Science

(Chapter - 3) (Atoms and Molecules)
 (Class - IX)

Page 32

Question 1:

In a reaction 5.3 g of sodium carbonate reacted with 6 g of ethanoic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium ethanoate. Show that these observations are in agreement with the law of conservation of mass.

Sodium carbonate + ethanoic acid \rightarrow sodium ethanoate + carbon dioxide + water

Answer 1:

In a reaction, sodium carbonate reacts with ethanoic acid to produce sodium ethanoate, carbondioxide, and water.
Sodium + Ethanoic \rightarrow Sodium + Carbon + Water
Carbonate $\operatorname{acid} \quad$ ethanoate dioxide

Mass of sodium carbonate $=5.3 \mathrm{~g}$
Mass of ethanoic acid $=6 \mathrm{~g}$
Mass of sodium ethanoate $=8.2 \mathrm{~g}$
Mass of carbon dioxide $=2.2$
Mass of water $=0.9 \mathrm{~g}$
Now, total mass before the reaction $=(5.3+6) \mathrm{g}$
$=11.3 \mathrm{~g}$
and total mass after the reaction $=(8.2+2.2+0.9) \mathrm{g}$
$=11.3 \mathrm{~g}$
Therefore, Total mass before the reaction $=$ Total mass after the reaction
Hence, the given observations are in agreement with the law of conservation of mass.

Page 33

Question 2:

Hydrogen and oxygen combine in the ratio of $1: 8$ by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas?

Answer 2:

It is given that the ratio of hydrogen and oxygen by mass to form water is $1: 8$. Then, the mass of oxygen gas required to react completely with 1 g of hydrogen gas is 8 g . Therefore, the mass of oxygen gas required to react completely with 3 g of hydrogen gas is $8 \times 3 \mathrm{~g}=24 \mathrm{~g}$.

Question 3:

Which postulate of Dalton's atomic theory is the result of the law of conservation of mass?

Answer 3:

The postulate of Dalton's atomic theory which is a result of the law of conservation of mass is
"Atoms are indivisible particles, which can neither be created nor destroyed in a chemical reaction".

Question 4:

Which postulate of Dalton's atomic theory can explain the law of definite proportions?

Answer 4:

The postulate of Dalton's atomic theory which can explain the law of definite proportion is "The relative number and kind of atoms in a given compound remains constant".

Page 35

Question 1:

Define atomic mass unit.

Answer 1:

Mass unit equal to exactly one- twelfth the mass of one atom of carbon - 12 is called one atomic mass unit. It is written as 'u'.

Question 2:

Why is it not possible to see an atom with naked eyes?

Answer 2:

The size of an atom is so small that it is not possible to see it with naked eyes. Also, atom of an element does not exist independently.

Page 39

Question 1:

Write down the formula of
(i) sodium oxide
(ii) aluminium chloride
(iii) sodium suphide
(iv) magnesium hydroxide

Answer 1:

(i) Sodium oxide $\quad \rightarrow \quad \mathrm{Na} 2 \mathrm{O}$
(ii) Aluminium chloride $\quad \rightarrow \quad \mathrm{AlCl}_{3}$
(iii) Sodium suphide $\quad \rightarrow \quad \mathrm{Na} 2 \mathrm{~S}$
(iv) Magnesium hydroxide $\quad \rightarrow \quad \mathrm{Mg}(\mathrm{OH})_{2}$

Question 2:

Write down the names of compounds represented by the following formula:
(i) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(ii) CaCl_{2}
(iii) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(iv) KNO_{3}
(v) CaCO_{3}

Answer 2:

(i) $\mathrm{Al}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow$ Aluminium sulphate
(ii) $\mathrm{CaCl}_{2} \rightarrow$ Calcium chloride
(iii) $\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow$ Potassium sulphate
(iv) $\mathrm{CaCO}_{3} \rightarrow$ Calcium carbonate

Question 3:

What is meant by the term chemical formula?

Answer 3:

The chemical formula of a compound means the symbolic representation of the composition of a compound. From the chemical formula of a compound, we can know the number and kinds of atoms of different elements that constitute the compound. For example, from the chemical formula CO_{2} of carbon dioxide, we come to know that one carbon atom and two oxygen atoms are chemically bonded together to form one molecule of the compound, carbon dioxide.

Question 4:

How many atoms are present in a
(i) $\mathrm{H}_{2} \mathrm{~S}$ molecule and
(ii) $\mathrm{PO}_{4}{ }^{3-}$ ion?

Answer 4:

(i) In an $\mathrm{H}_{2} \mathrm{~S}$ molecule, three atoms are present; two of hydrogen and one of sulphur.
(ii) In a $\mathrm{PO}_{4}{ }^{3-}$ ion, five atoms are present; one of phosphorus and four of oxygen.

Page 40

Question 1:

Calculate the molecular masses of $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{OH}$.

Answer 1:

Molecular mass of $\mathrm{H}_{2}=2 \times$ Atomic mass of H
$=2 \times 1=2 \mathrm{u}$
Molecular mass of $\mathrm{O}_{2}=2 \times$ Atomic mass of O
$=2 \times 16=32 \mathrm{u}$
Molecular mass of $\mathrm{Cl}_{2}=2 \times$ Atomic mass of Cl
$=2 \times 35.5=71 \mathrm{u}$
Molecular mass of $\mathrm{CO}_{2}=$ Atomic mass of $\mathrm{C}+2 \times$ Atomic mass of O
$=12+2 \times 16=44 u$
Molecular mass of $\mathrm{CH} 4=$ Atomic mass of $\mathrm{C}+4 \times$ Atomic mass of H
$=12+4 \times 1=16 u$
Molecular mass of $\mathrm{C}_{2} \mathrm{H}_{6}=2 \times$ Atomic mass of $\mathrm{C}+6 \times$ Atomic mass of H
$=2 \times 12+6 \times 1=30 \mathrm{u}$
Molecular mass of $\mathrm{C}_{2} \mathrm{H}_{4}=2 \times$ Atomic mass of $\mathrm{C}+4 \times$ Atomic mass of H
$=2 \times 12+4 \times 1=28 \mathrm{u}$
Molecular mass of $\mathrm{NH}_{3}=$ Atomic mass of $\mathrm{N}+3 \times$ Atomic mass of H
$=14+3 \times 1=17 \mathrm{u}$
Molecular mass of $\mathrm{CH}_{3} \mathrm{OH}$ Atomic mass of $\mathrm{C}+4 \times$ Atomic mass of $\mathrm{H}+$ Atomic mass of O $=12+4 \times 1+16=32 u$

Question 2:

Calculate the formula unit masses of $\mathrm{ZnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$, given masses of $\mathrm{Zn}=65 \mathrm{u}, \mathrm{Na}=23 \mathrm{u}, \mathrm{K}$ $=39 \mathrm{u}, \mathrm{C}=12 \mathrm{u}$, and $\mathrm{O}=16 \mathrm{u}$.

Answer 2:
Formula unit mass of $\mathrm{ZnO}=$ Atomic mass of $\mathrm{Zn}+$ Atomic mass of O $=65+16=81 u$

Formula unit mass of $\mathrm{Na} 2 \mathrm{O}=2 \times$ Atomic mass of $\mathrm{Na}+$ Atomic mass of O $=2 \times 23+16=62 u$

Formula unit mass of $\mathrm{K}_{2} \mathrm{CO}_{3}$
$=2 \times$ Atomic mass of $\mathrm{K}+$ Atomic mass of $\mathrm{C}+3 \times$ Atomic mass of O
$=2 \times 39+12+3 \times 16=138 u$

Page 42

Question 1:

If one mole of carbon atoms weighs 12 gram, what is the mass (in gram) of 1 atom of carbon?

Answer 1:

One mole of carbon atoms weighs 12 g
(Given)
i.e., mass of 1 mole of carbon atoms $=12 \mathrm{~g}$

Then, mass of 6.022×10^{23} number of carbon atoms $=12 \mathrm{~g}$
Therefore, mass of 1 atom of carbon $=\frac{12}{6.022 \times 10^{23}} \mathrm{~g}$
$=1.9926 \times 10^{-23} \mathrm{~g}$

Question 2:

Which has more number of atoms, 100 grams of sodium or 100 grams of iron (given, atomic mass of $\mathrm{Na}=23 \mathrm{u}, \mathrm{Fe}=56 \mathrm{u}$)?

Answer 2:

Atomic mass of $\mathrm{Na}=23 \mathrm{u}$
(Given)
Then, gram atomic mass of $\mathrm{Na}=23 \mathrm{~g}$
Now, 23 g of Na contains $=6.022 \times 10^{23}$ number of atoms
Thus, 100 g of Na contains $=\frac{6.022 \times 10^{23} \times 100}{23}$ number of atoms
$=2.6182 \times 10^{24}$ number of atoms
Again, atomic mass of $\mathrm{Fe}=56 \mathrm{u} \quad$ (Given)
Then, gram atomic mass of $\mathrm{Fe}=56 \mathrm{~g}$
Now, 56 g of Fe contains $=6.022 \times 10^{23}$ number of atoms
Thus, 100 g of $\mathrm{Fe} \frac{6.022 \times 10^{23} \times 100}{56}$ number of atoms
$=1.0753 \times 10^{24}$ number of atoms
Therefore, 100 grams of sodium contain more number of atoms than 100 grams of iron.

Exercises

Question 1:

A 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.096 g if boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.

Answer 1:

$\begin{array}{ll}\text { Mass of boron }=0.096 \mathrm{~g} & \text { (Given) } \\ \text { Mass of oxygen }=0.144 \mathrm{~g} & (\text { Given }) \\ \text { Mass of sample }=0.24 \mathrm{~g} & \text { (Given) }\end{array}$
Thus, percentage of boron by weight in the compound $=\frac{0.096 \times 100}{0.24} \%$
$=40 \%$
Thus, percentage of oxygen by weight in the compound $=\frac{0.144 \times 100}{0.24} \%$ $=60 \%$

Question 2:

When 3.0 g of carbon is burnt in 8.00 g oxygen, 11.00 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen? Which law of chemical combinations will govern your answer?

Answer 2:

$$
\text { Carbon }+ \text { Oxygen } \rightarrow \text { Carbon dioxide }
$$

3 g of carbon reacts with 8 g of oxygen to produce 11 g of carbon dioxide. If 3 g of carbon is burnt in 50 g of oxygen, then 3 g of carbon will react with 8 g of oxygen. The remaining 42 g of oxygen will be left un-reactive. In this case also, only 11 g of carbon dioxide will be formed. The above answer is governed by the law of constant proportions.

Question 3:

What are polyatomic ions? Give examples?

Answer 3:

A polyatomic ion is a group of atoms carrying a charge (positive or negative).
For example, ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$, hydroxide ion $\left(\mathrm{OH}^{-}\right)$, carbonate ion $\left(\mathrm{CO}_{3}^{2-}\right)$, sulphateion $\left(\mathrm{SO}_{4}^{2-}\right)$.

Question 4:

Write the chemical formula of the following:
(a) Magnesium chloride
(b) Calcium oxide
(c) Copper nitrate
(d) Aluminium chloride
(e) Calcium carbonate

Answer 4:

(a) Magnesium chloride $\rightarrow \mathrm{MgCl}_{2}$
(b) Calcium oxide $\rightarrow \mathrm{CaO}$
(c) Copper nitrate $\rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(d) Aluminium chloride $\rightarrow \mathrm{AlCl}_{3}$
(e) Calcium carbonate $\rightarrow \mathrm{CaCO}_{3}$

Question 5:

Give the names of the elements present in the following compounds:
(a) Quick lime
(b) Hydrogen bromide
(c) Baking powder
(d) Potassium sulphate.

Answer 5:

Compound	Chemical formula	Elements present
Quick lime	CaO	Calcium, oxygen
Hydrogen bromide	HBr	Hydrogen, bromine
Baking powder	NaHCO_{3}	Sodium, hydrogen, carbon, oxygen
Potassium sulphate	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Potassium, sulphur, oxygen

Question 6:

Calculate the molar mass of the following substances:
(a) Ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$
(b) Sulphur molecule, S_{8}
(c) Phosphorus molecule, P_{4} (atomic mass of phosphorus $=31$)
(d) Hydrochloric acid, HCl
(e) Nitric acid, HNO_{3}

Answer 6:

(a) Molar mass of ethyne, $\mathrm{C}_{2} \mathrm{H}_{2} \quad=2 \times 12+2 \times 1=28 \mathrm{~g}$
(b) Molar mass of sulphur molecule, $\mathrm{S}_{8}=8 \times 32=256 \mathrm{~g}$
(c) Molar mass of phosphorus molecule, $\mathrm{P}_{4}=4 \times 31=124 \mathrm{~g}$
(d) Molar mass of hydrochloric acid, $\mathrm{HCl}=1+35.5=36.5 \mathrm{~g}$
(e) Molar mass of nitric acid, $\mathrm{HNO}_{3} \quad=1+14+3 \times 16=63 \mathrm{~g}$

Question 7:

What is the mass of
(a) 1 mole of nitrogen atoms?
(b) 4 mole of aluminium atoms (Atomic mass of aluminium $=27$)?
(c) 10 moles of sodium sulphite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$?

Answer 7:

(a) The mass of 1 mole of nitrogen atoms is 14 g .
(b) The mass of 4 moles of aluminium atoms is $(4 \times 27) \mathrm{g}=108 \mathrm{~g}$
(c) The mass of 10 moles of sodium sulphite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ is $10 \times[2 \times 23+32+3 \times 16] \mathrm{g}$ $=10 \times 126 \mathrm{~g}=1260 \mathrm{~g}$

Question 8:

Convert into mole.
(a) 12 g of oxygen gas
(b) 12 g of water
(c) 22 g of carbon dioxide

Answer 8:

(a) 32 g of oxygen gas $=1$ mole

Then, 12 g of oxygen gas $=12 / 32$ mole $=0.375$ mole
(b) 18 g of water $=1$ mole

Then, 20 g of water $=20 / 18$ mole $=1.11$ moles (approx.)
(c) 44 g of carbon dioxide $=1$ mole

Then, 22g of carbon dioxide $=22 / 44$ mole $=0.5$ mole

Question 9:

What is the mass of:
(a) 0.2 mole of oxygen atoms?
(b) 0.5 mole of water molecules?

Answer 9:

(a) Mass of one mole of oxygen atoms $=16 \mathrm{~g}$

Then, mass of 0.2 mole of oxygen atoms $=0.2 \times 16 \mathrm{~g}=3.2 \mathrm{~g}$
(b) Mass of one mole of water molecule $=18 \mathrm{~g}$

Then, mass of 0.5 mole of water molecules $=0.5 \times 18 \mathrm{~g}=9 \mathrm{~g}$

Question 10:

Calculate the number of molecules of sulphur (S_{8}) present in 16 g of solid sulphur.

Answer 10:

1 mole of solid sulphur $\left(\mathrm{S}_{8}\right)=8 \times 32 \mathrm{~g}=256 \mathrm{~g}$
i.e., 256 g of solid sulphur contains $=6.022 \times 10^{23}$ molecules

Then, 16 g of solid sulpur contains $\frac{6.022 \times 10^{23}}{256} \times 16$ molecules
$=3.76 \times 10^{22}$ molecules (approx)

Question 11:

Calculate the number of aluminium ions present in 0.051 g of aluminium oxide.
(Hint: The mass of an ion is the same as that of an atom of the same element. Atomic mass of Al $=27 \mathrm{u}$)

Answer 11:

1 mole of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=2 \times 27+3 \times 16=102 \mathrm{~g}$
i.e., 102 g of $\mathrm{Al}_{2} \mathrm{O}_{3}=6.022 \times 10^{23}$ molecules of $\mathrm{Al}_{2} \mathrm{O}_{3}$

Then, 0.051 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$ contains $=\frac{6.022 \times 10^{23}}{102} \times 0.051$ molecules
$=3.011 \times 10^{20}$ molecules of $\mathrm{Al}_{2} \mathrm{O}_{3}$
The number of aluminium ions $\left(\mathrm{Al}^{3+}\right)$ present in one molecules of aluminium oxide is 2 .
Therefore, The number of aluminium ions $\left(\mathrm{Al}^{3+}\right)$ present in
3.11×10^{20} molecules $(0.051 \mathrm{~g})$ of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=2 \times 3.011 \times 10^{20}$
$=6.022 \times 10^{20}$

