9
 Areas of Parallelograms AND TRIANGLES

EXERCISE 9.1

Q.1. Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels.

(i)

(ii)

(iii)

(iv)

(v)

Sol. (i) Base DC, parallels DC and AB
(iii) Base $Q R$, parallels $Q R$ and $P S$
(v) Base AD, parallels AD and BQ.

9
 Areas of PARALLELOGRAMS AND TRIANGLES

EXERCISE 9.2

Q.1.In the figure, $A B C D$ is a paralle-logram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$, find $A D$.
Sol. Area of parallelogram ABCD

$$
\begin{aligned}
& =\mathrm{AB} \times \mathrm{AE} \\
& =16 \times 8 \mathrm{~cm}^{2}=128 \mathrm{~cm}^{2}
\end{aligned}
$$

Also, area of parallelogram ABCD
$=\mathrm{AD} \times \mathrm{FC}=(\mathrm{AD} \times 10) \mathrm{cm}^{2}$
$\therefore \mathrm{AD} \times 10=128$
$\Rightarrow \quad \mathrm{AD}=\frac{128}{10}=\mathbf{1 2 . 8} \mathbf{~ c m}$ Ans.

Q.2. If E, F, G, and H are respectively the mid-points of the sides of a parallelogram $A B C D$, show that ar $(E F G H)=\frac{1}{2}$ ar $(A B C D)$.
Sol. Given : A parallelogram $\mathrm{ABCD} \cdot \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ are mid-points of sides AB , BC, CD, DA respectively

To Porve : ar $(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$

Construction : Join AC and HF.
Proof : In $\triangle \mathrm{ABC}$,
E is the mid-point of AB .
F is the mid-point of BC.
$\Rightarrow \mathrm{EF}$ is parallel to AC and $\mathrm{EF}=\frac{1}{2} \mathrm{AC} \ldots$ (i)
Similarly, in $\triangle \mathrm{ADC}$, we can show that

$\mathrm{HG} \| \mathrm{AC}$ and $\mathrm{HG}=\frac{1}{2} \mathrm{AC}$
From (i) and (ii)
EF || HG and $\mathrm{EF}=\mathrm{HG}$
\therefore EFGH is a parallelogram.
[One pour of opposite sides is equal and parallel]
In quadrilateral ABFH , we have
$\mathrm{HA}=\mathrm{FB}$ and $\mathrm{HA} \| \mathrm{FB} \quad\left[\mathrm{AD}=\mathrm{BC} \Rightarrow \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC} \Rightarrow \mathrm{HA}=\mathrm{FB}\right]$
$\therefore \mathrm{ABFH}$ is a parallelogram. [One pair of opposite sides is equal and parallel]
Now, triangle HEF and parallelogram HABF are on the same base HF and between the same parallels HF and AB .
\therefore Area of $\triangle \mathrm{HEF}=\frac{1}{2}$ area of HABF
Similarly, area of $\triangle \mathrm{HGF}=\frac{1}{2}$ area of HFCD
Adding (iii) and (iv),
Area of $\triangle \mathrm{HEF}+$ area of $\triangle \mathrm{HGF}$

$$
=\frac{1}{2}(\text { area of } \mathrm{HABF}+\text { area of } \mathrm{HFCD})
$$

$\Rightarrow \operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$ Proved.
Q.3. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that ar $(A P B)=a r(B Q C)$.
Sol. Given : A parallelogram ABCD. P and Q are any points on DC and AD respectively.
To prove : ar (APB) = ar (BQC)
Construction : Draw PS \| AD and $\mathrm{QR} \| \mathrm{AB}$.
Proof : In parallelogram ABRQ, BQ is the diagonal.
\therefore area of $\triangle \mathrm{BQR}=\frac{1}{2}$ area of ABRQ

... (i)

In parallelogram $C D Q R, C Q$ is a diagonal.
\therefore area of $\triangle \mathrm{RQC}=\frac{1}{2}$ area of CDQR
Adding (i) and (ii), we have area of $\triangle B Q R+$ area of $\triangle R Q C$

$$
\begin{equation*}
=\frac{1}{2} \quad[\text { area of } \mathrm{ABRQ}+\text { area of } \mathrm{CDQR}] \tag{iii}
\end{equation*}
$$

\Rightarrow area of $\triangle \mathrm{BQC}=\frac{1}{2}$ area of ABCD
Again, in parallelogram DPSA, AP is a diagonal.
\therefore area of $\triangle \mathrm{ASP}=\frac{1}{2}$ area of DPSA
In parallelogram BCPS, PB is a diagonal.
\therefore area of $\triangle \mathrm{BPS}=\frac{1}{2}$ area of BCPS
Adding (iv) and (v)
area of $\triangle \mathrm{ASP}+$ area of $\triangle \mathrm{BPS}=\frac{1}{2}$ (area of DPSA + area of BCPS $)$
\Rightarrow area of $\triangle \mathrm{APB}=\frac{1}{2} \quad($ area of ABCD$)$
From (iii) and (vi), we have
area of $\triangle \mathrm{APB}=$ area of $\triangle \mathrm{BQC}$. Proved.
Q.4. In the figure, P is a point in the interior of a parallelogram $A B C D$. Show that
(i) $\operatorname{ar}(A P B)+\operatorname{ar}(P C D)=\frac{1}{2} \operatorname{ar}(A B C D)$
(ii) $\operatorname{ar}(A P D)+\operatorname{ar}(P B C)=\operatorname{ar}(A P B)+\operatorname{ar}(P C D)$

Sol. Given : A parallelogram $\mathrm{ABCD} . \mathrm{P}$ is a point inside it.
To prove : (i) ar (APB) $+\operatorname{ar}(\mathrm{PCD})$

$$
=\frac{1}{2} \text { ar }(\mathrm{ABCD})
$$

(ii) $\operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})$

$$
=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})
$$

Construction : Draw EF through P parallel to AB, and GH through P parallel to AD.
Proof : In parallelogram FPGA, AP is a diagonal,
\therefore area of $\triangle \mathrm{APG}=$ area of $\triangle \mathrm{APF}$
In parallelogram BGPE, PB is a diagonal,
\therefore area of $\triangle \mathrm{BPG}=$ area of $\triangle \mathrm{EPB}$
In parallelogram DHPF, DP is a diagonal,
\therefore area of $\Delta \mathrm{DPH}=$ area of $\Delta \mathrm{DPF}$
In parallelogram HCEP, CP is a diagonal,
\therefore area of $\Delta \mathrm{CPH}=$ area of $\Delta \mathrm{CPE}$
Adding (i), (ii), (iii) and (iv)
area of $\triangle \mathrm{APG}+$ area of $\Delta \mathrm{BPG}+$ area of $\Delta \mathrm{DPH}+$ area of $\Delta \mathrm{CPH}$
$=$ area of $\triangle \mathrm{APF}+$ area of $\Delta \mathrm{EPB}+$ area of $\Delta \mathrm{DPF}+$ area $\Delta \mathrm{CPE}$
\Rightarrow [area of $\triangle \mathrm{APG}+$ area of $\Delta \mathrm{BPG}]+[$ area of $\Delta \mathrm{DPH}+$ area of $\Delta \mathrm{CPH}]$
$=[$ area of $\triangle \mathrm{APF}+$ area of $\Delta \mathrm{DPF}]+[$ area of $\Delta \mathrm{EPB}+$ area of $\Delta \mathrm{CPE}]$
\Rightarrow area of $\triangle \mathrm{APB}+$ area of $\Delta \mathrm{CPD}=$ area of $\triangle \mathrm{APD}+$ area of $\Delta \mathrm{BPC}$
... (v)
But area of parallelogram ABCD
$=$ area of $\triangle \mathrm{APB}+$ area of $\triangle \mathrm{CPD}+$ area of $\triangle \mathrm{APD}+$ area of $\triangle \mathrm{BPC}$
From (v) and (vi)
area of $\triangle \mathrm{APB}+$ area of $\triangle \mathrm{PCD}=\frac{1}{2}$ area of ABCD
or, $\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$ Proved.
(ii) From (v),
$\Rightarrow \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{CPD})$ Proved.
Q.5. In the figure, $P Q R S$ and $A B R S$ are parallelograms and X is any point on side BR. Show that
(i) $\operatorname{ar}(P Q R S)=\operatorname{ar}(A B R S)$
(ii) $\operatorname{ar}(A X S)=\frac{1}{2} \operatorname{ar}(P Q R S)$

Sol. Given : PQRS and ABRS are parallelograms and X is any point on side BR.
To prove : (i) ar (PQRS) = ar (ABRS)
(ii) $\operatorname{ar}(\mathrm{AXS})=\frac{1}{2}$ ar (PQRS)

Proof : (i) In $\triangle \mathrm{ASP}$ and BRQ , we have
$\angle \mathrm{SPA}=\angle \mathrm{RQB}$
[Corresponding angles]
$\angle \mathrm{PAS}=\angle \mathrm{QBR}$
[Corresponding angles]
$\therefore \angle \mathrm{PSA}=\angle \mathrm{QRB} \quad$ [Angle sum property of a triangle]
Also, $\mathrm{PS}=\mathrm{QR} \quad$ [Opposite sides of the parallelogram PQRS$]$
So, $\quad \triangle \mathrm{ASP} \cong \triangle \mathrm{BRQ} \quad$ [ASA axiom, using (1), (3) and (4)]
Therefore, area of $\triangle \mathrm{PSA}=$ area of $\triangle \mathrm{QRB}$
[Congruent figures have equal areas] ...(5)
Now, ar $(\mathrm{PQRS})=\operatorname{ar}(\mathrm{PSA})+\operatorname{ar}(\mathrm{ASRQ}]$
$=\operatorname{ar}(\mathrm{QRB})+\operatorname{ar}(\mathrm{ASRQ}]$ $=\operatorname{ar}$ (ABRS)
So, ar (PQRS) = ar (ABRS) Proved.
(ii) Now, $\triangle \mathrm{AXS}$ and $\| \mathrm{gm}$ ABRS are on the same base AS and between same parallels AS and BR
\therefore area of $\triangle \mathrm{AXS}=\frac{1}{2}$ area of ABRS
\Rightarrow area of $\triangle \mathrm{AXS}=\frac{1}{2}$ area of $\mathrm{PQRS} \quad[\because \operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS}]$
\Rightarrow ar of (AXS) $=\frac{1}{2}$ ar of (PQRS) Proved.
Q.6. A farmer was having a field in the form of a parallelogram $P Q R S$. She took any point A on $R S$ and joined it to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
Sol. The field is divided in three triangles.
Since triangle APQ and parallelogram PQRS are on the same base PQ and between the same parallels PQ and RS .
$\therefore \operatorname{ar}(\mathrm{APQ})=\frac{1}{2} \operatorname{ar}(\mathrm{PQRS})$
$\Rightarrow 2 \mathrm{ar}(\mathrm{APQ})=\operatorname{ar}(\mathrm{PQRS})$
But ar $(\mathrm{PQRS})=\operatorname{ar}(\mathrm{APQ})+\operatorname{ar}(\mathrm{PSA})+\operatorname{ar}(\mathrm{ARQ})$
$\Rightarrow 2 \operatorname{ar}(\mathrm{APQ})=\operatorname{ar}(\mathrm{APQ})+\operatorname{ar}(\mathrm{PSA})+\operatorname{ar}(\mathrm{ARQ})$
$\Rightarrow \operatorname{ar}(\mathrm{APQ})=\operatorname{ar}(\mathrm{PSA})+\operatorname{ar}(\mathrm{ARQ})$

Hence, area of $\triangle \mathrm{APQ}=$ area of $\triangle \mathrm{PSA}+$ area of $\triangle \mathrm{ARQ}$.
To sow wheat and pulses in equal portions of the field separately, farmer sow wheat in $\triangle \mathrm{APQ}$ and pulses in other two triangles or pulses in $\triangle \mathrm{APQ}$ and wheat in other two triangles. Ans.

Mathematics

(Chapter - 9)(Areas of Parallelograms and Triangles)

(Class -9)
Exercise 9.3

Question 1:

In Figure, E is any point on median AD of a $\triangle \mathrm{ABC}$. Show that ar $(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$.

Answer 1:

In $\triangle A B C, A D$ is median.
[\because Given]
Hence, $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ACD})$
[\because A median of a triangle divides it into two triangles of equal areas.]

Similarly, in $\triangle E B C$, ED is median. [\because Given]
Hence, $\operatorname{ar}(E B D)=\operatorname{ar}(E C D)$
Subtracting equation (2) from (1), we get
$\operatorname{ar}(\mathrm{ABD})-\operatorname{ar}(\mathrm{EBD})=\operatorname{ar}(\mathrm{ACD})-\operatorname{ar}(\mathrm{ECD})$
$\Rightarrow \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$

Question 2:

In a triangle ABC, E is the mid-point of median AD . Show that $\operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$.

Answer 2:

In $\triangle A B C, A D$ is median.
[\because Given]
Hence, $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ACD})$
$\Rightarrow \operatorname{ar}(\mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
[\because A median of a triangle divides it into two triangles of equal areas.]

Similarly, in $\triangle A B D, B E$ is median. $[\because E$ is the mid-point of $A D]$
Hence, $\operatorname{ar}(\mathrm{BED})=\operatorname{ar}(\mathrm{ABE})$
$\Rightarrow \operatorname{ar}(\mathrm{BED})=\frac{1}{2} \operatorname{ar}(\mathrm{ABD})$
$\Rightarrow \operatorname{ar}(\mathrm{BED})=\frac{1}{2}\left[\frac{1}{2} \operatorname{ar}(\mathrm{ABC})\right]$
$\left[\because \operatorname{ar}(\mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})\right]$
$\Rightarrow \operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$

Question 3:

Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Answer 3:

Diagonals of parallelogram bisect each other.
Therefore, $\mathrm{PO}=O \mathrm{R}$ and $\mathrm{SO}=O Q$
In $\triangle \mathrm{PQS}, \mathrm{PO}$ is median.
$[\because S O=O Q]$
Hence, $\operatorname{ar}(\mathrm{PSO})=\operatorname{ar}(\mathrm{PQO})$
[\because A median of a triangle divides it into two triangles of equal areas.]

Similarly, in $\triangle P Q R, Q 0$ is median. $\quad[\because P 0=0 R]$
Hence, $\operatorname{ar}(P Q O)=\operatorname{ar}(Q R O)$
And in $\triangle Q R S, R O$ is median.
$[\because S O=O Q]$
Hence, $\operatorname{ar}(\mathrm{QRO})=\operatorname{ar}$ (RSO)
From the equations (1), (2) and (3), we get
$\operatorname{ar}(\mathrm{PSO})=\operatorname{ar}(\mathrm{PQO})=\operatorname{ar}(\mathrm{QRO})=\operatorname{ar}(\mathrm{RSO})$
Hence, in parallelogram PQRS, diagonals PR and QS divide it into four triangles in equal area.

Question 4:

In Figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line- segment $C D$ is bisected by $A B$ at 0 , show that $\operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$.

Answer 4:
In $\triangle A D C, A O$ is median.
Hence, $\operatorname{ar}(\mathrm{ACO})=\operatorname{ar}(\mathrm{ADO})$
[\because A median of a triangle divides it into two triangles of equal areas.]
Similarly, in $\triangle B D C, B O$ is median. $[\because C O=O D]$
Hence, $\operatorname{ar}(B C O)=\operatorname{ar}(B D O)$

Adding equation (1) and (2), we get
$\operatorname{ar}(\mathrm{ACO})+\operatorname{ar}(\mathrm{BCO})=\operatorname{ar}(\mathrm{ADO})+\operatorname{ar}(\mathrm{BDO})$
$\Rightarrow \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$

Question 5:

D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$. Show that
(i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
(iii) $\operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$

Answer 5:
(i) In $\triangle A B C, E$ and D are mid-points of $C A$ and $B C$ respectively \mid

Hence, $E D \| A B$ and $E D=\frac{1}{2} A B \quad[\because$ Mid-point theorem $]$
$\Rightarrow E D \| A B$ and $E D=F B$
$[\because \mathrm{F}$ is mid-point of AB$]$
$\Rightarrow \mathrm{BDEF}$ is a parallelogram.
(ii) BDEF is a parallelogram. [\because Proved above]
$\operatorname{ar}(\mathrm{DEF})=\operatorname{ar}(\mathrm{BDF})$

[\because Diagonal of a parallelogram divide it into two triangles, equal in area] Similarly,
AEDF is a parallelogram.
$\operatorname{ar}(\mathrm{DEF})=\operatorname{ar}(\mathrm{AEF})$
तथा AEDF is a parallelogram.
$\operatorname{ar}(\mathrm{DEF})=\operatorname{ar}(\mathrm{CDE})$
From the equation (1), (2) and (3), we get
$\operatorname{ar}(\mathrm{DEF})=\operatorname{ar}(\mathrm{BDF})=\operatorname{ar}(\mathrm{AEF})=\operatorname{ar}(\mathrm{CDF})$
Let $\operatorname{ar}(\mathrm{DEF})=\operatorname{ar}(\mathrm{BDF})=\operatorname{ar}(\mathrm{AEF})=\operatorname{ar}(\mathrm{CDF})=x$
Therefore, $\operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{DEF})+\operatorname{ar}(\mathrm{BDF})+\operatorname{ar}(\mathrm{AEF})+\operatorname{ar}(\mathrm{CDF})$
$\Rightarrow \operatorname{ar}(\mathrm{ABC})=x+x+x+x=4 x=4 \operatorname{ar}(\mathrm{DEF})$
$\Rightarrow \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
(iii) $\operatorname{ar}(\mathrm{BDEF})=\operatorname{ar}(\mathrm{DEF})+\operatorname{ar}(\mathrm{BDF})=x+x=2 x$
$\Rightarrow \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \times 4 x$
$\Rightarrow \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \times \operatorname{ar}(\mathrm{ABC}) \quad[\because \operatorname{ar}(\mathrm{ABC})=4 x]$

Question 6:

In Figure, diagonals AC and BD of quadrilateral
$A B C D$ intersect at O such that $O B=O D$. If $A B=C D$, then show that:
(i) ar (DOC) $=\operatorname{ar}$ (AOB)
(ii) $\operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})$
(iii) $\mathrm{DA} \| \mathrm{CB}$ or ABCD is a parallelogram.
[Hint: From D and B, draw perpendiculars to AC.]
Answer 6:
(i) Construction: Draw perpendiculars DM and BN form D and B respectively to AC . In $\triangle \mathrm{DMO}$ and $\triangle \mathrm{BNO}$,
$\angle \mathrm{DMO}=\angle \mathrm{BNO}$
[\because Each 90°]
$\angle \mathrm{DOM}=\angle \mathrm{BON}$
[\because Vertically opposite angles]

DO = BO
Hence, $\triangle \mathrm{DMO} \cong \triangle B N O$
$\mathrm{DM}=\mathrm{BN}$
And $\operatorname{ar}(\mathrm{DMO})=\operatorname{ar}(\mathrm{BNO})$
In $\triangle \mathrm{DMC}$ and $\triangle \mathrm{BNA}$,
$\angle D M C=\angle B N A \quad\left[\because\right.$ Each $\left.90^{\circ}\right]$
$\mathrm{DM}=\mathrm{BN} \quad[\because$ From the equation (1)]
$C D=A B \quad[\because$ Given $]$
Hence, $\triangle \mathrm{DMC} \cong \triangle \mathrm{BNA} \quad[\because$ RHS Congruency rule $]$
And $\operatorname{ar}(\mathrm{DMC})=\operatorname{ar}(\mathrm{BNA}) \quad \ldots$ (3) $\quad[\because$ Congruent triangles area equal in area $]$
Adding the equation (2) and (3), we get
$\operatorname{ar}(\mathrm{DMO})+\operatorname{ar}(\mathrm{DMC})=\operatorname{ar}(\mathrm{BNO})+\operatorname{ar}(\mathrm{BNA})$
$\Rightarrow \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB})$
(ii) $\operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) \quad[\because$ Proved above $]$

Adding ar (BOC) both sides
$\operatorname{ar}(\mathrm{DOC})+\operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{AOB})+\operatorname{ar}(\mathrm{BOC})$
$\Rightarrow \operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})$
(iii) $\triangle D M C \cong \triangle B N A$
[\because Proved above]
$\angle \mathrm{DCM}=\angle \mathrm{BAN}$
[\because CPCT]

Here, the alternate angles ($\angle \mathrm{DCM}=\angle \mathrm{BAN}$) are equal, Hence,
$C D \| A B$
And $C D=A B \quad[\because$ Given $]$
Therefore, $A B C D$ is a parallelogram.

Question 7:

D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $\operatorname{ar}(D B C)=\operatorname{ar}(E B C)$. Prove that $\mathrm{DE} \| \mathrm{BC}$.

Answer 7:
$\triangle \mathrm{DBC}$ and $\triangle \mathrm{EBC}$ are on the same base BC and $\operatorname{ar}(\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC})$.

Therefore, DE || BC
[\because Triangles on the same base (or equal bases) and having equal areas lie between the same parallels.]

Question 8:

XY is a line parallel to side BC of a triangle ABC . If $\mathrm{BE} \| \mathrm{AC}$ and $\mathrm{CF} \| \mathrm{AB}$ meet XY at E and F respectively, show that: $\operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF})$

Answer 8:

In quadrilateral $\mathrm{BCYE}, \mathrm{BE} \| \mathrm{CY}$
$[\because \mathrm{BE} \| \mathrm{AC}]$
BC || EY
$[\because \mathrm{BC} \| \mathrm{XY}]$
Therefore, BCYE is a parallelogram.
Triangle ABE and parallelogram BCYE are on the same base $B E$ and between
 same parallels, $\mathrm{BE} \| \mathrm{AC}$.
Hence, $\operatorname{ar}(\mathrm{ABE})=\frac{1}{2} \operatorname{ar}(\mathrm{BCYE})$
[\because If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.]
Similarly, triangle ACF and parallelogram BCFX are on the same base $C F$ and between same parallels $C F \| A B$.
Hence, $\operatorname{ar}(\mathrm{ACF})=\frac{1}{2} \operatorname{ar}(\mathrm{BCFX})$
And, ar (BCYE) $=\operatorname{ar}$ (BCFX)
$[\because$ On the same base $(B C)$ and between same parallels ($B C \| E F$), area of parallelograms are equal]
From the equation (1), (2) and (3), $\operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF})$

Question 9:

The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A and parallel to $C P$ meets $C B$ produced at Q and then parallelogram PBQR is completed (see Figure). Show that ar ($A B C D$) $=$ ar $(P B Q R)$.
[Hint: Join AC and PQ. Now compare ar (ACQ) and ar (APQ).]

Answer 9 :

Construction: Join AC and PQ.
Triangles $A C Q$ and $A P Q$ lie on the same base $A Q$ and between same parallels, $A Q|\mid C P$. Hence, $\operatorname{ar}(\mathrm{ACQ})=\operatorname{ar}(\mathrm{APQ})$

[\because Triangles on the same base (or equal) and between the same parallels are equal in area.]
Subtracting $\operatorname{ar}(A B Q)$ from both the sides
$\operatorname{ar}(\mathrm{ACQ})-\operatorname{ar}(\mathrm{ABQ})=\operatorname{ar}(\mathrm{APQ})-\operatorname{ar}(\mathrm{ABQ})$
$\Rightarrow \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{PBQ}) \Rightarrow \frac{1}{2} \operatorname{ar}(\mathrm{ABCD})=\frac{1}{2} \operatorname{ar}(\mathrm{PBQR})$
[\because Diagonal divides the parallelogram in two triangles equal in area]

$\Rightarrow \operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR})$

Question 10:

Diagonals AC and BD of a trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$ intersect each other at 0 .
Prove that ar (AOD) $=\operatorname{ar}(B O C)$.

Answer 10:

Triangles $A B D$ and $A B C$ are on the same base $A B$ and between same parallels, $A B \| C D$.
Hence, $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ABC})$
[\because Triangles on the same base (or equal bases) and between the same parallels are equal in area.]
Subtracting $\operatorname{ar}(\mathrm{ABO})$ form both the sides
$\operatorname{ar}(\mathrm{ABD})-\operatorname{ar}(\mathrm{ABO})=\operatorname{ar}(\mathrm{ABC})-\operatorname{ar}(\mathrm{ABO})$
$\Rightarrow \operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC})$

Question 11:

In Figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F . Show that
(i) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Answer 11:
(i) Triangles $A C B$ and $A C F$ are on the same base $A C$ and between same parallels $A C \| F B$. Hence, $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
[\because Triangles on the same base (or equal bases) and between the same parallels are equal
 in area.]
(ii) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF}) \quad[\because$ Proved above $]$

Adding ar (AEDC) both the sides
$\operatorname{ar}(\mathrm{ACB})+\operatorname{ar}(\mathrm{AEDC})=\operatorname{ar}(\mathrm{ACF})+\operatorname{ar}(\mathrm{AEDC})$
$\Rightarrow \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\mathrm{AEDF})$

Question 12:

A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

Answer 12:

Let $A B C D$ be the Itwaari's plot.
Join $B D$ and through C draw a line $C F$ parallel to $B D$ which meet $A B$ produced at F. Now join D and F.
Triangles CBD and FBD are on the same base BD and between same parallels BD \|| CF.
Hence, ar (CBD) $=\operatorname{ar}$ (FBD)
$[\because$ Triangles on the same base (or equal bases) and between the same parallels are equal in area.]
Subtracting ar (BDM) from both the sides
$\operatorname{ar}(\mathrm{CBD})-\operatorname{ar}(\mathrm{BDM})=\operatorname{ar}(\mathrm{FBD})-\operatorname{ar}(\mathrm{BDM})$
$\Rightarrow \operatorname{ar}(\mathrm{CMD})=\operatorname{ar}(\mathrm{BFM})$
Hence, in place of $\triangle \mathrm{CMD}$, if $\triangle \mathrm{BFM}$ be given to Itwaari, his plot become triangular ($\triangle \mathrm{ADF}$).

Question 13:

$A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y.
Prove that ar $(A D X)=\operatorname{ar}(A C Y)$. [Hint: Join CX.]
Answer 13:
Construction: Join CX.
Triangles $A D X$ and $A C X$ are on the same base $A X$ and between same
parallels $\mathrm{AB}|\mid \mathrm{DC}$.

Hence, $\operatorname{ar}(\mathrm{ADX})=\operatorname{ar}(\mathrm{ACX})$
[\because Triangles on the same base (or equal bases) and between the same parallels are equal in area.]
Similarly, triangles ACY and ACX are on the same base AC and between same parallels AC \| XY.
Hence, $\operatorname{ar}(\mathrm{ACY})=\operatorname{ar}(\mathrm{ACX})$
From the equation (1) and (2), $\operatorname{ar}(\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY})$

Question 14:

In Figure, $\mathrm{AP}\|\mathrm{BQ}\| \mathrm{CR}$. Prove that $\operatorname{ar}(\mathrm{AQC})=$ ar (PBR).
Answer 14:
Triangles $A B Q$ and $P B Q$ are on the same base $B Q$ and between same parallels $B Q \| A P$. Hence, $\operatorname{ar}(A B Q)=\operatorname{ar}(P B Q)$
[\because Triangles on the same base (or equal bases) and between the same parallels are equal in area.]

Similarly,
Triangles $B Q C$ and $B Q R$ are on the same base $B Q$ and between same parallels $B Q \| C R$.
Hence, $\operatorname{ar}(\mathrm{BQC})=\operatorname{ar}(\mathrm{BQR})$
Adding equation (1) and (2), we get
$\operatorname{ar}(\mathrm{ABQ})+\operatorname{ar}(\mathrm{BQC})=\operatorname{ar}(\mathrm{PBQ})+\operatorname{ar}(\mathrm{BQR})$
$\Rightarrow \operatorname{ar}(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$

Question 15:

Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that ar (AOD) $=\operatorname{ar}$ (BOC). Prove that $A B C D$ is a trapezium.

Answer 15:
$\operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC}) \quad[\because$ Given $]$
Adding ar (AOB) both the sides
$\operatorname{ar}(\mathrm{AOD})+\operatorname{ar}(\mathrm{AOB})=\operatorname{ar}(\mathrm{BOC})+\operatorname{ar}(\mathrm{AOB})$
$\Rightarrow \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ABC})$
$\triangle \mathrm{ABD}$ and $\triangle \mathrm{ABC}$ are on the same base AB and $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ABC})$.
Therefore, $A B$ || DC
[\because Triangles on the same base (or equal bases) and having equal areas lie between the same parallels.]
Hence, $A B C D$ is a trapezium.

Question 16:

In Figure, ar $(D R C)=\operatorname{ar}(D P C)$ and ar $(B D P)=\operatorname{ar}(A R C)$. Show that both the quadrilaterals $A B C D$ and $D C P R$ are trapeziums.

Answer 16:

$\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})$
....(1) [\because Given]
$\triangle \mathrm{DRC}$ and $\triangle \mathrm{DPC}$ are on the same base DC and $\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})$.
Therefore, DC || RP
[\because Triangles on the same base (or equal bases) and having equal areas lie
 between the same parallels.]
Hence, DCPR is a trapezium.
And $\operatorname{ar}(\mathrm{ARC})=\operatorname{ar}(\mathrm{BDP})$
... (2) [\because Given]
Subtracting equation (1) form equation (2), we get
$\operatorname{ar}(\mathrm{ARC})-\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{BDP})-\operatorname{ar}(\mathrm{DPC})$
$\Rightarrow \operatorname{ar}(\mathrm{ADC})=\operatorname{ar}(\mathrm{BDC})$
$\triangle \mathrm{ADC}$ and $\triangle \mathrm{BDC}$ are on the same base DC and $\operatorname{ar}(\mathrm{ADC})=\operatorname{ar}(\mathrm{BDC})$.
Therefore, $\mathrm{AB}|\mid \mathrm{DC}$
[\because Triangles on the same base (or equal bases) and having equal areas lie between the same parallels.] Hence, $A B C D$ is a trapezium.

Mathematics
 (Chapter-9)(Areas of Parallelograms and Triangles)
 (Class - 9)
 Exercise 9.4 (Optional)

Question 1:

Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

Answer 1:
In $\triangle A F D$,
$\angle \mathrm{F}=90^{\circ}$
[\because Angle of a rectangle]

$\mathrm{AD}>\mathrm{AF} \quad[\because$ In a right triangle, hypotenuse is the longest side]
Adding $A B$ on both the sides, $A D+A B>A F+A B$
Multiplying both sides by 2 ,
$2[A D+A B]>2[A F+A B]$
\Rightarrow Perimeter of parallelogram > Perimeter of rectangle

Question 2:

In Figure, D and E are two points on BC such that $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$. Show that ar $(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$. Can you now answer the question that you have left in the 'Introduction' of this chapter, whether the field of Budhia has been actually divided into three parts of equal area? [Remark: Note that by taking $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$, the triangle ABC is divided into three triangles $A B D, A D E$ and $A E C$ of equal areas. In the same way, by dividing $B C$ into n equal parts and joining the points of division so obtained to the opposite vertex of BC , you can divide $\triangle \mathrm{ABC}$ into n triangles of equal areas.]

Answer 2:

In $\triangle \mathrm{ABE}, \mathrm{AD}$ is median.
$[\because \mathrm{BD}=\mathrm{DE}]$
Hence, $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{AED})$
[\because A median of a triangle divides it into two triangles of equal areas.]
Similarly, in $\triangle A D C, A E$ is median. $\quad[\because D E=E C]$
Hence, $\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$
From the equation (1) and (2), $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$

Question 3:

In Figure, $A B C D, D C F E$ and $A B F E$ are parallelograms. Show that ar $(\mathrm{ADE})=\operatorname{ar}(\mathrm{BCF})$.

Answer 3:

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCF}$,
$\mathrm{AD}=\mathrm{BC}$
$\mathrm{DE}=\mathrm{CF}$
$\mathrm{AE}=\mathrm{BF}$
Hence, $\triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}$
[\because Opposite sides of parallelogram ABCD]
[\because Opposite sides of parallelogram DCFE]
[\because Opposite sides of parallelogram ABFE]
[\because SSS Congruency rule]
Hence, $\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{BCF}) \quad[\because$ Congruent triangles are equal in area also $]$

Question 4:

In Figure, $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$. If $A Q$ intersect $D C$ at P, show that $\operatorname{ar}(B P C)=\operatorname{ar}(D P Q)$.
[Hint: Join AC.]
Answer 4:
In $\triangle A D P$ and $\triangle Q C P$,
$\begin{array}{ll}\angle A P D=\angle Q P C & {[\because \text { Vertically Opposite Angles }]} \\ \angle A D P=\angle Q C P & {[\because \text { Alternate angles }]} \\ A D=C Q & {[\because \text { Given }]}\end{array}$

Hence, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD} \quad[\because$ AAS Congruency rule $]$
Therefore, $\mathrm{DP}=\mathrm{CP}$
In $\triangle C D Q, Q P$ is median.
[\because CPCT]
$[\because D P=C P]$
Hence, $\operatorname{ar}(\mathrm{DPQ})=\operatorname{ar}(\mathrm{QPC})$
[\because A median of a triangle divides it into two triangles of equal areas.]
Similarly,
In $\triangle P B Q, P C$ is median. $\quad[\because A D=C Q$ and $A D=B C \Rightarrow B C=Q C]$
Hence, $\operatorname{ar}(\mathrm{QPC})=\operatorname{ar}(\mathrm{BPC})$
From the equation (1) and (2),
$\operatorname{ar}(\mathrm{BPC})=\operatorname{ar}(\mathrm{DPQ})$

Question 5:

In Figure, $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. If $A E$ intersects $B C$ at F , show that
(i) $\operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
(ii) $\operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE})$
(iii) $\operatorname{ar}(\mathrm{ABC})=2 \operatorname{ar}(\mathrm{BEC})$
(iv) $\operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD})$
(v) ar (BFE) $=2 \operatorname{ar}$ (FED)
(vi) $\operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC})$
[Hint: Join EC and AD . Show that $\mathrm{BE} \| \mathrm{AC}$ and $\mathrm{DE} \| \mathrm{AB}$, etc.]
Answer 5:
(i) Construction: Join EC and AD.

Let, $\mathrm{BC}=x$

Therefore, $\operatorname{ar}(\mathrm{ABC})=\frac{\sqrt{3}}{4} x^{2}$
$\left[\because\right.$ Area of equilateral triangle $\left.=\frac{\sqrt{3}}{4}(\text { side })^{2}\right]$
And $\operatorname{ar}(\mathrm{BDE})=\frac{\sqrt{3}}{4}\left(\frac{x}{2}\right)^{2}$
$[\because \mathrm{D}$ is mid-point of BC$]$
$=\frac{1}{4}\left[\frac{\sqrt{3}}{4} x^{2}\right]=\frac{1}{4}[\operatorname{ar}(\mathrm{ABC})]$
(ii) In $\triangle B E C, E D$ is median.
[$\because \mathrm{D}$ is mid-point of BC] Hence, $\operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BEC})$... (1)
[\because A median of a triangle divides it into two triangles of equal areas.]
$\angle E B C=60^{\circ}$ and $\angle B C A=60^{\circ} \quad[\because$ Angles of equilateral triangles]
Therefore, $\angle E B C=\angle B C A$

Here, Alternate angles ($\angle \mathrm{EBC}=\angle \mathrm{BCA}$) are equal, Hence, $\mathrm{BE} \| \mathrm{AC}$
Triangles BEC and BAE are on the same base BE and between same parallels, $\mathrm{BE} \| \mathrm{AC}$.
Hence, $\operatorname{ar}(\mathrm{BEC})=\operatorname{ar}(\mathrm{BAE})$
[\because Triangles on the same base (or equal bases) and between the same parallels are equal in]
From the equation (1) and (2),
$\operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}$ (BAE)
(iii) In $\triangle B E C, E D$ is median. $\quad[\because \mathrm{D}$ is mid-point of $B C]$

Hence, ar (BDE) $=\frac{1}{2} \operatorname{ar}$ (BEC) ..
[\because A median of a triangle divides it into two triangles of equal areas.]
$\operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
... (4) [\because Proved above in (i)]
From the equation (3) and (4),
$\operatorname{ar}(\mathrm{ABC})=2 \operatorname{ar}(\mathrm{BEC})$
(iv) $\angle \mathrm{ABD}=60^{\circ}$ and $\angle \mathrm{BDE}=60^{\circ} \quad[\because$ Angles of equilateral triangle $]$

Therefore, $\angle A B D=\angle B D E$
Here, Alternate angles ($\angle \mathrm{ABD}=\angle \mathrm{BDE}$) are equal,
Hence, BA || ED
Triangles BDE and AED are on the same base ED and between same parallels BA || ED.
Hence, $\operatorname{ar}(\mathrm{BDE})=\operatorname{ar}$ (AED)
[\because Triangles on the same base (or equal bases) and between the same parallels are equal in] Subtracting ar (FED) form both the sides
$\operatorname{ar}(\mathrm{BDE})-\operatorname{ar}(\mathrm{FED})=\operatorname{ar}(\mathrm{AED})-\operatorname{ar}(\mathrm{FED})$
$\Rightarrow \operatorname{ar}(\mathrm{BEF})=\operatorname{ar}(\mathrm{AFD})$
(v) In $\triangle \mathrm{BEC}, \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}=a^{2}-\frac{a^{2}}{4}=\frac{3 a^{2}}{4} \Rightarrow \mathrm{AD}=\frac{\sqrt{3} a}{2}$

In $\triangle \mathrm{LED}, \mathrm{EL}^{2}=\mathrm{DE}^{2}-\mathrm{DL}^{2}=\left(\frac{a}{2}\right)^{2}-\left(\frac{a}{4}\right)^{2}=\frac{a^{2}}{4}-\frac{a^{2}}{16}=\frac{3 a^{2}}{16} \Rightarrow \mathrm{EL}=\frac{\sqrt{3} a}{4}$
Therefore, $\quad \operatorname{ar}(\mathrm{AFD})=\frac{1}{2} \times \mathrm{FD} \times \mathrm{AD}=\frac{1}{2} \times \mathrm{FD} \times \frac{\sqrt{3} a}{2}$
And $\operatorname{ar}(\mathrm{EFD})=\frac{1}{2} \times \mathrm{FD} \times \mathrm{EL}=\frac{1}{2} \times \mathrm{FD} \times \frac{\sqrt{3} a}{4}$
From the equation (5) and (6),
$\operatorname{ar}(\mathrm{AFD})=2 \operatorname{ar}$ (FED)
$\Rightarrow \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED})$
[\because Comparing with (iv)]
(vi) $\operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
$[\because$ From the equation (i)]
$\Rightarrow \operatorname{ar}(\mathrm{BEF})+\operatorname{ar}(\mathrm{FED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\mathrm{BEF})+\operatorname{ar}(\mathrm{FED})=\frac{1}{4}[2 \operatorname{ar}(\mathrm{ADC})] \quad[\because \operatorname{ar}(\mathrm{ABC})=2 \operatorname{ar}(\mathrm{ABC})]$
$\Rightarrow 2 \operatorname{ar}(\mathrm{FED})+\operatorname{ar}(\mathrm{FED})=\frac{1}{2}[\operatorname{ar}(\mathrm{ADC})] \quad[\because$ From the equation $(\mathrm{v})]$
$\Rightarrow 3 \operatorname{ar}(\mathrm{FED})=\frac{1}{2}[\operatorname{ar}(\mathrm{AFC})-\operatorname{ar}(\mathrm{AFD})]$
$\Rightarrow 3 \operatorname{ar}(\mathrm{FED})=\frac{1}{2}[\operatorname{ar}(\mathrm{AFC})-2 \operatorname{ar}(\mathrm{FED})] \quad[\because$ From the equation (7)]
$\Rightarrow 3 \operatorname{ar}(\mathrm{FED})=\frac{1}{2} \operatorname{ar}(\mathrm{AFC})-\frac{1}{2} \times 2 \operatorname{ar}(\mathrm{FED})$
$\Rightarrow 3 \operatorname{ar}(\mathrm{FED})=\frac{1}{2} \operatorname{ar}(\mathrm{AFC})-\operatorname{ar}(\mathrm{FED})$
$\Rightarrow 4 \operatorname{ar}(\mathrm{FED})=\frac{1}{2} \operatorname{ar}(\mathrm{AFC})$
$\Rightarrow \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC})$

Question 6:

Diagonals AC and BD of a quadrilateral $A B C D$ intersect each other at P. Show that ar (APB) \times ar $(C P D)=a r$ (APD) \times ar (BPC). [Hint: From A and C, draw perpendiculars to BD.]

Answer 6:

Construction: From the points A and C , draw perpendiculars AM and CN on BD .
$\operatorname{ar}(\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\frac{1}{2} \times \mathrm{BP} \times \mathrm{AM} \times \frac{1}{2} \times \mathrm{PD} \times \mathrm{CN}$
$\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC})=\frac{1}{2} \times \mathrm{PD} \times \mathrm{AM} \times \frac{1}{2} \times \mathrm{BP} \times \mathrm{CN}$
From the equation (1) and (2), $\operatorname{ar}(\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC})$

Question 7:

P and Q are respectively the mid-points of sides $A B$ and $B C$ of a triangle $A B C$ and R is the mid-point of $A P$, show that
(i) $\operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC})$
(ii) $\operatorname{ar}(\mathrm{RQC})=\frac{3}{8} \operatorname{ar}(\mathrm{ABC})$
(iii) $\operatorname{ar}(\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC})$

Answer 7:
Construction: Join $\mathrm{AQ}, \mathrm{PC}, \mathrm{RC}$ and RQ .
$\begin{array}{ll}\text { (i) } \text { In } \triangle \mathrm{APQ}, \mathrm{QR} \text { is median. } & {[\because \text { Given }]} \\ \text { Hence, } \operatorname{ar}(\mathrm{PQR})=\frac{1}{2} \operatorname{ar}(\mathrm{APQ}) & \ldots(1)\end{array}$
[\because A median of a triangle divides it into two triangles of equal areas.]
Similarly,
In $\triangle A Q B, Q P$ is median.
[\because Given]
Hence, $\operatorname{ar}(A P Q)=\frac{1}{2} \operatorname{ar}(A B Q)$
And, in $\triangle A B C, A Q$ is median. [\because Given]
Hence, $\operatorname{ar}(\mathrm{ABQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
From the equation (1), (2) and (3),
$\operatorname{ar}(\mathrm{PQR})=\frac{1}{8} \operatorname{ar}(\mathrm{ABC})$
In $\triangle A R C, C R$ is median.
[\because Given]
Hence, $\operatorname{ar}(\mathrm{ARC})=\frac{1}{2} \operatorname{ar}(\mathrm{APC})$
[\because A median of a triangle divides it into two triangles of equal areas.]
Similarly,
In $\triangle A B C, C P$ is median.
[\because Given]
Hence, $\operatorname{ar}(\mathrm{APC})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
From the equation (5) and (6),
$\operatorname{ar}(\mathrm{ARC})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
From the equation (4) and (7),
$\operatorname{ar}(\mathrm{PQR})=\frac{1}{8} \operatorname{ar}(\mathrm{ABC})=\frac{1}{2}\left[\frac{1}{4} \operatorname{ar}(\mathrm{ABC})\right]=\frac{1}{2} \operatorname{ar}(\mathrm{ARC})$
(ii) $\operatorname{ar}(\mathrm{RQC})=\operatorname{ar}(\mathrm{RQA})+\operatorname{ar}(\mathrm{AQC})-\operatorname{ar}(\mathrm{ARC})$

In $\triangle \mathrm{PQA}, \mathrm{QR}$ is median. [\because Given]
Hence, $\operatorname{ar}(\mathrm{RQA})=\frac{1}{2} \operatorname{ar}(\mathrm{PQA})$
In $\triangle A Q B, P Q$ is median.
Hence, $\operatorname{ar}(\mathrm{PQA})=\frac{1}{2} \operatorname{ar}(\mathrm{AQB})$
In $\triangle A B C, A Q$ is median.
[\because Given]
Hence, $\operatorname{ar}(\mathrm{AQB})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
From the equation (9), (10) and (11),
$\operatorname{ar}(\mathrm{RQA})=\frac{1}{8} \operatorname{ar}(\mathrm{ABC})$
In $\triangle A B C, A Q$ is median.
[\because Given]
Hence, $\operatorname{ar}(A Q C)=\frac{1}{2} \operatorname{ar}(A B C)$
In $\triangle A P C, C R$ is median.
Hence, $\operatorname{ar}(\mathrm{ARC})=\frac{1}{2} \operatorname{ar}(\mathrm{APC})$

In $\triangle \mathrm{ABC}, \mathrm{CP}$ is median. [\because Given]
Hence, $\operatorname{ar}(\mathrm{APC})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
From the equation (14) and (15),
$\operatorname{ar}(\mathrm{ARC})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
From the equation (8), (12), (13) and (16),
$\operatorname{ar}(\mathrm{RQC})=\frac{1}{8} \operatorname{ar}(\mathrm{ABC})+\frac{1}{2} \operatorname{ar}(\mathrm{ABC})-\frac{1}{4} \operatorname{ar}(\mathrm{ABC})=\frac{3}{8} \operatorname{ar}(\mathrm{ABC})$
(iii) In $\triangle A B Q, P Q$ is median.

Hence, $\operatorname{ar}(\mathrm{PBQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ABQ})$
[\because Given]

In $\triangle A B C, A Q$ is median.
Hence, $\operatorname{ar}(\mathrm{ABQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
From the equation (16), (17) and (18),
$\operatorname{ar}(\mathrm{PQB})=\operatorname{ar}(\mathrm{ARC})$

Question 8:

In Figure, $A B C$ is a right triangle right angled at A. $B C E D, A C F G$ and $A B M N$ are squares on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that:
(i) $\triangle \mathrm{MBC} \cong \triangle \mathrm{ABD}$
(ii) ar (BYXD) $=2 \operatorname{ar}$ (MBC)
(iii) $\operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN})$
(iv) $\triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
(v) ar (CYXE) $=2 \operatorname{ar}$ (FCB)
(vi) $\operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}$ (ACFG)
(vii) $\operatorname{ar}(\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$

Answer 8:

(i) $\ln \triangle M B C$ and $\triangle A B D$,
$\mathrm{AB}=\mathrm{AC}$
[\because Sides of square]
$\angle \mathrm{MBC}=\angle \mathrm{ABD}$
$\left[\because\right.$ Each $\left.90^{\circ}+\angle \mathrm{ABC}\right]$
$\mathrm{MB}=\mathrm{AB}$
[\because Sides of square]
Hence, $\triangle M B C \cong \triangle A B D \quad[\because$ SAS Congruency rule $]$

(ii) Triangle $A B D$ and parallelogram $B Y X D$ are on the same base $B D$ and between same parallels $A X \| B D$.

Hence, $\operatorname{ar}(\mathrm{ABD})=\frac{1}{2} \operatorname{ar}$ (BYXD)
[\because If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.]

But, $\triangle \mathrm{MBC} \cong \triangle \mathrm{ABD} \quad[\because$ Proved above]
Therefore, $\operatorname{ar}(\mathrm{MBC})=\operatorname{ar}(\mathrm{ABD})$
From the equation (1) and (2),
$\operatorname{ar}(\mathrm{MBC})=\frac{1}{2} \operatorname{ar}(\mathrm{BYXD})$
$\Rightarrow 2 \operatorname{ar}(\mathrm{MBC})=\operatorname{ar}(\mathrm{BYXD})$
(iii) Triangle MBC and square $A B M N$ are on the same base MB and between same parallels MB || NC.

Hence, $\operatorname{ar}(\mathrm{MBC})=\frac{1}{2} \operatorname{ar}(\mathrm{ABMN})$
[\because If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.]

From the equation (3) and (4),
$\operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN})$
(iv) In $\triangle A C E$ and $\triangle B C F$,
$C E=B C \quad[\because$ Sides of square $]$
$\angle A C E=\angle B C F \quad\left[\because\right.$ Each $\left.90^{\circ}+\angle B C A\right]$
$\mathrm{AC}=\mathrm{CF}$
[\because Sides of square]
Hence, $\triangle \mathrm{ACE} \cong \triangle \mathrm{BCF} \quad[\because$ SAS Congruency rule $]$
(v) Triangle ACE and square CYXE are on the same base CE and between same parallels CE \| $A X$.

Hence, $\operatorname{ar}(\mathrm{ACE})=\frac{1}{2} \operatorname{ar}$ (CYXE)
[\because If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.]
$\Rightarrow \operatorname{ar}(\mathrm{FCB})=\frac{1}{2} \operatorname{ar}(\mathrm{CYXE})$
\ldots (5) $[\because \operatorname{ar}(\mathrm{FCB})=\operatorname{ar}(\mathrm{ACE})]$
$\Rightarrow 2 \operatorname{ar}(\mathrm{FCB})=\operatorname{ar}(\mathrm{CYXE})$
(vi) Triangle BCF and square ACFG are on the same base CF and between same parallels CF || FG.

Hence, $\operatorname{ar}(\mathrm{BCF})=\frac{1}{2} \operatorname{ar}(\mathrm{ACFG}) \ldots(6)$
[\because If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.]

From the equation (5) and (6),
$\Rightarrow \operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG})$
(vii) From the result of (iii), we have
$\operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN})$
From the result of (vi), we have
$\operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG})$
Adding (7) and (8), we get
$\operatorname{ar}(\mathrm{BYXD})+\operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$
$\Rightarrow \operatorname{ar}(\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$

