm{AF}+\mathrm{BF}+\mathrm{CD} & =\mathrm{AE}+\mathrm{BD}+\mathrm{CE} \\
\mathrm{AB}+\mathrm{CD} & =\mathrm{AC}+\mathrm{BD}
\end{aligned}
$$

Adding BD both side,

$$
\begin{aligned}
\mathrm{AB}+\mathrm{CD}+\mathrm{BD} & =\mathrm{AC}+\mathrm{BD}+\mathrm{BD} \\
\mathrm{AB}+\mathrm{BC}-\mathrm{AC} & =2 \mathrm{BD} \\
\mathrm{AB}+\mathrm{BC}+\mathrm{AC}-\mathrm{AC}-\mathrm{AC} & =2 \mathrm{BD} \\
2 \mathrm{~s}-2 \mathrm{AC} & =2 \mathrm{BD} \\
2 \mathrm{BD} & =2 \mathrm{~s}-2 \mathrm{~b} \\
\mathrm{BD} & =\mathrm{s}-\mathrm{b}
\end{aligned}
$$

[From i]
[as $\mathrm{AC}=\mathrm{b}$]

Hence Proved.

3. From an external point P, two tangents, $P A$ and $P B$ are drawn to a circle with centre O. At one point E on the circle tangent is drawn which intersects $P A$ and $P B$ at C and D, respectively. If $P A=10 \mathrm{~cm}$, find the perimeter of the triangle PCD .

Solution:

As given in the question,
From an external point P , two tangents, PA and PB are drawn to a circle with center O . At a point E on the circle tangent is drawn which intersects PA and PB at C and D , respectively. And $\mathrm{PA}=10 \mathrm{~cm}$

To Find : Perimeter of $\triangle \mathrm{PCD}$
As we know that, Tangents drawn from an external point to a circle are equal.
So, we have,
$\mathrm{AC}=\mathrm{CE}$
[i] [Tangents from point C]
$\mathrm{ED}=\mathrm{DB}$
[ii] [Tangents from point D]
Now,
Perimeter of Triangle PCD $=P C+C D+D P$

$$
=P C+C E+E D+D P
$$

$$
\begin{aligned}
& =\mathrm{PC}+\mathrm{AC}+\mathrm{DB}+\mathrm{DP} \quad[\text { From i and ii }] \\
& =\mathrm{PA}+\mathrm{PB}
\end{aligned}
$$

Now,
$\mathrm{PA}=\mathrm{PB}=10 \mathrm{~cm}$ as tangents drawn from an external point to a circle are equal
So ,
Perimeter $=\mathrm{PA}+\mathrm{PB}$

$$
\begin{aligned}
& =10+10 \\
& =20 \mathrm{~cm}
\end{aligned}
$$

4. If $A B$ is a chord of a circle with centre $O, A O C$ is a diameter and AT is the tangent at A as shown in Fig.. Prove that $\angle B A T=\angle A C B$.

Solution:

As given in the question,
A circle with center O and AC as a diameter and AB and BC as two chords also AT is a tangent at point A
To Prove : $\angle \mathrm{BAT}=\angle \mathrm{ACB}$
Proof :
$\angle \mathrm{ABC}=90^{\circ}$
[Angle in a semicircle is a right angle]
In $\triangle \mathrm{ABC}$ By angle sum property of triangle
$\angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{ACB}=180^{\circ}$
$\angle \mathrm{ACB}+90^{\circ}=180^{\circ}-\angle \mathrm{BAC}$
$\angle A C B=90-\angle B A C$
Now,
$\mathrm{OA} \perp \mathrm{AT}$
[Tangent at a point on the circle is perpendicular to the radius through point of contact]

$$
\begin{align*}
\angle \mathrm{OAT}=\angle \mathrm{CAT} & =90^{\circ} \\
\angle \mathrm{BAC}+\angle \mathrm{BAT} & =90^{\circ} \\
\angle \mathrm{BAT} & =90^{\circ}-\angle \mathrm{BAC} \tag{ii}
\end{align*}
$$

From [i] and [ii],
$\angle B A T=\angle A C B$

5. Two circles with centres O and O^{\prime} of radii 3 cm and 4 cm , respectively intersect at two points P and Q such that $O P$ and $O \cdot P$ are tangents to the two circles. Find the length of the common chord PQ.

Solution:

We have,
Two circles with centers O and O^{\prime} of radii 3 cm and 4 cm , respectively intersect at two points P and Q , such that OP and $\mathrm{O}^{\prime} \mathrm{P}$ are tangents to the two circles and PQ is a common chord.

To Find: Length of common chord PQ
$\angle \mathrm{OPO}=90^{\circ}$
[Tangent at a point on the circle is perpendicular to the radius through point of contact]
Therefore,
OPO is a right-angled triangle at P
By Pythagoras in \triangle OPO', we have

$$
\begin{aligned}
\left(\mathrm{OO}^{\prime}\right)^{2} & =\left(\mathrm{O}^{\prime} \mathrm{P}\right)^{2}+(\mathrm{OP})^{2} \\
\left(\mathrm{OO}^{\prime}\right)^{2} & =(4)^{2}+(3)^{2} \\
\left(\mathrm{OO}^{\prime}\right)^{2} & =25 \\
\mathrm{OO}^{\prime} & =5 \mathrm{~cm}
\end{aligned}
$$

Let $\mathrm{ON}=\mathrm{x} \mathrm{cm}$ and

$$
\mathrm{NO}^{\prime}=5-\mathrm{x} \mathrm{~cm}
$$

In right angled triangle ONP

$$
\begin{aligned}
(\mathrm{ON})^{2}+(\mathrm{PN})^{2} & =(\mathrm{OP})^{2} \\
\mathrm{x}^{2}+(\mathrm{PN})^{2} & =(3)^{2} \\
(\mathrm{PN})^{2} & =9-\mathrm{x}^{2}
\end{aligned}
$$

In right angled triangle $\mathrm{O}^{\prime} \mathrm{NP}$

$$
\begin{align*}
\left(\mathrm{O}^{\prime} \mathrm{N}\right)^{2}+(\mathrm{PN})^{2} & =\left(\mathrm{O}^{\prime} \mathrm{P}\right)^{2} \\
(5-\mathrm{x})^{2}+(\mathrm{PN})^{2} & =(4)^{2} \\
25-10 \mathrm{x}+\mathrm{x}^{2}+(\mathrm{PN})^{2} & =16 \\
(\mathrm{PN})^{2} & =-\mathrm{x}^{2}+10 \mathrm{x}-9 \tag{ii}
\end{align*}
$$

From [i] and [ii]

$$
\begin{aligned}
9-x^{2} & =-x^{2}+10 x-9 \\
10 x & =18 \\
x & =1.8
\end{aligned}
$$

From (1) we have

$$
\begin{aligned}
(\mathrm{PN})^{2} & =9-(1.8)^{2} \\
& =9-3.24 \\
& =5.76 \\
\mathrm{PN} & =2.4 \mathrm{~cm}
\end{aligned}
$$

$P Q=2 P N$

$$
=2(2.4)
$$

$$
=4.8 \mathrm{~cm}
$$

6. In a right triangle $A B C$ in which $\angle B=90^{\circ}$, a circle is drawn with $A B$ as diameter intersecting the hypotenuse $A C$ and P. Prove that the tangent to the circle at P bisects BC.

Solution:

As given in the question,
In a right angle $\triangle \mathrm{ABC}$ is which $\angle \mathrm{B}=90^{\circ}$, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P . Also PQ is a tangent at P

To Prove: PQ bisects BC or, $\mathrm{BQ}=\mathrm{QC}$

We have,
$\angle \mathrm{APB}=90^{\circ}$
$\angle \mathrm{BPC}=90^{\circ}$
[Angle in a semicircle is a right-angle]
[Linear Pair]
$\angle 3+\angle 4=90$
[i]
Now,
$\angle \mathrm{ABC}=90^{\circ}$
In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{ACB} & =180^{\circ} \\
90+\angle 1+\angle 5 & =180 \\
\angle 1+\angle 5 & =90
\end{aligned}
$$

[ii]
Now,
$\angle 1=\angle 3$
[angle between tangent and the chord equals angle made by the chord in alternate segment]
Using this in [ii] we have,
$\angle 3+\angle 5=90$

From [i] and [iii] we have
$\angle 3+\angle 4=\angle 3+\angle 5$
$\angle 4=\angle 5$
$\mathrm{QC}=\mathrm{PQ}$
[Sides opposite to equal angles are equal]
Also
$P Q=B Q$
[Tangents drawn from an external point to a circle are equal]
So,
$\mathrm{BQ}=\mathrm{QC}$
Therefore, PQ bisects BC .
7. In Fig., tangents $P Q$ and $P R$ are drawn to a circle such that $\angle R P Q=30^{\circ}$. A chord RS is drawn parallel to the tangent $P Q$. Find the $\angle R Q S$. [Hint: Draw a line through Q and perpendicular to QP.]

Solution:

As given in the question,
Tangents PQ and PR are drawn to a circle such that $\angle \mathrm{RPQ}=30^{\circ}$. A chord RS is drawn parallel to the tangent PQ .

To Find : $\angle R Q S$
$P Q=P R$
$\angle \mathrm{PRQ}=\angle \mathrm{PQR} \quad$ [Angles opposite to equal sides are equal]

In $\triangle \mathrm{PQR}$
$\angle \mathrm{PRQ}+\angle \mathrm{PQR}+\angle \mathrm{QPR}=180^{\circ}$
$\angle \mathrm{PQR}+\angle \mathrm{PQR}+\angle \mathrm{QPR}=180^{\circ}$
[Using 1]
$2 \angle \mathrm{PQR}+\angle \mathrm{RPQ}=180^{\circ}$

$$
\begin{array}{r}
2 \angle \mathrm{PQR}+30=180 \\
2 \angle \mathrm{PQR}=150
\end{array}
$$

$\angle \mathrm{PQR}=75^{\circ}$
$\angle \mathrm{QRS}=\angle \mathrm{PQR}=75^{\circ} \quad$ [Alternate interior angles]
$\angle \mathrm{QSR}=\angle \mathrm{PQR}=75^{\circ}$
[angle between tangent and the chord equals angle made by the chord in alternate segment]
Now
In \triangle RQS

$$
\begin{aligned}
\angle \mathrm{RQS}+\angle \mathrm{QRS}+\angle \mathrm{QSR} & =180 \\
\angle \mathrm{RQS}+75+75 & =180 \\
\angle \mathrm{RQS} & =30^{\circ}
\end{aligned}
$$

8. $A B$ is a diameter and $A C$ is a chord of a circle with centre O such that $\angle \mathrm{BAC}=30^{\circ}$. The tangent at C intersects extended AB at a point D . Provethat BC=BD.

Solution:

Given,
$A B$ is a diameter and $A C$ is a chord of circle with centre $O, \angle B A C=30^{\circ}$
To prove: $\mathrm{BC}=\mathrm{BD}$

Construction: Join BC
$\angle \mathrm{BCD}=\angle \mathrm{CAB}$
$\angle \mathrm{CAB}=30^{\circ}$
$\angle \mathrm{BCD}=30^{\circ}$
[Angles in alternate segment]
$\angle \mathrm{ACB}=90^{\circ}$
[Given]
[Angle in semi-circle]
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad$ [Angle sum property]
$30^{\circ}+\angle \mathrm{CBA}+90^{\circ}=180^{\circ}$
$\angle \mathrm{CBA}=60^{\circ}$
Also,

$$
\left.\begin{array}{l}
\angle \mathrm{CBA}+\angle \mathrm{CBD}=180^{\circ} \\
\angle \mathrm{CBD}=180^{\circ}-60^{\circ} \\
\\
\quad=120^{\circ} \\
{\left[\text { as, } \angle \mathrm{CBA}=60^{\circ}\right]}
\end{array} \quad \text { [Linear pair] }\right]
$$

Now,
In ACBD,

$$
\begin{gathered}
\angle \mathrm{CBD}+\angle \mathrm{BDC}+\angle \mathrm{DCB}=180^{\circ} \\
120^{\circ}+\angle \mathrm{BDC}+30^{\circ}=180^{\circ}
\end{gathered}
$$

$$
\begin{equation*}
\angle \mathrm{BDC}=30^{\circ} \tag{ii}
\end{equation*}
$$

From (i) and (ii),
$\angle B C D=\angle B D C$

$$
\mathrm{BC}=\mathrm{BD}
$$

[Sides opposite to equal angles are equal]

9. Prove that the tangent drawn at the mid-point of an arc of a circle is parallelto the chord joining the end points of the arc.

Solution:

Let us take the mid-point of an arc AMB be M and TMT' be the tangent to the circle. Join AB, AM and MB.

Since,
$\operatorname{arc} \mathrm{AM}=\operatorname{arc} \mathrm{MB}=3$
Chord $\mathrm{AM}=$ Chord MB
In $\triangle \mathrm{AMB}$,

$$
\begin{equation*}
\mathrm{AM}=\mathrm{MB} \tag{i}
\end{equation*}
$$

$\angle \mathrm{MAB}=\angle \mathrm{MBA}$
[Sides opposite to equal angles are equal]

Since, TMT' is a tangent line.
Therefore,

$$
\begin{aligned}
\angle \mathrm{AMT} & =\angle \mathrm{MBA} & \text { [Angles in alternate segments are equal] } \\
& =\angle \mathrm{MAB} & {[\text { from equation }(\mathrm{i})] }
\end{aligned}
$$

But, $\angle \mathrm{AMT}$ and $\angle \mathrm{MAB}$ are alternate angles, which is possible only when AB is parallel to TMT

Hence, the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

10. In Fig., the common tangent, AB and CD to two circles with centres Oand O^{\prime} intersect at E . Prove that the points $\mathrm{O}, \mathrm{E}, \mathrm{O}^{\prime}$ are collinear.

Solution:

Join AO, OC and O'D, O'B.
Now,
In $\Delta E O^{\prime} D$ and $\Delta E O^{\prime} B$,
$O^{\prime} \mathrm{D}=\mathrm{O}^{\prime} \mathrm{B}$
$O^{\prime} E=O^{\prime} E$
$\mathrm{ED}=\mathrm{EB}$
[Tangents drawn from an external point to the circle are equal in length]

$\mathrm{EO}^{\prime} \mathrm{D} \cong \Delta \mathrm{EO}^{\prime} \mathrm{B}$
[By SSS congruence criterion]
$\angle O^{\prime} E D=\angle O^{\prime} E B$
Therefore,
$O^{\prime} E$ is the angle bisector of $\angle D E B$.
Similarly,
OE is the angle bisector of $\angle \mathrm{AEC}$.
Now, in quadrilateral DEBO'.
$\angle O^{\prime} \mathrm{DE}=\angle \mathrm{O}^{\prime} \mathrm{BE}=90^{\circ}$
[CED is a tangent to the circle and $\mathrm{O}^{\prime} \mathrm{D}$ is the radius, i.e., $\mathrm{O}^{\prime} \mathrm{D} \perp \mathrm{CED}$]

```
\angleO'DE + }\angle\mp@subsup{O}{}{\prime}\textrm{BE}=18\mp@subsup{0}{}{\circ
\angleDEB + }\angle\textrm{DO}'\textrm{B}=18\mp@subsup{0}{}{\circ
```

[as, DEBO' is cyclic quadrilateral]
Since,
$A B$ is a straight line.

$$
\begin{array}{r}
\angle \mathrm{AED}+\angle \mathrm{DEB}=180^{\circ} \\
\angle \mathrm{AED}+180^{\circ}-\angle \mathrm{DO}{ }^{\prime} \mathrm{B}=180^{\circ} \\
\angle \mathrm{AED}=\angle \mathrm{DO}^{\prime} \mathrm{B} \tag{iii}
\end{array}
$$

[from (ii)]

Similarly,
$\angle A E D=\angle A O C$
Again from eq. (ii),
$\angle \mathrm{DEB}=180^{\circ}-\angle \mathrm{DO}^{\prime} \mathrm{B}$
Dividing by 2 on both sides, we get,

$$
\begin{align*}
& \frac{1}{2} \angle \mathrm{DEB}=90^{\circ}-\frac{1}{2} \angle \mathrm{DO}^{\prime} \mathrm{B} \\
& \angle \mathrm{DEO}^{\prime}=90^{\circ}-\frac{1}{2} \angle \mathrm{DO}^{\prime} \mathrm{B} \tag{v}
\end{align*}
$$

Similarily,
$\angle \mathrm{AEC}=180^{\circ}-\angle \mathrm{AOC}$
Dividing 2 on both sides,

$$
\begin{align*}
\frac{1}{2} \angle \mathrm{AEC} & =90^{\circ}-\frac{1}{2} \angle \mathrm{AOC} \\
\angle \mathrm{AEO} & =90^{\circ}-\frac{1}{2} \angle \mathrm{AOC} \tag{vi}
\end{align*}
$$

Now,

$$
\begin{aligned}
\angle \mathrm{AED}+\angle \mathrm{AEO}+\angle \mathrm{DEO}^{\prime} & =\angle \mathrm{AED}+90^{\circ}-\frac{1}{2} \angle \mathrm{DO} \mathrm{~B}+90^{\circ}-\frac{1}{2} \angle \mathrm{AOC} \\
& =\angle \mathrm{AED}+180^{\circ}-\frac{1}{2}(\angle \mathrm{DO} \mathrm{~B}+\angle \mathrm{AOC}) \\
& =\angle \mathrm{AED}+180^{\circ}-\frac{1}{2}(\angle \mathrm{AED}+\angle \mathrm{AED}) \quad \quad \quad \text { (from iii and iv) } \\
& =\angle \mathrm{AED}+180^{\circ}-\angle \mathrm{AED} \\
& =180^{\circ}
\end{aligned}
$$

So,
$\angle \mathrm{AED}+\angle \mathrm{AEO}+\angle \mathrm{DEO}^{\prime}=180^{\circ}$

So,
OEO' is straight line.
Hence, O, E and O' are collinear.
11. In Fig. 9.20. O is the centre of a circle of radius 5 cm , T is a point such that $O T=13 \mathrm{~cm}$ and $O T$ intersects the circle at E. If $A B$ is the tangent to the circle at E, find the length of $A B$.

Solution:

OP is perpendicular to PT .
In $\triangle \mathrm{OPT}$,
$\mathrm{OT}^{2}=\mathrm{OP}^{2}+\mathrm{PT}^{2}$
$\mathrm{PT}^{2}=\mathrm{OT}^{2}-\mathrm{OP}^{2}$
$\mathrm{PT}^{2}=(13)^{2}-(5)^{2}$
$=169-25$
$=144$
$\mathrm{PT}=12 \mathrm{~cm}$
Since, the length of pair of tangents from an external point T is equal.
So,
$\mathrm{QT}=12 \mathrm{~cm}$
Now,
TA $=\mathrm{PT}-\mathrm{PA}$
$\mathrm{TA}=12-\mathrm{PA}$
and
$\mathrm{TB}=\mathrm{QT}-\mathrm{QB}$
$\mathrm{TB}=12-\mathrm{QB}$
Also,
$\mathrm{PA}=\mathrm{AE}$ and $\mathrm{QB}=\mathrm{EB}$
...(iii) [Pair of tangents]
$\mathrm{ET}=\mathrm{OT}-\mathrm{OE}$
[as, $\mathrm{OE}=5 \mathrm{~cm}=$ radius]
$\mathrm{ET}=13-5$
$\mathrm{ET}=8 \mathrm{~cm}$

Since, AB is a tangent and OE is the radius.
$\mathrm{OE} \perp \mathrm{AB}$,
$\angle \mathrm{OEA}=90^{\circ}$
$\angle \mathrm{AET}=180^{\circ}-\angle \mathrm{OEA}$
[Linear pair]
$\angle \mathrm{AET}=90^{\circ}$
Now, in right angled $\triangle \mathrm{AET}$,

$$
(\mathrm{AT})^{2}=(\mathrm{AE})^{2}+(\mathrm{ET})^{2}
$$

[by Pythagoras theorem]
$(12-\mathrm{PA})^{2}=(\mathrm{PA})^{2}+(8)^{2}$
On solving,
$144+(\mathrm{PA})^{2}-24 \mathrm{PA}=(\mathrm{PA})^{2}+64$
$24 \mathrm{PA}=80$
$\mathrm{PA}=\frac{10}{3}$
So,
$\mathrm{AE}=\frac{10}{3}$
We join OQ,
Similarily,
$\mathrm{BE}=\frac{10}{3}$
Also,
$\mathrm{AB}=\mathrm{AE}+\mathrm{BE}$
$=\frac{10}{3}+\frac{10}{3}$
$=\frac{20}{3}$
12. The tangent at a point C of a circle and a diameter $A B$ when extended intersect at \mathbf{P}. If $\angle \mathbf{P C A}=\mathbf{1 1 0}^{\circ}$, find CBA .
[Hint: Join C with centre O.]

Solution:

Join OC. In this, OC is the radius.

We know that, tangent at any point of a circle is - perpendicular to the radius through the point of contact.

Therefore,
$\mathrm{OC} \perp \mathrm{PC}$
Now,

$$
\begin{aligned}
& \angle \mathrm{PCA}=110^{\circ} \text { [Given] } \\
& \angle \mathrm{PCO}+\angle \mathrm{OCA}=110^{\circ} \\
& 90^{\circ}+\angle \mathrm{OCA}=110^{\circ} \\
& \angle \mathrm{OCA}=20^{\circ}
\end{aligned}
$$

Also,
$\mathrm{OC}=\mathrm{OA}=$ radius of circle
$\angle \mathrm{OCA}=\angle \mathrm{OAC}=20^{\circ}$
[Sides opposite to equal angles are equal]
Since, PC is a tangent,
$\angle \mathrm{BCP}=\angle \mathrm{CAB}=20^{\circ}$
[Angles in alternate segment]
In $\triangle \mathrm{PAC}$,
$\angle \mathrm{P}+\angle \mathrm{C}+\angle \mathrm{A}=180^{\circ}$
So,
$\angle \mathrm{P}=180^{\circ}-(\angle \mathrm{C}+\angle \mathrm{A})$

$$
\begin{aligned}
& =180^{\circ}-\left(110^{\circ}+20^{\circ}\right) \\
& =180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{PBC}$,

$$
\begin{aligned}
\angle \mathrm{BPC}+\angle \mathrm{PCB}+\angle \mathrm{CBP} & =180^{\circ} \\
50^{\circ}+20^{\circ}+\angle \mathrm{PBC} & =180^{\circ} \\
\angle \mathrm{PBC} & =180^{\circ}-70^{\circ} \\
\angle \mathrm{PBC} & =110^{\circ}
\end{aligned}
$$

Since, ABP is a straight line.
Therefore,

$$
\begin{aligned}
\angle \mathrm{PBC}+\angle \mathrm{CBA} & =180^{\circ} \\
\angle \mathrm{CBA} & =180^{\circ}-110^{\circ} \\
& =70^{\circ}
\end{aligned}
$$

13. If an isosceles triangle $A B C$, in which $A B=A C=6 \mathrm{~cm}$, is inscribed in a circleof radius 9 cm , find the area of the triangle.

Solution:

Join OB, OC and OA.
In $\triangle \mathrm{ABO}$ and $\triangle \mathrm{ACO}$,
$\mathrm{AB}=\mathrm{AC}$
$\mathrm{BO}=\mathrm{CO}$
[Given]
$\mathrm{AO}=\mathrm{AO}$
[Radii of same circle]
$\triangle \mathrm{ABO} \cong \triangle \mathrm{ACO}$
[By SSS congruence criterion]

$\angle 1=\angle 2$
[CPCT]
Now,
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{ACM}$,
$\mathrm{AB}=\mathrm{AC}$
$\angle 1=\angle 2$
$\mathrm{AM}=\mathrm{AM}$
[Given]
[proved above]
[Common side]

So,
$\Delta \mathrm{AMB} \cong \triangle \mathrm{AMC}$
[By SAS congruence criterion]
$\angle \mathrm{AMB}=\angle \mathrm{AMC}$
[CPCT]

Also,
$\angle \mathrm{AMB}+\angle \mathrm{AMC}=180^{\circ}$
[Linear pair]

We know that a perpendicular from the centre of circle bisects the chord.
So, OA is a perpendicular bisector of BC.
Let $\mathrm{AM}=\mathrm{x}$, then $\mathrm{OM}=9-\mathrm{x}$
[as, $\mathrm{OA}=$ radius $=9 \mathrm{~cm}$]

In right angledd $\triangle \mathrm{AMC}$,
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MC}^{2}$
[By Pythagoras theorem]
$\mathrm{MC}^{2}=6^{2}-\mathrm{x}^{2}$
In right angle $\triangle \mathrm{OMC}$,
$\mathrm{OC}^{2}=\mathrm{OM}^{2}+\mathrm{MC}^{2}$
[By Pythagoras theorem]

$$
M C^{2}=9^{2}-(9-x)^{2}
$$

From equation (i) and (ii),

$$
\begin{aligned}
6^{2}-x^{2} & =9^{2}-(9-x)^{2} \\
36-x^{2} & =81-\left(81+x^{2}-18 x\right) \\
36 & =18 x \\
x & =2
\end{aligned}
$$

So,
$\mathrm{AM}=2 \mathrm{~cm}$
From equation (ii),
$\mathrm{MC}^{2}=9^{2}-(9-2)^{2}$
$\mathrm{MC}^{2}=81-49$

$$
=32
$$

$\mathrm{MC}=4 \sqrt{ } 2 \mathrm{~cm}$
So,
$\mathrm{BC}=2 \mathrm{MC}$

$$
=8 \sqrt{ } 2 \mathrm{~cm}
$$

Area of $\mathrm{ABC}=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM} \\
& =\frac{1}{2} \times 8 \sqrt{2} \times 2 \\
& =8 \sqrt{2} \mathrm{~cm}^{2}
\end{aligned}
$$

The required area of $\triangle A B C$ is $8 \sqrt{ } 2 \mathrm{~cm} 2$.
14. A is a point at a distance 13 cm from the centre O of a circle of radius 5 $\mathrm{cm} . A P$ and $A Q$ are the tangents to the circle at P and Q. If a tangent $B C$ isdrawn at a point R lying on the minor arc $P Q$ to intersect $A P$ at B and $A Q$ atC, find the perimeter of the $\triangle A B C$.

Solution:

We have,
$\angle \mathrm{OPA}=90^{\circ}$
[Tangent at any point of a circle is perpendicular to the radius through the point of contact]

> In $\triangle \mathrm{OAP}$,
> $\mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{PA}^{2}$
> $13^{2}=5^{2}+\mathrm{PA}^{2}$
> $\mathrm{PA}=12 \mathrm{~cm}$

Now,

$$
\text { Perimeter of } \begin{aligned}
\Delta A B C & =A B+B C+C A \\
& =A B+B R+R C+C A \\
& =(A B+B R)+(R C+C A) \\
& =(A B+B P)+(C Q+C A)
\end{aligned}
$$

$[\mathrm{As}, \mathrm{BR}=\mathrm{BP}, \mathrm{RC}=\mathrm{CQ}$ i.e., tangents from external point to a circle are equal]

$$
\text { Perimeter of } \begin{aligned}
\triangle \mathrm{ABC} & =\mathrm{AP}+\mathrm{AQ} \\
& =2 \mathrm{AP} \\
& =2 \times 12 \\
& =24 \mathrm{~cm}
\end{aligned}
$$

$$
[\mathrm{as}, \mathrm{AP}=\mathrm{AQ}]
$$

Hence, the perimeter of $\triangle \mathrm{ABC}=24 \mathrm{~cm}$.

