Chapter 9

 Areas of Parallelograms and Triangles

 Areas of Parallelograms and Triangles}

Exercise No. 9.1

Multiple Choice Questions:

Write the correct answer in each of the following:

1. The median of a triangle divides it into two
(A) triangles of equal area
(B) congruent triangles
(C) right triangles
(D) isosceles triangles

Solution:

A median of a triangle divides it into two triangles of equal area.
Hence, the correct option is (A).
2. In which of the following figures, you find two polygons on the same base and between the same parallels?
(A)

(B)

(C)

(D)

Solution:

In figure (d), we find two polygons (PQRA and BQRS) on the same base and between the same parallels.
Hence, the correct option is (D).
3. The figure obtained by joining the mid-points of the adjacent sides of a rectangle of sides 8 cm and 6 cm is:
(A) a rectangle of area $24 \mathrm{~cm}^{2}$.
(B) a square of area $25 \mathrm{~cm}^{2}$.
(C) a trapezium of area $24 \mathrm{~cm}^{2}$.
(D) a rhombus of area $24 \mathrm{~cm}^{2}$.

Solution:
According to the question,

ABCD is a rectangle and $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are the mid-point of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively. The figure formed is rhombus hose area:
$=\frac{1}{2} \times E G \times F H$
$=\frac{1}{2} \times 6 \mathrm{~cm} \times 8 \mathrm{~cm}$
$=24 \mathrm{~cm}^{2}$

Hence, the correct option is (D).
4. In Fig., the area of parallelogram $A B C D$ is:

(A) $\mathbf{A B} \times \mathbf{B M}$
(B) $\mathbf{B C} \times \mathrm{BN}$
(C) $\mathrm{DC} \times \mathrm{DL}$
(D) $\mathbf{A D} \times \mathrm{DL}$

Solution:

Area of parallelogram $=$ Base \times Corresponding altitude
$=A B \times D L=D C \times D L \quad[$ Since, $\mathrm{AB}=\mathrm{DC}$ (opposite side of a parallelogram) $]$
Hence, the correct option is (C).

5. In Fig., if parallelogram ABCD and rectangle ABEF are of equal area, then:

(A) Perimeter of $\mathrm{ABCD}=$ Perimeter of ABEM
(B) Perimeter of ABCD < Perimeter of ABEM
(C) Perimeter of $A B C D>$ Perimeter of ABEM
(D) Perimeter of $\mathrm{ABCD}=\frac{1}{2}($ Perimeter of ABEM$)$

Solution:
If parallelogram $A B C D$ and rectangle $A B E F$ are of equal area then perimeter of $A B C D>$ Perimeter of ABEM because:

As we know that, the perpendicular distance between two parallel sides of a parallelogram is always less than the length of the other parallel sides.
$\mathrm{BE}<\mathrm{BC}$ and $\mathrm{AM}<\mathrm{AD}$.
Hence, the correct option is (C).
6. The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to
(A) $\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
(B) $\frac{1}{3} \operatorname{ar}(\mathrm{ABC})$
(C) $\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
(D) $\operatorname{ar}(\mathrm{ABC})$

Solution:

We know that, median of a triangle divides it into two triangle of equal area.

So, area $(\triangle A D E)=\operatorname{area}(\triangle B D E)$
$\operatorname{area}(\triangle A E F)=\operatorname{area}(\triangle E F C)$
Now, AE is the diagonal of a parallelogram ADEF. That is divides it into two triangles of equal area.
So, area $(\triangle A D E)=\operatorname{area}(\triangle A F E)$
Now, from equation (I), (II), and (III), get:
$\operatorname{area}(\triangle A D E)=\operatorname{area}(\triangle B D E)=\operatorname{area}(\triangle A E E)=\operatorname{area}(\triangle E F C)$
Hence, $\operatorname{area}(\triangle A D E F)=\frac{1}{2} \operatorname{area}(\triangle A B C)$
Therefore, the correct option is (A).
7. Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is
(A) $1: 2$
(B) $1: 1$
(C) $2: 1$
(D) $3: 1$

Solution:

As we know that parallelogram on the same or equal bases and between the same parallels are equal in area.
So, the ratio of these area is $1: 1$.
Hence, the correct option is (B).
8. ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then $A B C D$
(A) is a rectangle
(B) is always a rhombus
(C) is a parallelogram
(D) need not be any of (A), (B) or (C)

Solution:

The quadrilateral ABCD need not be any of rectangle, rhombus and parallelogram because if quadrilateral ABCD is a square then its diagonal AC also divides it into two parts which are equal in area.
Hence, the correct option is (D).
9. If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is
(A) $1: 3$
(B) $1: 2$
(C) $3: 1$
(D) $1: 4$

Solution:

As we know that, if a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram. Therefore, the ratio of the area of the triangle to the area of parallelogram is 1:2.
Hence, the correct option is (B).
10. ABCD is a trapezium with parallel sides $\mathrm{AB}=a \mathrm{~cm}$ and $\mathrm{DC}=\boldsymbol{b} \mathrm{cm} . E$ and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is

(A) $a: b$
(B) $(3 a+b):(a+3 b)$
(C) $(a+3 b):(3 a+b)$
(D) $(2 a+b):(3 a+b)$

Solution:

Given:

ABCD is a trapezium with parallel sides such that $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AB}=a \mathrm{~cm}$ and $\mathrm{DC}=b \mathrm{~cm} . \mathrm{E}$ and F are the mid-points of the non-parallel sides that are AD and BC . So,

$$
E F=\frac{1}{2}(a+b)
$$

ABEF and EFCD are also trapezium.

$$
\begin{aligned}
& \operatorname{area}(A B E F)=\frac{1}{2}\left[\frac{1}{2}(a+b)+a\right] \times h=\frac{h}{4}(3 a+b) \\
& \operatorname{area}(E F C D)=\frac{1}{2}\left[b+\frac{1}{2}(a+b)\right] \times h=\frac{h}{4}(a+3 b)
\end{aligned}
$$

So,

$$
\frac{\operatorname{area}(A B E F)}{\operatorname{area}(E F C D)}=\frac{\frac{h}{4}(3 a+b)}{\frac{h}{4}(a+3 b)}=\frac{3 a+b}{a+3 b}
$$

So, the required ratio is $(3 a+b):(a+3 b)$.
Hence, the correct option is (B).

Exercise No. 9.2

Short Answer Questions with Reasoning:

Write True or False and justify your answer:

1. $A B C D$ is a parallelogram and X is the mid-point of $A B$. If $\operatorname{ar}(\mathrm{AXCD})=24 \mathrm{~cm}^{2}$, then $\operatorname{ar}(\mathrm{ABC})=24 \mathrm{~cm}^{2}$.

Solution:

Given in the question, ABCD is a parallelogram and X is the mid-point of AB .
So, area $(A B C D)=\operatorname{area}(A X C D)+\operatorname{area}(\triangle X B C)$
Now, diagonal AC of a parallelogram divides it into two triangles of equal area. $\operatorname{area}(A B C D)=2 \operatorname{area}(\triangle A B C)$

Similarly, X is the mid-point of AB, So,
$\operatorname{area}(\triangle C X B)=\frac{1}{2} \operatorname{area}(\triangle A B C) \quad \ldots$ (III) [Median divides the triangle in two triangles of equal area]
$2 \operatorname{area}(\triangle A B C)=24+\frac{1}{2}$ area $(\triangle A B C) \quad[B y$ using equation (I), (II) and (III)]
Now, 2 area $(\triangle A B C)-\frac{1}{2} \operatorname{area}(\triangle A B C)=24$
$\frac{3}{2} \operatorname{area}(\triangle A B C)=24$
Therefore, area $(\triangle A B C)=\frac{2 \times 24}{3}=16 \mathrm{~cm}^{2}$.
2. $P Q R S$ is a rectangle inscribed in a quadrant of a circle of radius 13 cm . A is any point on $\mathbf{P Q}$. If $\mathbf{P S}=\mathbf{5} \mathbf{~ c m}$, then $\operatorname{ar}(\mathrm{PAS})=30 \mathrm{~cm}^{2}$

Solution:

Given: A is any point on PQ. Since, $\mathrm{PA}<\mathrm{PQ}$

Now, area of triangle PQR is:
area $(\triangle P Q R)=\frac{1}{2} \times$ base \times height
So, area $(\triangle P Q R)=\frac{1}{2} \times P Q \times Q R=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}[\mathrm{PQRS}$ is a rectangle, $\mathrm{RQ}=\mathrm{SP}=5 \mathrm{~cm}]$
As PA $<\mathrm{PQ}$
So, area $(\triangle P A S)<\operatorname{area}(\triangle P Q R)$
Or area $(\triangle P A S)<30 \mathrm{~cm}^{2} \quad\left[\operatorname{area}(\triangle P Q R)=30 \mathrm{~cm}^{2}\right]$
Hence, the given statement is false.
3. PQRS is a parallelogram whose area is $180 \mathrm{~cm}^{2}$ and \mathbf{A} is any point on the diagonal QS. The area of $\Delta \mathrm{ASR}=90 \mathrm{~cm}^{2}$.

Solution:

Given: PQRS is a parallelogram.
As we know that diagonal of a parallelogram divides parallelogram into two triangles of equal area.
So,

$$
\begin{aligned}
\operatorname{area}(\triangle Q R S) & =\frac{1}{2} \operatorname{area}(P Q R S) \\
& =\frac{1}{2} \times 180=90 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, A is any point on SQ . So, area $(\triangle A S R)<\operatorname{area}(\triangle Q R S)$
Therefore, area $(\triangle A S R)<90 \mathrm{~cm}^{2}$
Hence, the given statement is false.

4. ABC and BDE are two equilateral triangles such that D is the mid-point

 of $\mathbf{B C}$. Then $\operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$.
Solution:

Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ are two equilateral triangles.
Suppose that each sides of triangle ABC be x .
Similarly, D is the mid-point of BC. So, each side of triangle BDE is $\frac{x}{2}$.
Now,
$\frac{\operatorname{area}(\triangle B D E)}{\operatorname{area}(\triangle A B C)}=\frac{\frac{\sqrt{3}}{4} \times\left(\frac{x}{2}\right)^{2}}{\frac{\sqrt{3}}{4} \times x^{2}}=\frac{x^{2}}{4 x^{2}}=\frac{1}{4}$
Therefore, area $(\triangle B D E)=\frac{1}{4} \operatorname{area}(\triangle A B C)$.
Hence, the given statement is true.
5. In Fig., ABCD and EFGD are two parallelograms and G is the mid-point of CD. Then $\operatorname{ar}(D P C)=\frac{1}{4} \operatorname{ar}(E F G D)$.

Solution:

As triangle DPC and parallelogram ABCD are on same base DC and between the same parallels AB and DC. So,
$\operatorname{area}(\triangle D P C)=\frac{1}{2} \operatorname{area}(A B C D)$
Now,
$\frac{\operatorname{area}(E F G D)}{\operatorname{area}(A B C D)}=\frac{D G \times h}{D C \times h}=\frac{D G}{2 D G}=\frac{1}{2}(G$ is the mid-point of DC)
Implies that, area $(E F G D)=\frac{1}{2} \operatorname{area}(A B C D)$
So, area $(D P C)=\operatorname{area}(E F G D) \quad[$ From equation (I)]
Hence, the given statement is false.

Exercise No. 9.3

Short Answer Questions:

1. In Fig., PSDA is a parallelogram. Points Q and R are taken on PS such

 that $P Q=Q R=R S$ and $P A\|Q B\| R C$. Prove that $\operatorname{ar}(P Q E)=\operatorname{ar}(C F D)$.

Solution:

Given: PSDA is a parallelogram. Points Q and R are taken on PS such that $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$ and PA || QB || RC.
To prove that ar $(\mathrm{PQE})=$ ar (CFD).
Proof: $\mathrm{PS}=\mathrm{AD} \quad$ [opposite angle of a parallelogram]
$\frac{1}{3} P S=\frac{1}{3} A D$
$\mathrm{PQ}=\mathrm{CD}$
Similarly, $\mathrm{PS} \| \mathrm{AD}$ and QB cut them. So,
$\angle P Q E=\angle C B E \quad$ [Alternate angles].
Again, $\mathrm{QB} \| \mathrm{RC}$ and AD cut them,
$\angle Q B D=\angle R C D \quad$ [Corresponding angle]
So, $\angle P Q E=\angle F C D \quad \ldots$ (IV) [From (II) and (III), $\angle C B E$ and $\angle Q B D$ are same and $\angle R C D$ and $\angle F C D$ are same]

Now, in triangle PQE and triangle CFD,
$\angle P Q E=\angle C D F \quad$ [Alternate angle]
$\mathrm{PQ}=\mathrm{CD} \quad[$ From equation $(\mathrm{I})]$
$\angle Q P E=\angle F C D \quad$ [From equation (IV)]
$\triangle P Q E \cong \triangle C F D \quad$ [By ASA congruence rule]
Hence, $\operatorname{ar}(\triangle P Q E)=\operatorname{ar}(\triangle C F D)$. [Congruence triangle are equal in area]
2. X and Y are points on the side $L N$ of the triangle $L M N$ such that $L X=X Y$ $=Y N$. Through X, a line is drawn parallel to LM to meet MN at Z (See Fig.). Prove that $\operatorname{ar}(L Z Y)=\operatorname{ar}(M Z Y X)$

Solution:

Prove that ar $($ LZY $)=$ ar $(M Z Y X)$
Proof: As $\triangle L X Z$ and $\triangle X M Z$ are on the same base and between the same parallels LM and XZ.
$\operatorname{ar}(\triangle L X Z)=\operatorname{ar}(\triangle X M Z)$
Now, adding ar $(\triangle X Y Z)$ to both sides of (I), get:

$$
\begin{aligned}
\operatorname{ar}(\triangle L X Z)+\operatorname{ar}(\triangle X Y Z) & =\operatorname{ar}(\triangle X M Z)+\operatorname{ar}(\triangle X Y Z) \\
\operatorname{ar}(\Delta L Z Y) & =\operatorname{ar}(M Z Y X)
\end{aligned}
$$

3. The area of the parallelogram $\mathbf{A B C D}$ is $90 \mathrm{~cm}^{2}$ (see Fig.). Find (i) ar (ABEF)
(ii) ar (ABD)
(iii) ar (BEF)

Solution:

(i) As we know that parallelogram on the same base and between the same parallels are equal in area.
$\operatorname{ar}(A B E F)=\operatorname{ar}(A B C D)$
Hence, $\operatorname{ar}(A B E F)=\operatorname{ar}(A B C D)=90 \mathrm{~cm}^{2}$.
(ii) $\operatorname{ar}(\triangle A B D)=\frac{1}{2} \operatorname{ar}(A B C D)$ [A diagonal of a parallelogram divides the parallelogram in two triangle of equal area]
$=\frac{1}{2} \times 90 \mathrm{~cm}^{2}=45 \mathrm{~cm}^{2}$
(iii) $\operatorname{ar}(\triangle B E F)=\frac{1}{2} \operatorname{ar}(A B E F)=\frac{1}{2} \times 90 \mathrm{~cm}^{2}=45 \mathrm{~cm}^{2}$
4. In $\triangle A B C$, D is the mid-point of $A B$ and P is any point on $B C$. If $C Q \| P D$ meets $A B$ in \mathbf{Q}
(Fig.), then prove that
$\operatorname{ar}(\mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$

Solution:

Given in triangle $A B C, D$ is the mid-point of $A B$ and P is any point on $B C$.
$\mathrm{CQ} \| \mathrm{PD}$ means AB in Q .
To prove that $\operatorname{ar}(\triangle B P Q)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$
Construction: Join PQ and CD.

Proof:
As we know that median of a triangle divides it into two triangles of equal area. So,
$\operatorname{ar}(\triangle B C D)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$
Also, we know that triangles on the same base and between the same parallels are equal in area. So,
$\operatorname{ar}(\triangle D P Q)=\operatorname{ar}(\triangle D P C) \quad$ [Triangle DPQ and DPC are on the same base DP and between the same parallels DP and CQ]
$\operatorname{ar}(\triangle D P Q)+\operatorname{ar}(\triangle D P B)=\operatorname{ar}(\triangle D P C)+\operatorname{ar}(D P B)$
Hence, $\operatorname{ar}(\triangle B P Q)=\operatorname{ar}(\triangle B C D)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$.
5. $A B C D$ is a square. E and F are respectively the midpoints of $B C$ and $C D$. If R is the mid-point of EF (Fig.), prove that $\operatorname{ar}(\mathrm{AER})=\operatorname{ar}(\mathrm{AFR})$

Solution:

Given: ABCD is a square. E and F are respectively the midpoints of BC and CD . Also, R is the mid-point of EF.
To prove that $\operatorname{ar}(\triangle A E R)=\operatorname{ar}(\triangle A F R)$
Construction: Draw AN \perp EF Proof:

$$
\begin{aligned}
\operatorname{ar}(\triangle A E R) & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times E R \times A N \\
& =\frac{1}{2} \times F R \times A N \\
& =\operatorname{ar}(\triangle A F R)
\end{aligned}
$$

$$
=\frac{1}{2} \times F R \times A N \quad[\mathrm{R} \text { is the mid-point of } \mathrm{EF} \text { so } \mathrm{ER}=\mathrm{FR}]
$$

6. O is any point on the diagonal PR of a parallelogram PQRS (Fig.). Prove that $\operatorname{ar}(\mathrm{PSO})=\operatorname{ar}(\mathrm{PQO})$.

Solution:

Given: O is any point on the diagonal PR of a parallelogram PQRS .
To prove that ar $(\mathrm{PSO})=$ ar (PQO).

Construction: Join SQ which intersects PR at B.

Proof: B is the mid-point of SQ because diagonal of a parallelogram bisect each other.
See the above figure, PB is a median of $\triangle Q P S$ and as we know that a median of a triangle divides it into two triangle of equal area.
$\operatorname{ar}(\triangle B P Q)=\operatorname{ar}(\triangle B P S)$
Similarly, OB is the median of $\triangle O S Q$.
$\operatorname{ar}(\triangle O B Q)=\operatorname{ar}(O B S)$
Now, adding equation (I) and (II), get:
$\operatorname{ar}(\triangle B P Q)+\operatorname{ar}(\triangle O B Q)=\operatorname{ar}(\triangle B P S)+\operatorname{ar}(\triangle O B S)$
$\operatorname{ar}(\triangle P Q O)=\operatorname{ar}(\triangle P S O)$
7. ABCD is a parallelogram in which BC is produced to E such that $\mathrm{CE}=$ BC (Fig.). AE intersects CD at F.
If $\operatorname{ar}(\mathrm{DFB})=3 \mathrm{~cm}^{2}$, find the area of the parallelogram ABCD .

Solution:

Given: ABCD is a parallelogram in which BC is produced to E such that $\mathrm{CE}=\mathrm{BC} . \mathrm{C}$ is the mid-point BE and $\operatorname{ar}(\triangle D F B)=3 \mathrm{~cm}^{2}$.

In triangle ADF and triangle EFC ,
$\angle D A F=\angle C E F \quad$ [Alternate interior angle]
$\mathrm{AD}=\mathrm{CE} \quad[\mathrm{AD}=\mathrm{BC}=\mathrm{CE}]$
$\angle A D F=\angle F C E \quad$ [Alternate interior angle]
So, $\triangle A D F \cong \triangle E C F \quad$ [By SAS rule of congruence]
Now, $\triangle A D F \cong \triangle E C F \quad$ [By SAS rule of congruence]
$D F=C F \quad[\mathrm{CPCT}]$
As BF is the median of triangle BCD.

$$
\operatorname{ar}(\triangle B D F)=\frac{1}{2} \operatorname{ar}(B C D) \quad \ldots \text { (I) } \quad[\text { Median divides a triangle into two triangle of equal area }]
$$

As we know that a triangle and parallelogram are on the same base and between the same parallels then the area of the triangles is equal to half the area of the parallelogram.
$\operatorname{ar}(\triangle B C D)=\frac{1}{2} \operatorname{ar}(A B C D)$
$\operatorname{ar}(\triangle B D F)=\frac{1}{2}\left\{\frac{1}{2} \operatorname{ar}(A B C D)\right\}$
[By equation (I)]
$3 \mathrm{~cm}^{2}=\frac{1}{4} \operatorname{ar}(A B C D)$
$\operatorname{ar}(A B C D)=12 \mathrm{~cm}^{2}$
Hence, the area of the parallelogram is $12 \mathrm{~cm}^{2}$.

8. In trapezium $A B C D, A B \| D C$ and L is the mid-point of $B C$. Through L,

 a line $P Q \| A D$ has been drawn which meets $A B$ in P and $D C$ produced in Q (Fig.). Prove that $\operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{APQD})$

Solution:

To prove that ar (ABCD) $=$ ar (APQD)
Proof: AS AB $\|$ DC and $A B \| D Q$
In triangle CLQ and triangle BLP,
$\angle Q C L=\angle L B P \quad$ [Alternate angles]
$\mathrm{CL}=\mathrm{LP} \quad[\mathrm{L}$ is the mid-point og BC]
$\angle C L Q=\angle B L P \quad$ [Vertical opposite angles]
$\triangle C L Q \cong \triangle B L P \quad$ [By ASA congruence rule]
So, $\operatorname{ar}(\triangle C L Q)=\operatorname{ar}(\triangle B L P) \ldots$ (I) [Congruent triangles are equal in area]
Now, adding $\operatorname{ar}(A P L C D)$ both side in above equation, get:

$$
\begin{aligned}
\operatorname{ar}(\triangle C L Q)+\operatorname{ar}(A P L C D) & =\operatorname{ar}(\triangle B L P)+\operatorname{ar}(A P L C D) \\
\operatorname{ar}(\triangle A P Q D) & =\operatorname{ar}(A B C D)
\end{aligned}
$$

Hence, proved.
9. If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral (Fig.).
[Hint: Join BD and draw perpendicular from A on BD.]

Solution:

According to the question, a quadrilateral ABCD in which the mid-point of the sides of it are joined in order of form parallelogram PQRS.

To Prove that $\operatorname{ar}(P Q R S)=\frac{1}{2} \operatorname{ar}(A B C D)$
Construction: Join BD and draw perpendicular from A and BD which interest SR and BD at X and Y respectively.
Proof: In triangle ABD, S and R are the mid-points of sides AB and AD respectively. So, $S R \| B D$
And: $A S X \| B Y$
See the figure, x is the mid-point of AY. So,
$\mathrm{AX}=\mathrm{XY}$
And $S R=\frac{1}{2} B D \ldots$ (II)[mid-point theorem]
Now, $\operatorname{ar}(\triangle A B D)=\frac{1}{2} \times B D \times A Y$
$\operatorname{ar}(\triangle A S R)=\frac{1}{2} \times S R \times A X$
$\operatorname{ar}(\triangle A S R)=\frac{1}{2} \times\left(\frac{1}{2} B D\right) \times\left(\frac{1}{2} A Y\right) \quad$ [Using equation (I) and (II)]
$\operatorname{ar}(\triangle A S R)=\frac{1}{4} \times\left(\frac{1}{2} B D \times A Y\right)$
$\operatorname{ar}(\triangle A S R)=\frac{1}{4} \times(\triangle A B D)$
Again, $\operatorname{ar}(\triangle C P Q)=\frac{1}{4} \operatorname{ar}(\triangle C B D)$
$\operatorname{ar}(\triangle B P S)=\frac{1}{4} \operatorname{ar}(\triangle B A C)$
$\operatorname{ar}(\triangle D R Q)=\frac{1}{4} \operatorname{ar}(D A C)$
Now, adding equation (III), (IV), (V) and (VI), get:

$$
\begin{aligned}
& \operatorname{ar}(\triangle A S R)+\operatorname{ar}(\triangle C P Q)+\operatorname{ar}(B P S)+\operatorname{ar}(\triangle D R Q) \\
& =\frac{1}{4} \operatorname{ar}(\triangle A B D)+\frac{1}{4} \operatorname{ar}(\triangle C B D)+\frac{1}{4} \operatorname{ar}(\triangle A B C)+\frac{1}{4} \operatorname{ar}(\triangle D A C) \\
& =\frac{1}{4}[\operatorname{ar}(\triangle A B D)+\operatorname{ar}(\triangle C B D)+\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle D A C)] \\
& =\frac{1}{4}[\operatorname{ar}(A B C D)+\operatorname{ar}(A B C D)] \\
& =\frac{1}{4} \times 2 \operatorname{ar}(A B C D) \\
& =\frac{1}{2} \operatorname{ar}(A B C D)
\end{aligned}
$$

So, $\operatorname{ar}(\triangle A S R)+\operatorname{ar}(\triangle C P Q)+\operatorname{ar}(\triangle B P S)+\operatorname{ar}(\triangle D R Q)=\frac{1}{2} \operatorname{ar}(A B C D)$

$$
\operatorname{ar}(A B C D)-\operatorname{ar}(P Q R S)=\frac{1}{2} \operatorname{ar}(A B C D)
$$

Now, $\operatorname{ar}(P Q R S)=\operatorname{ar}(A B C D)-\frac{1}{2} \operatorname{ar}(A B C D)$

$$
\operatorname{ar}(P Q R S)=\frac{1}{2} \operatorname{ar}(A B C D)
$$

Hence, proved.

Exercise No. 9.4

Long Answer Questions:

1. A point E is taken on the side $B C$ of a parallelogram $A B C D$. $A E$ and $D C$ are produced to meet at F. Prove that
$\operatorname{ar}(\mathrm{ADF})=\operatorname{ar}(\mathrm{ABFC})$

Solution:

Given in the question, A point E is taken on the side BC of a parallelogram ABCD . AE and DC are produced to meet at F .
Prove that ar $(\mathrm{ADF})=$ ar (ABFC)
Proof: ABCD is a parallelogram and AC divides it into two triangle of equal area.

$\operatorname{ar}(\triangle A D C)=\operatorname{ar}(\triangle A B C)$
So, $\mathrm{DC}|\mid \mathrm{AB}$ and CF$| \mid \mathrm{AB}$
As we know that triangle on the same base and between the same parallels are equal in area. So,

$$
\begin{equation*}
\operatorname{ar}(\triangle A C F)=\operatorname{ar}(\triangle B C F) \tag{II}
\end{equation*}
$$

Adding equation (I) and (II), get:
$\operatorname{ar}(\triangle A D C)+\operatorname{ar}(A C F)=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle B C F)$
$\operatorname{ar}(\triangle A D F)=\operatorname{ar}(A B F C)$
Hence, proved.
2. The diagonals of a parallelogram $A B C D$ intersect at a point O. Through O, a line is drawn to intersect $A D$ at P and $B C$ at Q. show that $P Q$ divides the parallelogram into two parts of equal area.

Solution:

Given: ABCD is a parallelogram and diagonal interact at O , and draw a line PQ which intersects AD and BC .

To prove that PQ divides the parallelogram ABCD into two parts of equal area that $\operatorname{ar}(A B Q P)=\operatorname{ar}(C D P Q)$.

Proof: AC is a diagonal of the parallelogram ABCD .
$\operatorname{ar}\left(\Delta \frac{1}{2} A C D\right)=\frac{1}{2} \operatorname{ar}(A B C D)$
In triangle AOP and triangle COQ,
$\mathrm{AO}=\mathrm{CO} \quad$ [Diagonals of a parallelogram bisect each other]
$\angle A O P=\angle C O Q \quad$ [Vertical opposite angles]
$\angle O A P=\angle O C Q \quad$ [Alternate angles, $\mathrm{AB} \| \mathrm{CD}$]
$\triangle A O P=\triangle C O Q \quad[$ By ASA congruent rule]
Since, $\operatorname{ar}(\triangle A O P)=\operatorname{ar}(\triangle C O Q) \quad[$ Congruent area axiom $] \quad \ldots$ (II)

Now, adding $\operatorname{ar}(A O Q D)$ to both sides of (II), get:
$\operatorname{ar}(\triangle A C D)=\frac{1}{2} \operatorname{ar}(A B C D) \quad[$ From equation (I)]
Hence, $\operatorname{ar}(A P Q D)=\frac{1}{2} \operatorname{ar}(A B C D)$.

3. The medians $B E$ and $C F$ of a triangle $A B C$ intersect at G. Prove that the area of $\Delta \mathrm{GBC}=$ area of the quidrilateral AFGE

Solution:

Given: The medians BE and CF of a triangle ABC intersect at G
To prove that $\operatorname{ar}(\triangle G B C)=\operatorname{ar}(A F G E)$.

Proof: As median CF divides a triangle into two triangle of equal area. So, $\operatorname{ar}(\triangle B C F)=\operatorname{ar}(\triangle A C F)$
$\operatorname{ar}(\triangle G B F)+\operatorname{ar}(\triangle G B C)=\operatorname{ar}(A F G E)+\operatorname{ar}(\triangle G C E)$
Now, median BE divides a triangle into two triangle of equal area. So, $\operatorname{ar}(\triangle G B F)+\operatorname{ar}(A F G E)=\operatorname{ar}(\triangle G C E)+\operatorname{ar}(\triangle G B C)$

Now, subtracting (II) from (I), get:

$$
\begin{aligned}
\operatorname{ar}(\triangle G B C)-\operatorname{ar}(A F G E) & =\operatorname{ar}(\triangle A F G E)-\operatorname{ar}(\triangle G B C) \\
\operatorname{ar}(\triangle G B C)+\operatorname{ar}(\triangle G B C) & =\operatorname{ar}(\triangle A F G E)+\operatorname{ar}(\triangle A F G E) \\
2 \operatorname{ar}(\triangle G B C) & =2 \operatorname{ar}(A F G E)
\end{aligned}
$$

Hence, $\operatorname{ar}(\triangle G B C)=\operatorname{ar}(A F G E)$.

4. In Fig., CD || AE and CY || BA. Prove that $\operatorname{ar}(\mathbf{C B X})=\operatorname{ar}(A X Y)$

Solution:

Given: CD || AE and CY || BA
To prove that ar $(\mathrm{CBX})=\operatorname{ar}(\mathrm{AXY})$.
Proof: As we know that triangle on the same base and between the same parallels are equal in area. So,

$$
\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A B Y)
$$

$\operatorname{ar}(\triangle C B X)+\operatorname{ar}(\triangle A B X)=\operatorname{ar}(\triangle A B X)+\operatorname{ar}(\triangle A X Y)$
Hence, $\operatorname{ar}(\triangle C B X)=\operatorname{ar}(\triangle A X Y)$.
5. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}, \mathrm{DC}=\mathbf{3 0} \mathrm{cm}$ and $\mathrm{AB}=50 \mathrm{~cm}$. If X and Y are, respectively the mid-points of $A D$ and $B C$, prove that $\operatorname{ar}(\mathrm{DCYX})=\frac{7}{9} \operatorname{ar}($ XYBA $)$

Solution:

To prove that $\operatorname{ar}(\mathrm{DCYX})=\frac{7}{9} \operatorname{ar}(\mathrm{XYBA})$
Proof: In triangle MBY and triangle DCY,
$\angle 1=\angle 2 \quad$ [Vertically opposite angles]
$\angle 3=\angle 4 \quad[\mathrm{AB} \| \mathrm{DC}$ and alternate angles are equal]

$\mathrm{BY}=\mathrm{CY} \quad[\mathrm{Y}$ is the mid-point of BC$]$

$$
\Delta M B Y \cong \triangle D C Y \quad[\text { By ASA congruent angle }]
$$

$\mathrm{So}, \mathrm{MB}=\mathrm{DC}=30 \mathrm{~cm} \quad[\mathrm{CPCT}]$
Now, $\mathrm{AM}=\mathrm{AB}+\mathrm{BM}$

$$
=50 \mathrm{~cm}+30 \mathrm{~cm}
$$

$$
=80 \mathrm{~cm}
$$

In triangle ADM,

$$
X Y=\frac{1}{2} A M=\frac{1}{2} \times 80 \mathrm{~cm}=40 \mathrm{~cm}
$$

Now, $\mathrm{AB}\|\mathrm{XY}\| \mathrm{DC}$ and X and Y are the mid-points of AD and BC , So, height of trapezium DCXY and XYBA are equal and assume the equal height be hcm .
$\frac{\operatorname{ar}(D C Y X)}{\operatorname{ar}(X Y B A)}=\frac{\frac{1}{2} \times(30+40) \times h}{\frac{1}{2} \times(30+50) \times h}=\frac{70}{90}=\frac{7}{9}$
Hence, $\operatorname{ar}(D C Y X)=\frac{7}{9} \operatorname{ar}(X Y B A)$.

6. In $\triangle A B C$, if L and M are the points on $A B$ and $A C$, respectively such that LM || BC. Prove that $\operatorname{ar}(\mathrm{LOB})=\operatorname{ar}(\mathrm{MOC})$

Solution:

Given: in triangle ABC and L and M are the points on AB and AC , respectively such that LM || BC.
Prove that ar $(\mathrm{LOB})=$ ar (MOC)
Proof: As we know that triangle on the same base and between the same parallels are equal in area.

$$
\operatorname{ar}(\triangle L B M)=\operatorname{ar}(\triangle L C M)
$$

[Triangle LBM and triangle LCM are on the same base LM and between the same parallels LM and BC]

$$
\operatorname{ar}(\triangle L B M)=\operatorname{ar}(\triangle L C M)
$$

$\operatorname{ar}(\triangle L O M)+\operatorname{ar}(\triangle L O B)=\operatorname{ar}(\Delta L O M)+\operatorname{ar}(\triangle M O C)$
Hence, $\operatorname{ar}(\triangle L O B)=\operatorname{ar}(\triangle M O C)$.

7. In Fig., ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that $\operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\mathrm{APQ})$

Solution:

Given: ABCDE is any pentagon and $\mathrm{BP} \| \mathrm{AC}$ meets DC produced at P and EQ $\| \mathrm{AD}$ meets CD produced at Q .
Prove that ar $(\mathrm{ABCDE})=$ ar (APQ)
Proof: As we know that triangle on the same base and between the same parallels are equal in area.
$\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A P C)$
$\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle A D Q)$
Now, adding equation (I) and (II), get:
$\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle A P C)+\operatorname{ar}(\triangle A D Q)$
Now, adding $\operatorname{ar}(\triangle A C D)$ to both side, get:
$\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A D E)+\operatorname{ar}(A C D)=\operatorname{ar}(\triangle A P C)+\operatorname{ar}(\triangle A D Q)+\operatorname{ar}(A C D)$
Hence, $\operatorname{ar}(A B C D E)=\operatorname{ar}(\triangle A P Q)$.

8. If the medians of a $\triangle A B C$ intersect at \mathbf{G}, show that

$\operatorname{ar}(\mathrm{AGB})=\operatorname{ar}(\mathrm{AGC})=\operatorname{ar}(\mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\mathrm{ABC})$

Solution:

Given: The median of a triangle ABC intersect at G .
To prove that ar $(\mathrm{AGB})=\operatorname{ar}(\mathrm{AGC})=\operatorname{ar}(\mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\mathrm{ABC})$

Construction: Draw BP \perp EG
Proof: $A G=\frac{2}{3} A E \quad$ [Centroid divides the median in the ration 2:1]
Now, $\operatorname{ar}(\triangle A G B)=\frac{1}{2} \times A G \times B P$
[Median divides a triangle into two triangles equal in area]
$=\frac{1}{3} \operatorname{ar}(\triangle A B C)$
Again, $\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$
So, $\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\Delta B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$
Hence, proved.

9. In Fig., X and Y are the mid-points of $A C$ and $A B$ respectively, $Q P \| B C$ and CYQ and BXP are straight lines. Prove that $\operatorname{ar}(A B P)=\operatorname{ar}(A C Q)$.

Solution:

Given: In triangle $A B C, X$ and Y are the mid-points of $A B$ and $A C$.
To prove that ar $(\mathrm{ABP})=$ ar (ACQ).
Proof: Since, $\mathrm{XY}|\mid \mathrm{BY}$ [BY mid-point theorem]
As we know that triangle on the same base and between the same parallels lines are equal in area. So,
$\operatorname{ar}(\triangle B Y C)=\operatorname{ar}(\triangle B X C)$

Now, subtracting $\operatorname{ar}(\triangle B O C)$ from both sides in the above, get:
$\operatorname{ar}(\triangle B Y C)-\operatorname{ar}(\triangle B O C)=\operatorname{ar}(\triangle B X C)-\operatorname{ar}(\triangle B O C)$
$\operatorname{ar}(\Delta B O Y)=\operatorname{ar}(\triangle C O X) \ldots($ II $)$

Now, adding $\operatorname{ar}(\triangle X O Y)$ to both side in equation (II), get:
$\operatorname{ar}(\triangle B O Y)+\operatorname{ar}(\triangle X O Y)=\operatorname{ar}(\triangle C O X)+\operatorname{ar}(\triangle X O Y)$
Again, quadrilaterals XYAP and YXAQ are on the same base XY and between the same parallels XY and PQ. So,
$\operatorname{ar}(X Y A P)=\operatorname{ar}(X Y Q A)$
Now, adding equation (III) and (IV), get:
$\operatorname{ar}(\triangle B X Y)+\operatorname{ar}(X Y A P)=\operatorname{ar}(\triangle C X Y)+\operatorname{ar}(X Y A Q)$
Hence, $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle A C Q)$.

10. In Fig., ABCD and AEFD are two parallelograms. Prove that $\operatorname{ar}(P E A)=\operatorname{ar}(Q F D)$ [Hint: Join PD].

Solution:

Given: ABCD and AEFD are two parallelogram.
To prove that $\operatorname{ar}(\triangle P E A)=\operatorname{ar}(\triangle Q F D)$
Construction: join PD.

Proof: In triangle PEA and triangle QFD,
$\angle A P E=\angle D Q F \quad$ [Corresponding angles are equal as $\mathrm{AB} \| \mathrm{CD}$]
$\angle A E P=\angle D E Q \quad$ [Corresponding angles are equal as $\mathrm{AE}|\mid \mathrm{DF}]$
$\mathrm{AE}=\mathrm{DF} \quad$ [Opposite sides of a parallelogram are equal]
So, $\triangle P E A \cong \triangle Q F D \quad$ [By AAS congruent rule]
Hence, $\operatorname{ar}(\triangle P E A)=\operatorname{ar}(\triangle Q E D)$.

