Chapter 10 Vector Algebra

EXERCISE 10.1

Question 1:

Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north.

Solution:

${ }^{\|} \|^{\prime}$ represents the displacement of $40 \mathrm{~km}, 30^{\circ}$ north-east.

Question 2:

Classify the following measures as scalars and vectors.
(i) 10 kg
(ii) 2 meters north-east
(iii) 40°
(iv) 40 watt
(v) 10^{-19} coulomb
(vi) $20 \mathrm{~m} / \mathrm{s}^{2}$

Solution:

(i) 10 kg is a scalar.
(ii) 2 meters north-west is a vector.
(iii) 40° is a scalar.
(iv) 40 watts is a scalar.
(v) 10^{-19} Coulomb is a scalar.
(vi) $20 \mathrm{~m} / \mathrm{s}^{2}$ is a vector

Question 3:

Classify the following as scalar and vector quantities.
(i) time period
(ii) distance
(iii) force
(iv) velocity
(v) work done.

Solution:

(i) Time period is a scalar.
(ii) Distance is a scalar.
(iii) Force is a vector.
(iv) Velocity is a vector.
(v) Work done is a scalar.

Question 4:

In figure, identify the following vectors.

(i) Coinitial
(ii) Equal
(iii) Collinear but not equal.

Solution:

(i) Vectors \dot{a} and $\stackrel{\rightharpoonup}{d}$ are coinitial.
(ii) Vectors \vec{b} and $\stackrel{\rightharpoonup}{d}$ are equal.
(iii) Vectors a and c are collinear but not equal.

Question 5:

Answer the following as true or false.
(i) a and $-a$ are collinear.
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.

Solution:

(i) True.
(ii) False.
(iii) False.
(iv) False

EXERCISE 10.2

Question 1:

Compute the magnitude of the following vectors:
$\overrightarrow{a=i} \hat{i+j} \hat{j} k ; \quad \vec{b}=\hat{2} i-\hat{7} j-\hat{3} k ; \quad \vec{c}=\frac{1^{\wedge}}{\sqrt{3}} i+\frac{1^{\wedge}}{\sqrt{3}} j-\frac{1^{\wedge}}{\sqrt{3}} k$

Solution:

$|\vec{a}|=\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}=\sqrt{3}$
$|\vec{b}|=\sqrt{(2)^{2}+(-7)^{2}+(-3)^{2}}=\sqrt{4+49+9}=\sqrt{62}$
$|\vec{c}|=\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(-\frac{1}{\sqrt{3}}\right)^{2}}=\sqrt{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=1$

Question 2:

Write two different vectors having same magnitude.

Solution:

Let $\vec{a}=(i-\hat{2} j+\hat{3} k)$ and $\vec{b}=(\hat{2} i+j-\hat{3} k)$
$|\vec{a}|=\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$
$|\vec{b}|=\sqrt{2^{2}+1^{2}+(-3)^{2}}=\sqrt{4+1+9}=\sqrt{14}$

But $a \neq b$

Question 3:

Write two different vectors having same direction.

Solution:

Let $\stackrel{\stackrel{\rightharpoonup}{p}}{p}=(\vec{i}+\vec{j}+\vec{k})$ and $\vec{q}=(2 \vec{i}+2 \vec{j}+2 k)$

$$
\begin{aligned}
& l=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}} \\
& m=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}} \\
& n=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

The DCs of q are

$$
\begin{aligned}
& l=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}} \\
& m=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}} \\
& n=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}
\end{aligned}
$$

But $\stackrel{\stackrel{\rightharpoonup}{p}}{p} \neq q$

Question 4:

Find the values of x and y so that the vectors $2 i+3 j$ and $x i+y j$ are equal.

Solution:

It is given that the vectors $2 \dot{i}+3 \vec{j}$ and $x \dot{i}+y \vec{j}$ are equal.
Therefore,

$$
2 \vec{i}+3 \vec{j}=x \dot{i}+y \dot{j}
$$

On comparing the components of both sides

$$
\begin{aligned}
& \Rightarrow x=2 \\
& \Rightarrow y=3
\end{aligned}
$$

Question 5:

Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point $(-5,7)$.

Solution:

Let the points be $P(2,1)$ and $Q(-5,7)$

$$
\begin{aligned}
\stackrel{\text { U山 }}{P Q} & =(-5-2) \dot{i}+(7-1) j \\
& =-7 \vec{i}+6 \vec{j}
\end{aligned}
$$

So, the scalar components are -7 and 6 , and the vector components are $-7 \dot{i}$ and $6 \dot{j}$.

Question 6:

Find the sum of the vectors $\vec{a} \hat{=} i-\hat{2} j \hat{+} k, \vec{b}=-\hat{2} i-\hat{4} j+\hat{5} k$ and $\vec{c} \hat{=} i-\hat{6} j+\hat{7} k$

Solution:

The given vectors are $\overrightarrow{a=i} \hat{2} \hat{j}+\hat{+}, \vec{b}=-\hat{2} i-\hat{4} j+\hat{5} k$ and $\overrightarrow{c=i}-\hat{6} j+\hat{7} k$.
Therefore,

$$
\begin{aligned}
\overrightarrow{a+b}+\vec{c} & =(1-2+1 \hat{)} i+(-2+4-6) \hat{j} j+(1+5-7) \hat{)} k \\
& =\hat{0} i-\hat{4} \hat{j-k} \\
& =\hat{4} \hat{j-k}
\end{aligned}
$$

Question 7:

Solution:

We have $\overrightarrow{a=\hat{i+j}+\hat{2} k}$
Hence,

$$
\begin{aligned}
|\vec{a}| & =\sqrt{1^{2}+1^{2}+2^{2}} \\
& =\sqrt{1+1+4} \\
& =\sqrt{6}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
a & =\stackrel{\vec{a} \hat{\wedge}}{|\vec{a}|}=\frac{\hat{i+j} j+\hat{2} k}{\sqrt{6}} \\
& =\frac{1}{\sqrt{6}}^{\wedge} i+\frac{1^{\wedge}}{\sqrt{6}} j+\frac{2^{\wedge}}{\sqrt{6}} k
\end{aligned}
$$

Question 8:

Find the unit vector in the direction of vector $\stackrel{\Perp 4}{P Q}$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$ respectively.

Solution:

We have the given points $P(1,2,3)$ and $Q(4,5,6)$
Hence,

$$
\begin{aligned}
& \stackrel{4 \vec{P}}{P Q}=(4-1) i+(5-2) j+(6-3) \hat{k} \\
& =\hat{3} i+\hat{3} j+\hat{3} k \\
& |\overrightarrow{P Q}|=\sqrt{3^{2}+3^{2}+3^{2}} \\
& =\sqrt{9+9+9} \\
& =\sqrt{27} \\
& =3 \sqrt{3}
\end{aligned}
$$

So, unit vector is

$$
\begin{aligned}
& \underset{|\overrightarrow{P Q}|}{\stackrel{H}{P O}}=\frac{\hat{B}+\hat{3} j+\hat{3} k}{3 \sqrt{3}} \\
& =\frac{1^{\wedge}}{\sqrt{3}} i+\frac{1^{\wedge}}{\sqrt{3}} j+\frac{1^{\wedge}}{\sqrt{3}} k
\end{aligned}
$$

Question 9:

For given vectors, $\vec{a}=\hat{2} i \hat{-j}+\hat{2 k}$ and $\overrightarrow{b=\hat{-i+j-k}}$, find the unit vector in the direction of the vector $a+b$.

Solution:

The given vectors are $\vec{a}=\hat{2 i-j}+\hat{2} k$ and $\overrightarrow{b=} \hat{-i+\hat{j-k}}$
Therefore,

$$
\begin{aligned}
\overrightarrow{a+\vec{b}} & =(2-1) \hat{i} i+(-1+1) \hat{j}+(2-1) \hat{k} \\
& =\hat{1} i+\hat{0} j+\hat{1} k \\
& \hat{=} \hat{i}+k \\
|\vec{a}+\vec{b}| & =\sqrt{1^{2}+1^{2}}=\sqrt{2}
\end{aligned}
$$

Thus, unit vector is

$$
\begin{aligned}
\stackrel{\rightharpoonup}{a+b} \vec{b} & \hat{\wedge} \\
\overrightarrow{|a+b|} & \frac{i+k}{\sqrt{2}} \\
& =\frac{1^{\wedge}}{\sqrt{2}} i+\frac{1^{\wedge}}{\sqrt{2}} k
\end{aligned}
$$

Question 10:

Find a vector in the direction of vector $\hat{5 i} \hat{-j}+\hat{2} k$ which has magnitude 8 units.

Solution:

Let $\vec{a}=\hat{5} i \hat{-j}+\hat{2} k$

Hence,

$$
\begin{aligned}
\mid \overrightarrow{a \mid} & =\sqrt{5^{2}+(-1)^{2}+(2)^{2}} \\
& =\sqrt{25+1+4} \\
& =\sqrt{30}
\end{aligned}
$$

Therefore,

$$
a=\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{5 i-j}+\hat{2} k}{\sqrt{30}}
$$

Thus, a vector parallel to $\hat{5} \hat{i-j}+\hat{2} k$ with magnitude 8 units is

$$
\begin{aligned}
\hat{8} a & =8\left(\frac{\hat{5} i-\hat{-} j+2 \hat{2} k}{\sqrt{30}}\right) \\
& =\frac{40^{\wedge}}{\sqrt{30}} i-\frac{8^{\wedge}}{\sqrt{30}} j+\frac{16^{\wedge}}{\sqrt{30}} k
\end{aligned}
$$

Question 11:

Show that the vectors $\hat{2} i-\hat{3} j+\hat{4} k$ and $-\hat{4} i+\hat{6} j-\hat{8} k$ are collinear.

Solution:

We have $\vec{a}=\hat{2} i-\hat{3} j+\hat{4} k$ and $\vec{b}=-\hat{4} i+\hat{6} j-\hat{8} k$
Now,

$$
\begin{aligned}
\vec{b} & =-\hat{4} i+\hat{6} j-\hat{8} k \\
& =-2(\hat{2} i-\hat{3} j+\hat{4} k) \\
& =-2 \vec{a}
\end{aligned}
$$

Since, $b=\lambda a$

Therefore, $\lambda=-2$
So, the vectors are collinear.

Question 12:

Find the direction cosines of the vector $i+\hat{2} j+\hat{3} k$

Solution:

Let $\vec{a} \hat{=} i+\hat{2} j+\hat{3} k$
Therefore,

$$
\begin{aligned}
|\vec{a}| & =\sqrt{1^{2}+2^{2}+3^{2}} \\
& =\sqrt{1+4+9} \\
& =\sqrt{14}
\end{aligned}
$$

Thus, the DCs of a are $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$

Question 13:

Find the direction of the cosines of the vectors joining the points $A(1,2,-3)$ and $B(-1,-2,1)$ directions from A to B .

Solution:

The given points are $A(1,2,-3)$ and $B(-1,-2,1)$.
Therefore,

$$
\begin{aligned}
& \stackrel{\|}{d B}=(-1-1) i+(-2-2) j+\{1-(-3) \hat{\}} k \\
& =-\hat{2} i-\hat{4} j+\hat{4} k \\
& |\overrightarrow{A B}|=\sqrt{(-2)^{2}+(-4)^{2}+4^{2}} \\
& =\sqrt{4+16+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

Thus, the DCs of $\stackrel{山}{A B}$ are $\left(-\frac{2}{6},-\frac{4}{6}, \frac{4}{6}\right)=\left(-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)$

Question 14:

Show that the vector $\hat{i+j \hat{j+k}}$ is equally inclined to the axis OX, OY and OZ .

Solution:

Let $\hat{a} \hat{=} \hat{i+j} \hat{+} k$
Therefore,

$$
\begin{aligned}
|\vec{a}| & =\sqrt{1^{2}+1^{2}+1^{2}} \\
& =\sqrt{3}
\end{aligned}
$$

Thus, the DCs of a are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

Now, let α, β and γ be the angles formed by a with the positive directions of x, y and z axes respectively

Then,

$$
\cos \alpha=\frac{1}{\sqrt{3}}, \cos \beta=\frac{1}{\sqrt{3}}, \cos \gamma=\frac{1}{\sqrt{3}}
$$

Hence, the vector is equally inclined to OX, OY and OZ .

Question 15:

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $i+\hat{2} \hat{j-k}$ and $\hat{-i+j \hat{j}+k}$ respectively, in the ratio 2:1.
(i) Internally
(ii) Externally

Solution:

Position vectors of P and Q are given as:

$$
\boldsymbol{U}^{O P}=i+\hat{2} \hat{j-k} \text { and } \boldsymbol{O Q}=\hat{-i} \hat{+j+k}
$$

(i) The position vector of R which divides the line joining two points P and Q internally in the ratio $2: 1$ is

$$
\begin{aligned}
\underset{O R}{\text { ПR }} & =\frac{2(\hat{-i} \hat{+} j \hat{+} k)+1(i+\hat{2} j \hat{-k})}{2+1} \\
& =\frac{(-\hat{2} i+\hat{2} j+\hat{2} k)+(i+\hat{2} j \hat{-k})}{3} \\
& =\frac{\hat{-i} i+\hat{4} j \hat{+k}}{3} \\
& =-\frac{r}{3} i+\frac{4}{3} j+\frac{r}{3} k
\end{aligned}
$$

(ii) The position vector of R which divides the line joining two points P and Q externally in the ratio $2: 1$ is

$$
\begin{aligned}
\| \mathbb{\| R} & =\frac{2(\hat{-i+\hat{j} j+k)-1(i+\hat{2} j \hat{-k})}}{2-1} \\
& =\frac{(-\hat{2} i+\hat{2} j+\hat{2} k)-(i+\hat{2} \hat{j-k})}{1} \\
& =-\hat{3} i+\hat{3} k
\end{aligned}
$$

Question 16:

Find the position vector of the mid-point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.

Solution:

The position vector of the mid-point R is

$$
\begin{aligned}
& \underset{O R}{\longrightarrow}=\frac{(\hat{2} i+\hat{3} j+\hat{4} k)+(\hat{4} i+\hat{j}-\hat{2} k)}{2} \\
&=\frac{(2+4)}{2} i+(3+1) j+(4-2) \hat{c} k \\
& 2 \\
&=\frac{\hat{6} i+\hat{4} j+\hat{2} k}{2} \\
&=\hat{3} i+\hat{2} j \hat{+} k
\end{aligned}
$$

Question 17:

Show that the points A, B and C with position vectors, $\vec{a}=\hat{3} i-\hat{4} j-\hat{4} k, \vec{b}=\hat{2} i \hat{-j+k}$ and $\vec{c} \hat{=} i-\hat{3} j-\hat{5} k$, respectively form the vertices of a right angled triangle.

Solution:

Position vectors of points A, B, and C are respectively given as:

$$
\vec{a}=\hat{3} i-\hat{4} j-\hat{4} k, \vec{b}=\hat{2} i \hat{-j+} \hat{+} k \text { and } \hat{c=i} \hat{i} \hat{3} j-\hat{5} k
$$

Therefore,

$$
\begin{aligned}
山 \overrightarrow{A B} & =\vec{b}-\vec{a}=(2-3) \hat{i}+(-1+4) \hat{j} j+(1+4) k \\
& =\hat{-} i+\hat{3} j+\hat{5} k \\
\overrightarrow{B C} & =\vec{c}-\vec{b}=(1-2) \hat{i}+(-3+1) j+(-5-1) \hat{k} \\
& =\hat{-i}+\hat{2} j-\hat{6} k \\
\overrightarrow{C H} & =\vec{a}-\vec{c}=(3-1) \hat{i}+(-4+3) \hat{j}+(-4+5) k \\
& =\hat{2} i-\hat{j} j+k
\end{aligned}
$$

Now,

$$
\begin{aligned}
& |\overrightarrow{\| B}|^{2}=(-1)^{2}+3^{2}+5^{2}=1+9+25=35 \\
& |\overrightarrow{\|}|^{2}=(-1)^{2}+(-2)^{2}+(-6)^{2}=1+4+36=41 \\
& |\overrightarrow{C A}|^{2}=2^{2}+(-1)^{2}+1^{2}=4+1+1=6
\end{aligned}
$$

Also,

$$
\begin{aligned}
|\overrightarrow{A B}|^{2}+|\overrightarrow{C A}|^{2} & =35+6 \\
& =41 \\
& =|\overrightarrow{B C}|
\end{aligned}
$$

Thus, ABC is a right-angled triangle.

Question 18:

In triangle ABC which of the following is not true.

(A) $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}=0$
(B) $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=0$

Solution：

On applying the triangle law of addition in the given triangle，we have：

$$
\begin{align*}
& \Rightarrow \stackrel{山 己}{A B}+\overrightarrow{B C}=\overrightarrow{A C} \tag{1}\\
& \begin{aligned}
&\|\overrightarrow{A B}+\| \overrightarrow{B C}=-\boldsymbol{\| H} \\
& \Rightarrow \\
& \Rightarrow A B+B C+C A=0
\end{aligned} \tag{2}
\end{align*}
$$

Hence，the equation given in option A is true．

Now，from equation（2）

$$
\begin{aligned}
& \Rightarrow \stackrel{\square}{A B}+\stackrel{\Perp}{B C}+\stackrel{\rightharpoonup}{C A}=0 \\
& \Rightarrow \stackrel{\| B}{A B}+\overrightarrow{B C}-\overrightarrow{A C}=0
\end{aligned}
$$

Hence，the equation given in option B is true．
Also，

$$
\begin{aligned}
& \Rightarrow \stackrel{\rightharpoonup}{A B}+\stackrel{\|}{B C}+\stackrel{\|}{C A}=0 \\
& \Rightarrow \overrightarrow{A B}-C B+C A=0
\end{aligned}
$$

Hence，the equation given in option D is true
Now，consider the equation given in option C，

$$
\begin{align*}
& \overrightarrow{A B}+\overrightarrow{B C}-\stackrel{\omega}{C A}=0 \\
& \Rightarrow \stackrel{\square B}{A B}+\overrightarrow{B C}=\underset{C A}{\|} \tag{3}
\end{align*}
$$

From equations（1）and（2）

$$
\begin{aligned}
& \Rightarrow A C=C A \\
& \Rightarrow A C=-A C \\
& \Rightarrow \| \overrightarrow{A C}+A C=0 \\
& \Rightarrow 2 \overrightarrow{A C}=0 \\
& \Rightarrow A \overrightarrow{A C}=0
\end{aligned}
$$

Which is not true. So, the equation given in option C is incorrect.
Thus, the correct option is C.

Question 19:

If a and b are two collinear vectors, then which of the following are incorrect?
(A) $b=\lambda a$, for some scalar λ
(B) $a= \pm b$
(C) the respective components of a and b are proportional.
(D) both the vectors a and b have same direction, but different magnitudes

Solution:

If a and b are collinear vectors, they are parallel.

Therefore, for some scalar λ

$$
b=\lambda a
$$

If $\lambda= \pm 1$, then $a= \pm b$

$$
\text { If } \vec{a}=\hat{a_{1} i}+\hat{a_{2} j}+\hat{a_{3} k} \text { and } \vec{b}=\hat{b_{1}} i+\hat{b_{2} j}+\hat{b_{3} k}
$$

Then,

$$
\begin{aligned}
& \Rightarrow b^{\prime}=\lambda \dot{a} \\
& \Rightarrow \hat{b_{1}} i+\hat{b_{2}} j+\hat{b_{3}} k=\lambda\left(\hat{a_{1}} i+\hat{a_{2}} j+\hat{a_{3}} k\right) \\
& \Rightarrow \hat{b_{1}} i+\hat{b_{2}} j+\hat{b_{3}} k=\left(\lambda a_{1}\right) i+\left(\lambda a_{2}\right) \hat{j}+\left(\lambda a_{3}\right) k
\end{aligned}
$$

Comparing the components of both the sides

$$
\begin{aligned}
& \Rightarrow \overrightarrow{b_{1}}=\lambda a_{1} \\
& \overrightarrow{\overrightarrow{b_{2}}}=\lambda a_{2} \\
& \Rightarrow \overrightarrow{b_{3}}=\lambda a_{3}
\end{aligned}
$$

Therefore,

$$
\frac{b_{1}}{a_{1}}=\frac{b_{2}}{a_{2}}=\frac{b_{3}}{a_{3}}=\lambda
$$

Thus, the respective components of a and b are proportional.

However, a and b may have different directions.
Hence, that statement given in D is incorrect.
Thus, the correct option is D.

EXERCISE 10.3

Question 1:

Find the angle between two vectors \vec{a} and \vec{b} with magnitude $\sqrt{3}$ and 2, respectively have a. $\because=\sqrt{6}$

Solution:

It is given that

$$
\begin{aligned}
& \mid \vec{a}=\sqrt{3} \\
& \mid \vec{b}=2 \\
& \overrightarrow{a \cdot b}=\sqrt{6}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \Rightarrow \sqrt{6}=\sqrt{3} \times 2 \cos \theta \\
& \Rightarrow \cos \theta=\frac{\sqrt{6}}{\sqrt{3} \times 2} \\
& \Rightarrow \cos \theta=\frac{1}{\sqrt{2}} \\
& \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

Question 2:

Find the angle between the vectors $i-\hat{2} j+\hat{3} k$ and $\hat{3} i-\hat{2} j \hat{j+k}$.

Solution:

Let $\overrightarrow{a=i}-\hat{2} j+\hat{3} k$ and $\vec{b}=\hat{3} i-\hat{2} j \hat{+} k$.
Hence,

$$
\begin{aligned}
|\vec{a}| & =\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14} \\
|\vec{b}| & =\sqrt{3^{2}+(-2)^{2}+1^{2}}=\sqrt{9+4+1}=\sqrt{14} \\
\overrightarrow{a \cdot b} & =(i-\hat{2} j+\hat{3} k)(\hat{3} i-\hat{2} j \hat{+k}) \\
& =1 \times 3+(-2)(-2)+3 \times 1 \\
& =3+4+3 \\
& =10
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \Rightarrow 10=\sqrt{14} \sqrt{14} \cos \theta \\
& \Rightarrow \cos \theta=\frac{10}{14} \\
& \Rightarrow \theta=\cos ^{-1}\left(\frac{5}{7}\right)
\end{aligned}
$$

Question 3:

Find the projection of the vector $\hat{i-j}$ on the vector $\hat{i+j}$

Solution:

Let $\vec{a} \hat{=} \hat{i-j}$ and $\vec{b} \hat{=} \hat{i+j}$

Projection of a on b is

$$
\begin{aligned}
\frac{1}{|\vec{b}|}(\overrightarrow{a \cdot b}) & =\frac{1}{\sqrt{1+1}}\{(1)(1)+(-1) 1\} \\
& =\frac{1}{\sqrt{2}}(1-1) \\
& =0
\end{aligned}
$$

Question 4:

Find the projection of vector $i+\hat{3} j+\hat{7} k$ on the vector $\hat{7} \hat{-j}+\hat{8} k$

Solution:

Let $\vec{a} \hat{=} i+\hat{3} j+\hat{7} k$ and $\vec{b}=\hat{7} i-\hat{j}+\hat{8} k$

Projection of a on b is

$$
\begin{aligned}
\overrightarrow{|b|}(\overrightarrow{a \cdot b}) & =\frac{1}{\sqrt{7^{2}+(-1)^{2}+8^{2}}}\{(1)(7)+3(-1)+7(8)\} \\
& =\frac{1}{\sqrt{49+1+64}}(7-3+56) \\
& =\frac{60}{\sqrt{114}}
\end{aligned}
$$

Question 5:

Show that each of the given three vectors is a unit vector which are manually perpendicular to each other.
$\frac{1}{7}(\hat{2} i+\hat{3} j+\hat{6} k), \frac{1}{7}(\hat{3} i-\hat{6} j+\hat{2} k), \frac{1}{7}(\hat{6} i+\hat{2} j-\hat{3} k)$

Solution:

Let

$$
\begin{aligned}
& \vec{a}=\frac{1}{7}(\hat{2} i+\hat{3} j+\hat{6} k)=\frac{2}{7} i+\frac{3}{7} j+\frac{6}{7} k \\
& \vec{b}=\frac{1}{7}(\hat{3} i-\hat{6} j+\hat{2} k)=\frac{3}{7} i-\frac{6}{7} j+\frac{2}{7} k \\
& \vec{c}=\frac{1}{7}(\hat{6} i+\hat{2} j-\hat{3} k)=\frac{6}{7} i+\frac{2}{7} j-\frac{3}{7} k
\end{aligned}
$$

Now,

$$
\begin{aligned}
& |\vec{a}|=\sqrt{\left(\frac{2}{7}\right)^{2}+\left(\frac{3}{7}\right)^{2}+\left(\frac{6}{7}\right)^{2}}=\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}=1 \\
& |\vec{b}|=\sqrt{\left(\frac{3}{7}\right)^{2}+\left(-\frac{6}{7}\right)^{2}+\left(\frac{2}{7}\right)^{2}}=\sqrt{\frac{9}{49}+\frac{36}{49}+\frac{4}{49}}=1 \\
& |\vec{c}|=\sqrt{\left(\frac{6}{7}\right)^{2}+\left(\frac{2}{7}\right)^{2}+\left(-\frac{3}{7}\right)^{2}}=\sqrt{\frac{36}{49}+\frac{4}{49}+\frac{9}{49}}=1
\end{aligned}
$$

So, each of the vector is a unit vector.
Hence,

$$
\begin{aligned}
& \overrightarrow{a \cdot b}=\frac{2}{7} \times \frac{3}{7}+\frac{3}{7} \times\left(-\frac{6}{7}\right)+\frac{6}{7} \times \frac{2}{7}=\frac{6}{49}-\frac{18}{49}+\frac{12}{49}=0 \\
& \overrightarrow{b . c}=\frac{3}{7} \times \frac{6}{7}+\frac{2}{7} \times\left(-\frac{6}{7}\right)+\left(-\frac{3}{7}\right) \times \frac{2}{7}=\frac{18}{49}-\frac{12}{49}-\frac{6}{49}=0 \\
& \overrightarrow{c \cdot a}=\frac{2}{7} \times \frac{6}{7}+\frac{3}{7} \times \frac{2}{7}+\frac{6}{7} \times\left(-\frac{3}{7}\right)=\frac{12}{49}+\frac{6}{49}+\frac{18}{49}=0
\end{aligned}
$$

So, the vectors are mutually perpendicular to each other.

Question 6:

Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b})(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

Solution:

It is given that $(\vec{a}+\vec{b})(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$
Therefore,

$$
\begin{aligned}
& \Rightarrow(\vec{a}+\vec{b})(\vec{a}-\vec{b})=8 \\
& \Rightarrow \overrightarrow{a \cdot a}-\overrightarrow{a b}+\overrightarrow{b a}-\overrightarrow{b b}=8 \\
& \Rightarrow\left|\overrightarrow{\left.a\right|^{2}}-|\vec{b}|^{2}=8\right. \\
& \Rightarrow\left(8|\vec{b}|^{2}-|\vec{b}|^{2}=8\right. \\
& \Rightarrow 64|\vec{b}|^{2}-|\vec{b}|^{2}=8 \\
& \Rightarrow 63|\vec{b}|^{2}=9 \\
& \Rightarrow|\vec{b}|^{2}=\frac{8}{63} \\
& \Rightarrow \left\lvert\, \vec{b}=\sqrt{\frac{8}{63}}\right. \\
& \Rightarrow \left\lvert\, \vec{b}=\frac{2 \sqrt{2}}{3 \sqrt{7}}\right.
\end{aligned}
$$

Now,

$$
\begin{aligned}
|\vec{a}| & =8|\vec{b}| \\
& =\frac{8 \times 2 \sqrt{2}}{3 \sqrt{7}} \\
& =\frac{16 \sqrt{2}}{3 \sqrt{7}}
\end{aligned}
$$

Question 7:

Evaluate the product $(3 \vec{a}-5 \vec{b})(2 \vec{a}+7 \vec{b})$

Solution:

$$
\begin{aligned}
(3 \vec{a}-5 \vec{b})(2 \vec{a}+7 \vec{b}) & =3 \vec{a} \cdot 2 \vec{a}+3 \vec{a} \cdot 7 \vec{b}-5 \vec{b} \cdot 2 \vec{a}-5 \vec{b} \cdot 7 \vec{b} \\
& =6 \overrightarrow{a a}+21 \overrightarrow{a b}-10 \overrightarrow{a b}-35 \vec{b} \vec{b} \\
& =6|\vec{a}|^{2}+11 \overrightarrow{a b}-35|\vec{b}|^{2}
\end{aligned}
$$

Question 8:

Find the magnitude of two vectors a and b, having the same magnitude and such that angle between them is 60° and their scalar product is $\frac{1}{2}$

Solution:

Let θ be the angle between a and b
It is given that $|\vec{a}|=|\vec{b}|, \overrightarrow{a \cdot b}=\frac{1}{2}$ and $\theta=60^{\circ}$
Therefore,

$$
\begin{aligned}
& \left.\Rightarrow \frac{1}{2}=|\vec{a}| \vec{b} \right\rvert\, \cos 60^{\circ} \\
& \Rightarrow \frac{1}{2}=|\vec{a}|^{2} \times \frac{1}{2} \\
& \Rightarrow|\vec{a}|^{2}=1 \\
& \Rightarrow|\vec{a}|=|\vec{b}|=1
\end{aligned}
$$

Question 9:

Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$
Solution:
$\Rightarrow \xrightarrow[\rightarrow \rightarrow \rightarrow]{(\vec{x}-a)} \cdot(\vec{x}+\vec{a})=12$
$\Rightarrow x . x+x \cdot a-a x-a a=12$
$\Rightarrow|\vec{x}|^{2}-|\vec{a}|^{2}=12$
$\Rightarrow|\vec{x}|^{2}-1=12$
$\Rightarrow|\vec{x}|^{2}=13$
$\Rightarrow|\vec{x}|=\sqrt{13}$

Question 10:

If $\vec{a}=\hat{2} i+\hat{2} j+\hat{3} k, \vec{b}=\hat{-i}+\hat{2} j \hat{+} k$ and $\vec{c}=\hat{3 i} \hat{+} j$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.

Solution:

We have $\vec{a}=\hat{2} i+\hat{2} j+\hat{3} k, \vec{b}=\hat{-} i+\hat{2} j \hat{+} k$ and $\vec{c}=\hat{3 i} i+j$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to c

Then,

$$
\begin{aligned}
\vec{a}+\lambda \vec{b} & =(\hat{2} i+\hat{2} j+\hat{3} k)+\lambda(\hat{-} i+\hat{2} j \hat{+} k) \\
& =(2-\lambda \hat{)} i+(2+2 \lambda) j+(3+\lambda \hat{)} k
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \Rightarrow(\vec{a}+\lambda \vec{b}) \cdot \vec{c}=0 \\
& \Rightarrow[(2-\lambda) i+(2+2 \lambda) \hat{j}+(3+\lambda) k] \cdot(\hat{3} i \hat{+} j)=0 \\
& \Rightarrow 3(2-\lambda)+(2+2 \lambda)+0(3+\lambda)=0 \\
& \Rightarrow 6-3 \lambda+2+2 \lambda=0 \\
& \Rightarrow-\lambda+8=0 \\
& \Rightarrow \lambda=8
\end{aligned}
$$

Question 11:

Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any non-zero vectors \vec{a} and $\stackrel{\rightharpoonup}{b}$.

Solution:

$$
\begin{aligned}
(|\vec{a}| \vec{b}+|\vec{b}| \vec{a}) \cdot(|\vec{a}| \vec{b}-|\vec{b}| \vec{a}) & =\left|\overrightarrow{\left.a\right|^{2}} \overrightarrow{b \cdot b}-|\vec{a}| \vec{b} \vec{b} \cdot \vec{a}+|\vec{b}|\right| \vec{a}\left|\overrightarrow{a \cdot b}-|\vec{b}|^{2} \overrightarrow{a \cdot a}\right. \\
& =\left.\left|\overrightarrow{\left.a\right|^{2}}\right| \vec{b}\right|^{2}-\left.\left|\overrightarrow{\left.b\right|^{2}}\right| \vec{a}\right|^{2} \\
& =0
\end{aligned}
$$

Question 12:

If $a a=0$ and $a \cdot b=0$, then what can be concluded above the vector b ?

Solution:

We have $a \cdot a=0$ and $a \cdot b=0$

Hence,

$$
\begin{aligned}
& \Rightarrow|\vec{a}|^{2}=0 \\
& \Rightarrow|\vec{a}|=0
\end{aligned}
$$

Therefore, a is the zero vector

Thus, any vector b can satisfy $a \cdot b=0$

Question 13:

If $\overrightarrow{a, b, c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, find the value of $\overrightarrow{a \cdot b}+\vec{b} \cdot \bar{c}+\vec{c} \cdot \vec{a}$.

Solution:

We have $\overrightarrow{a, b, c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$
Therefore,

$$
\begin{aligned}
|\vec{a}+\vec{b}+\vec{c}|^{2} & =(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c}) \\
0 & =\left|\overrightarrow{\left.a\right|^{2}}+|\vec{b}|^{2}+\right| \overrightarrow{\left.c\right|^{2}}+2(\overrightarrow{a \cdot b}+\overrightarrow{b \cdot c}+\overrightarrow{c \cdot a}) \\
0 & =1+1+1+2(\overrightarrow{a \cdot b}+\overrightarrow{b \cdot c}+\overrightarrow{c \cdot a}) \\
(\overrightarrow{a \cdot b}+\overrightarrow{b \cdot c}+\overrightarrow{c \cdot a}) & =\frac{-3}{2}
\end{aligned}
$$

Question 14:

If either vector $a^{\prime}=0$ or $b^{\prime}=0$, then $a \cdot b=0$. But the converse need not be true. Justify the answer with an example.

Solution:

Let $\vec{a}=\hat{2} i+\hat{4} j+\hat{3} k$ and $\vec{b}=\hat{3} i+\hat{3} j-\hat{6} k$
Therefore,

$$
\begin{aligned}
a . \bar{b} & =2(3)+4(3)+3(-6) \\
& =6+12-18 \\
& =0
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mid \vec{a} & =\sqrt{2^{2}+4^{2}+3^{2}}=\sqrt{29} \\
& \Rightarrow \vec{a} \neq 0 \\
\mid \vec{b} & =\sqrt{3^{2}+3^{2}+(-6)^{2}}=\sqrt{54} \\
& \Rightarrow \vec{b} \neq 0
\end{aligned}
$$

So, the converse of the statement need not to be true.

Question 15:

If the vertices A, B, C of a triangle $A B C$ are $(1,2,3),(-1,0,0),(0,1,2)$ respectively, then find $\angle A B C$. [$\angle A B C$ is the angle between the vectors $\stackrel{\boxed{14}}{B A}$ and $\frac{\boxed{\bullet}}{B C}$]

Solution:

Vertices of the triangle are $A(1,2,3), B(-1,0,0)$ and $C(0,1,2)$.

Hence,

$$
\begin{aligned}
& \stackrel{\llcorner }{B A}=\{1-(1) \hat{\}} i+(2-0) \hat{j}+(3-0) k \\
& =\hat{2} i+\hat{2} j+\hat{3} k \\
& \stackrel{\| \longrightarrow}{\boldsymbol{\| C}}=\{0-(-1)\} i+(1-0) j+(2-0) \hat{k} \\
& \hat{=} \hat{i}+\hat{j}+\hat{2} k \\
& \xrightarrow[B A \cdot B C]{\|}=(\hat{2} i+\hat{2} j+\hat{3} k)(\hat{i+j}+\hat{2} k) \\
& =2 \times 1+2 \times 1+3 \times 2 \\
& =2+2+6 \\
& =10 \\
& |\overrightarrow{B A}|=\sqrt{2^{2}+2^{2}+3^{2}} \\
& =\sqrt{4+4+9} \\
& =\sqrt{17} \\
& |\overrightarrow{B C}|=\sqrt{1+1+2^{2}} \\
& \begin{array}{l}
=\sqrt{6} \\
\rightarrow \text { 相 }
\end{array}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \Rightarrow 10=\sqrt{17} \times \sqrt{6}(\cos \angle A B C) \\
& \Rightarrow \cos (\angle A B C)=\frac{10}{\sqrt{17} \times \sqrt{6}} \\
& \Rightarrow(\angle A B C)=\cos ^{-1}\left(\frac{10}{\sqrt{102}}\right)
\end{aligned}
$$

Question 16:

Show that the points $A(1,2,7), B(2,6,3)$ and $C(3,10-1)$ are collinear.

Solution:

The given points are $A(1,2,7), B(2,6,3)$ and $C(3,10-1)$.
Hence,

$$
\begin{aligned}
& \stackrel{山}{A B}=(2-1) \hat{i}+(6-2) j+(3-7) \hat{k} \hat{=} i+\hat{4} j-\hat{4} k \\
& \xrightarrow[B C]{\|}=(3-2) \hat{i}+(10-6) \hat{j}+(-1-3) \hat{k} \hat{=} \hat{i}+\hat{4} j-\hat{4} k \\
& \xrightarrow[A C]{\longrightarrow}=(3-1) i+(10-2 \hat{)} j+(-1-7) \hat{)} k=\hat{2} i+\hat{8} j-\hat{8} k \\
& |\overrightarrow{A B}|=\sqrt{1^{2}+4^{2}+(-4)^{2}}=\sqrt{1+16+16}=\sqrt{33} \\
& |\overrightarrow{B C}|=\sqrt{1^{2}+4^{2}+(-4)^{2}}=\sqrt{1+16+16}=\sqrt{33} \\
& |\overrightarrow{A C}|=\sqrt{2^{2}+8^{2}+8^{2}}=\sqrt{4+64+64}=2 \sqrt{33}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
|\overrightarrow{A B}|+|\overrightarrow{B C}| & =\sqrt{33}+\sqrt{33} \\
& =2 \sqrt{33} \\
& =|\overrightarrow{A C}|
\end{aligned}
$$

Hence, the points are collinear.

Question 17:

Show that the vectors $\hat{2} i \hat{-j+k}, i-\hat{3} j-\hat{5} k$ and $\hat{3} i-\hat{4} j-\hat{4} k$ form the vertices of a right angled triangle.

Solution:

Hence,

$$
\begin{aligned}
& \overrightarrow{A B}=(1-2) \hat{i}+(-3+1) j+(-5-1) k=\hat{-i} i-\hat{2} j-\hat{6} k \\
& \overrightarrow{B C}=(3-1) i+(-4+3) j+(-4+5) k=\hat{2} i-\hat{i} \hat{j}+k \\
& \overrightarrow{A C}=(2-3) i+(-1+4) \hat{j}+(1+4) k=\hat{-} \hat{i}+\hat{3} j+\hat{5} k \\
& \mid \overrightarrow{A B}=\sqrt{(-1)^{2}+(-2)^{2}+(-6)^{2}}=\sqrt{1+4+36}=\sqrt{41} \\
& |\overrightarrow{B C}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{4+1+1}=\sqrt{6} \\
& \mid \overrightarrow{A C}=\sqrt{(-1)^{2}+3^{2}+5^{2}}=\sqrt{1+9+25}=\sqrt{35}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
|\overrightarrow{B C}|^{2}+|\overrightarrow{A C}|^{2} & =6+35 \\
& =41 \\
& =|\overrightarrow{A B}|^{2}
\end{aligned}
$$

Thus, $\triangle A B C$ is a right-angled triangle.

Question 18:
If a is a nonzero vector of magnitude ' a ' and λ a nonzero scalar, then λa ' is a unit vector if
(A) $\lambda=1$
(B) $\lambda=-1$
(C) $a=|\lambda|$
(D) $a=\frac{1}{|\lambda|}$

Solution:
$\Rightarrow|\lambda \vec{a}|=1$
$\Rightarrow|\lambda||\vec{a}|=1$
$\Rightarrow|\vec{a}|=\frac{1}{|\lambda|}$
$\Rightarrow a=\frac{1}{|\lambda|}$
Hence the correct option is D.

EXERCISE 10.4

Question 1:

Solution:

We have, $\overrightarrow{a=i} i-\hat{7} j+\hat{7} k$ and $\vec{b}=\hat{3} i-\hat{2} j+\hat{2} k$
Hence,

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
i & \hat{j} & \hat{k} \\
1 & -7 & 7 \\
3 & -2 & 2
\end{array}\right| \\
& =\hat{i}(-14+14) \hat{-j}(2-21) \hat{+} k(-2+21) \\
& =\hat{1} \hat{j}+\hat{9} k
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
|\overrightarrow{a \times b}| & =\sqrt{(19)^{2}+(19)^{2}} \\
& =\sqrt{2 \times(19)^{2}} \\
& =19 \sqrt{2}
\end{aligned}
$$

Question 2:

Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=\hat{3} i+\hat{2} j+\hat{2} k$ and $\vec{b} \hat{=} i+\hat{2} j-\hat{2} k$.

Solution:

We have $\vec{a}=\hat{3} i+\hat{2} j+\hat{2} k$ and $\vec{b} \hat{i} i+\hat{2} j-\hat{2} k$.
Hence,

$$
\begin{aligned}
& \vec{a}+\vec{b}=\hat{4} i+\hat{4} j \\
& \vec{a}-\vec{b}=\hat{2} i+\hat{4} k
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& (\overrightarrow{a+b}) \times(\overrightarrow{a-b})=\left|\begin{array}{ccc}
i & { }_{j} & k \\
4 & 4 & 0 \\
2 & 0 & 4
\end{array}\right| \\
& \hat{=} i(16) \hat{-j}(16) \hat{+} k(-8) \\
& =1 \hat{6} i-1 \hat{6} j-\hat{8} k \\
& |(\overrightarrow{a+b}) \times(\overrightarrow{a-b})|=\sqrt{16^{2}+(-16)^{2}+(-8)^{2}}=\sqrt{2^{2} \times 8^{2}+2^{2} \times 8^{2}+8^{2}} \\
& =8 \sqrt{2^{2}+2^{2}+1}=8 \sqrt{9} \\
& =8 \times 3=24
\end{aligned}
$$

So, the unit vector is

$$
\begin{aligned}
\pm \frac{(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})}{|(\vec{a}+\vec{b}) \times(\overrightarrow{a-b})|} & = \pm \frac{1 \hat{6} i-1 \hat{6} j-\hat{8} k}{24} \\
& = \pm \frac{\hat{2} i-\hat{2} j \hat{-k}}{3} \\
& = \pm \frac{2}{3} i \mp \frac{2}{3} j \mp \frac{r}{3} k
\end{aligned}
$$

Question 3:

If a unit vector \dot{a} makes an angle $\frac{\pi}{3}$ with $i, \frac{\pi}{4}$ with j and an acute angle θ with k, then find θ and hence, the components of a.

Solution:

Let the unit vector $\vec{a}=\hat{a_{1}} i+\hat{a_{2}} j+\hat{a_{3}} k$
Then, $|\vec{a}|=1$
Now,

$$
\begin{aligned}
& \cos \frac{\pi}{3}=\frac{a_{1}}{|a|} \Rightarrow a_{1}=\frac{1}{2} \\
& \cos \frac{\pi}{4}=\frac{a_{2}}{|a|} \Rightarrow a_{2}=\frac{1}{\sqrt{2}} \\
& \cos \theta=\frac{a_{3}}{|a|} \Rightarrow a_{3}=\cos \theta
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \Rightarrow \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}=1 \\
& \Rightarrow\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\cos ^{2} \theta=1 \\
& \Rightarrow \frac{1}{4}+\frac{1}{2}+\cos ^{2} \theta=1 \\
& \Rightarrow \frac{3}{4}+\cos ^{2} \theta=1 \\
& \Rightarrow \cos ^{2} \theta=1-\frac{3}{4}=\frac{1}{4} \\
& \Rightarrow \cos \theta=\frac{1}{2} \\
& \Rightarrow \theta=\frac{\pi}{3}
\end{aligned}
$$

Hence,

$$
a_{3}=\cos \frac{\pi}{3}=\frac{1}{2}
$$

So, $\theta=\frac{\pi}{3}$ and components of a are $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$

Question 4:

Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

Solution:

$$
\begin{aligned}
L H S & =(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b}) \\
& =(\vec{a}-\vec{b}) \times \vec{a}+(\vec{a}-\vec{b}) \times \vec{b} \\
& =\vec{a} \times \vec{a}-\vec{b} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{b} \\
& =0+\vec{a} \times \vec{b}+\vec{a} \times \vec{b}-0 \\
& =2 \vec{a} \times \vec{b} \\
& =R H S
\end{aligned}
$$

Question 5:

Find λ and μ if $(\hat{2} i+\hat{6} j+2 \hat{7} k) \times(i+\hat{\lambda} j+\hat{\mu} k)=0$

Solution:

We have $(\hat{2} i+\hat{6} j+2 \hat{7} k) \times(i+\hat{\lambda} j+\hat{\mu} k)=0$
Therefore,

$$
\begin{aligned}
& \Rightarrow(\hat{2} i+\hat{6} j+2 \hat{7} k) \times(i+\hat{\lambda} j+\hat{\mu} k)=0 \\
& \Rightarrow\left|\begin{array}{ccc}
i & \hat{j} & \hat{k} \\
2 & 6 & 27 \\
1 & \lambda & \mu
\end{array}\right|=\hat{0} i+\hat{0} j+\hat{0} k \\
& \Rightarrow \hat{i}(6 \mu-27 \lambda)-\hat{j}(2 \mu-27)+\hat{k}(2 \lambda-6)=\hat{0} i+\hat{0} j+\hat{0} k
\end{aligned}
$$

On comparing the corresponding components, we have:

$$
\begin{aligned}
& 6 \mu-27 \lambda=0 \\
& 2 \mu-27=0 \\
& 2 \lambda-6=0
\end{aligned}
$$

Now,

$$
\begin{aligned}
& 2 \lambda-6=0 \Rightarrow \lambda=3 \\
& 2 \mu-27=0 \Rightarrow \mu=\frac{27}{2}
\end{aligned}
$$

Question 6:

Given that $a \cdot b=0$ and $a \times \dot{b}=0$. What can you conclude about a and \dot{b} ?

Solution:

When $a . b=0$

Either $|\vec{a}|=0$ or $|\vec{b}|=0$
Or $\dot{a} \perp b \quad$ (if $|\vec{a}| \neq 0$ and $|\vec{b}| \neq 0$)

When $a \times b=0$

Either $|\vec{a}|=0$ or $|\vec{b}|=0$
Or $a^{\prime} \| \vec{b}$ (if $|\vec{a}| \neq 0$ and $|\vec{b}| \neq 0$)

Since, a and b cannot be perpendicular and parallel simultaneously.

So, $a=0$ or $b=0$.

Question 7:

Let the vectors $\hat{a, b, c}$ given as $\hat{a_{1} i}+\hat{a_{2} j}+\hat{a_{3} k}, \hat{b_{1}} i+\hat{b_{2}} \hat{j}+\hat{b_{3} k}, \hat{c_{1}} i+\hat{c_{2} j}+\hat{c_{3} k}$. Then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$.

Solution:

We have

$$
\begin{aligned}
& \vec{a}=\hat{a_{1}} i+\hat{a_{2}} j+\hat{a_{3}} k \\
& \vec{b}=\hat{b_{1}} i+\hat{b_{2}} j+\hat{b_{3}} k \\
& \vec{c}=\hat{c_{1}} i+\hat{c_{2}} j+\hat{c_{3} k}
\end{aligned}
$$

Then,

$$
(\vec{b}+\vec{c})=\left(b_{1}+c_{1}\right) \hat{i}+\left(b_{2}+c_{2}\right) \hat{j}+\left(b_{3}+c_{3}\right) \hat{k}
$$

Now,

$$
\begin{aligned}
\overrightarrow{a \times(\vec{b}+\vec{c})}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3}
\end{array}\right| & =\binom{i\left[a_{2}\left(b_{3}+c_{3}\right)-a_{3}\left(b_{2}+c_{2}\right)\right] \hat{-j}\left[a_{1}\left(b_{3}+c_{3}\right)-a_{3}\left(b_{1}+c_{1}\right)\right]}{\hat{+k\left[a_{1}\left(b_{2}+c_{2}\right)-a_{2}\left(b_{1}+c_{1}\right)\right]}} \\
& =\binom{i\left[a_{2} b_{3}+a_{2} c_{3}-a_{3} b_{2}-a_{3} c_{2}\right] \hat{+j}\left[-a_{1} b_{3}-a_{1} c_{3}+a_{3} b_{1}+a_{3} c_{1}\right]}{\left.\hat{+k} k a_{1} b_{2}+a_{1} c_{2}-a_{2} b_{1}-a_{2} c_{1}\right]}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
i & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& \hat{=} i\left[a_{2} b_{3}-a_{3} b_{2}\right] \hat{+j}\left[a_{3} b_{1}-a_{1} b_{3}\right] \hat{+k}\left[a_{2} b_{2}-a_{2} b_{1}\right] \\
& \vec{a} \times \vec{c} \\
&=\left|\begin{array}{ccc}
i & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& \hat{=} i\left[a_{2} c_{3}-a_{3} c_{2}\right] \hat{+}\left[a_{3} c_{1}-a_{1} c_{3}\right] \hat{+k}\left[a_{2} c_{2}-a_{2} c_{1}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c}) & =\binom{i\left[a_{2} b_{3}-a_{3} b_{2}\right]+\hat{+j}\left[a_{3} b_{1}-a_{1} b_{3}\right]+\hat{k}\left[a_{2} b_{2}-a_{2} b_{1}\right]}{\hat{+i}\left[a_{2} c_{3}-a_{3} c_{2}\right]+j\left[a_{3} c_{1}-a_{1} c_{3}\right]+k\left[a_{2} c_{2}-a_{2} c_{1}\right]} \\
& =\binom{i\left[a_{2} b_{3}+a_{2} c_{3}-a_{3} b_{2}-a_{3} c_{2}\right]+j\left[-a_{1} b_{3}-a_{1} c_{3}+a_{3} b_{1}+a_{3} c_{1}\right]}{\hat{+k} k\left[a_{1} b_{2}+a_{1} c_{2}-a_{2} b_{1}-a_{2} c_{1}\right]}
\end{aligned}
$$

Thus,

$$
\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}
$$

Hence proved.

Question 8:

If either $a=0$ or $b=0$, then $a \times b=0$. Is the converse true? Justify your answer with an example.

Solution:

Let $\vec{a}=\hat{2} i+\hat{3} j+\hat{4} k$ and $\vec{b}=\hat{4} i+\hat{6} j+\hat{8} k$

Therefore,

$$
\begin{aligned}
\overrightarrow{a \times b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 4 \\
4 & 6 & 8
\end{array}\right| \\
& \hat{=} i(24-24) \hat{-} j(16-16) \hat{+} k(12-12) \\
& =0
\end{aligned}
$$

Now,

$$
|\vec{a}|=\sqrt{2^{2}+3^{2}+4^{2}}=\sqrt{29}
$$

Thus,

$$
a \neq 0
$$

Also,

$$
|\vec{b}|=\sqrt{4^{2}+6^{2}+8^{2}}=\sqrt{116}
$$

Thus,

$$
b \neq 0
$$

Hence, converse of the statement need not to be true.

Question 9:

Find the area of triangle with vertices $A(1,1,2) B(2,3,5)$ and $C(1,5,5)$.

Solution:

Vertices of the triangle are $A(1,1,2) B(2,3,5)$ and $C(1,5,5)$
Hence,

$$
\begin{aligned}
& \stackrel{\|}{A B}=(2-1) \hat{i} i+(3-1) \hat{)} j+(5-2 \hat{)} k \\
& \hat{=} \hat{i}+\hat{2} j+\hat{3} k \\
& \stackrel{\xrightarrow[B C]{\longrightarrow}}{\longrightarrow}=(1-2 \hat{)} i+(5-3) j+(5-\hat{5}) k \\
& =\hat{-i}+\hat{2} j
\end{aligned}
$$

Therefore,

$$
\text { Area of the triangle } \left.\operatorname{ar}(\triangle A B C)=\frac{1}{2} \right\rvert\, \frac{\| \overrightarrow{a b}}{A B \times \overrightarrow{B C} \mid}
$$

Now,

$$
\begin{aligned}
& \begin{aligned}
\underset{A B}{\| \overrightarrow{B C}} \times \overrightarrow{B C} & =\left|\begin{array}{ccc}
\boldsymbol{i} & \hat{j} & k \\
1 & 2 & 3 \\
-1 & 2 & 0
\end{array}\right| \\
& \hat{=} i(-6)-\hat{j}(3)+\hat{k}(2+2) \\
& =\hat{6} i-\hat{3} j+\hat{4} k
\end{aligned} \\
& \begin{aligned}
|\overrightarrow{A B} \times \overrightarrow{B C}| & =\sqrt{(-6)^{2}+(-3)^{2}+4^{2}} \\
& =\sqrt{36+9+16} \\
& =\sqrt{61}
\end{aligned}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{ar}(\triangle A B C) & =\frac{1}{2} \sqrt{61} \\
& =\frac{\sqrt{61}}{2}
\end{aligned}
$$

Question 10:

Find the area of the parallelogram whose adjacent sides are determined by the vector $\overrightarrow{a=\hat{i} \hat{j}+\hat{3} k}$ and $\vec{b}=\hat{2} i-\hat{7} \hat{j}+\hat{k}$.

Solution:

We have $\overrightarrow{a=\hat{i} \hat{-j}+\hat{3} k \text { and } \vec{b}=\hat{2} i-\hat{7} j \hat{+} k}$
Hence,

$$
\begin{aligned}
\overrightarrow{a \times} \vec{b} & =\left|\begin{array}{ccc}
i & \hat{j} & \hat{k} \\
1 & -1 & 3 \\
2 & -7 & 1
\end{array}\right| \\
& =\hat{i}(-1+21) \hat{-} \hat{j}(1-6) \hat{+}+k(-7+2) \\
& =\hat{20} i+\hat{5} j-\hat{5} k \\
\mid \vec{a} \times \vec{b} & =\sqrt{20^{2}+5^{2}+5^{2}} \\
& =\sqrt{400+25+25} \\
& =15 \sqrt{2}
\end{aligned}
$$

Thus, the area of parallelogram is $15 \sqrt{2}$ square units.

Question 11:

Let the vectors a and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\dot{a} \times b$ is a unit vector, if the angle between \vec{a} and \vec{b} is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

Solution:

We have $|\vec{a}|=3,|\vec{b}|=\frac{\sqrt{2}}{3}$ and $|\vec{a} \times \vec{b}|=1$
Therefore,

$$
\begin{aligned}
& \Rightarrow||\vec{a}|| \vec{b}|\sin \theta|=1 \\
& \Rightarrow 3 \times \frac{\sqrt{2}}{3} \times \sin \theta=1 \\
& \Rightarrow \sin \theta=\frac{1}{\sqrt{2}} \\
& \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

Question 12:

 $i+\frac{r}{2} j+\hat{4} k \quad i-\frac{r}{2} j+\hat{4} k$ and $\hat{-} i-\frac{r}{2} j+\hat{4} k$, respectively is
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4

Solution:

We have vertices $A\left(\hat{-} i+\frac{r}{2} j+\hat{4} k\right), B\left(i+\frac{r}{2} j+\hat{4} k\right), C\left(i-\frac{r}{2} j+\hat{4} k\right)$ and $D\left(\hat{-} i-\frac{r}{2} j+\hat{4} k\right)$.
Therefore,

$$
\begin{aligned}
& \overrightarrow{A B}=(1+1) i+\left(\frac{1}{2}-\frac{1}{2} \hat{\jmath} j+(4-4) \hat{2} k=\hat{2} i\right. \\
& \stackrel{\|}{B C}=(1-1) \hat{l} i+\left(-\frac{1}{2}-\frac{1}{2} \hat{)} j+(4-4) \hat{k} k=\hat{-j}\right.
\end{aligned}
$$

Now,

$$
\begin{aligned}
& =k(-2) \\
& =-\hat{2} k \\
& |\stackrel{\| \vec{B}}{A B} \times \overrightarrow{B C}|=\sqrt{(-2)^{2}} \\
& =2
\end{aligned}
$$

So, area of the rectangle is 2 square units.

MISCELLANEOUS EXERCISE

Question 1:

Write down a unit vector in XY-plane, making an angle of 30° with the positive direction x axis.

Solution:

Unit vector is $\vec{r}=\cos \hat{\theta} i+\sin \hat{\theta} j$, where θ is angle with positive x-axis.
Therefore,

$$
\begin{aligned}
\vec{r} & =\cos 30^{\circ} i+\sin 30^{\circ} j \\
& =\frac{\sqrt{3}}{2} i+\frac{r}{2} j
\end{aligned}
$$

Question 2:

Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$.

Solution:

We have $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$
Therefore,

$$
\begin{aligned}
& \stackrel{\Perp}{P Q}=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) k \\
& |\overrightarrow{P Q}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{aligned}
$$

Hence, the scalar components of the vector is $\left\{\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)+\left(z_{2}-z_{1}\right)\right\}$ and magnitude of the vector is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.

Question 3:

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

Solution:

Let O and B be the initial and final positions of the girl, respectively.
Then, the girl's position can be shown by the below diagram:

We have:

$$
\begin{aligned}
& \stackrel{U}{O A}=-\hat{4} i \\
& \stackrel{\square}{\vec{A}} \hat{A B}=i|\overrightarrow{A B}| \cos 60^{\circ}+j|\overrightarrow{A B}| \operatorname{lin} 60^{\circ} \\
& \hat{=} i 3 \times \frac{1}{2} \hat{+} j 3 \times \frac{\sqrt{3}}{2} \\
& =\frac{3}{2} i+\frac{3 \sqrt{3}}{2} j
\end{aligned}
$$

By the triangle law of addition for vector,

$$
\begin{aligned}
\stackrel{山}{O B} & =\stackrel{\Perp}{O A}+\stackrel{\Perp}{A B} \\
& =(-\hat{4} i)+\left(\frac{3}{2} i+\frac{3 \sqrt{3}}{2} j\right) \\
& =\left(-4+\frac{3}{2}\right) i+\frac{3 \sqrt{3}}{2} j \\
& =\left(\frac{-8+3}{2}\right) i+\frac{3 \sqrt{3}}{2} j \\
& =\frac{-5}{2} i+\frac{3 \sqrt{3}}{2} j
\end{aligned}
$$

Hence, the girl's displacement from her initial point of departure is $\frac{-5}{2} i+\frac{3 \sqrt{3}}{2} j$.

Question 4:

If $\dot{a}=\dot{b}+\vec{c}$, then is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$? Justify your answer.

Solution:

In $\triangle A B C$

By triangle law of addition for vectors

$$
\vec{a}=\vec{b}+c
$$

By triangle inequality law of lengths

$$
|\vec{a}|<|\vec{b}|+|\vec{c}|
$$

Hence, it is not true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$

Question 5:

Find the value of x for which $x(\hat{i+\hat{j+k}})$ is a unit vector.

Solution:

We have a unit vector $x(\hat{i+j+k})$
Therefore,

$$
\begin{aligned}
& \Rightarrow \mid x(\hat{i+\hat{j}+\hat{+}) \mid=1} \\
& \Rightarrow \sqrt{x^{2}+x^{2}+x^{2}}=1 \\
& \Rightarrow \sqrt{3 x^{2}}=1 \\
& \Rightarrow \sqrt{3 x}=1 \\
& \Rightarrow x= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

Question 6:

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=\hat{2} i+\hat{3} j \hat{-k}$ and $\overrightarrow{b=} \hat{i}-\hat{2} j \hat{+} k$.

Solution:

We have $\vec{a}=\hat{2} i+\hat{3} j \hat{-k}$ and $\overrightarrow{b=} \hat{i}-\hat{2} j+k$
Hence,

$$
\begin{aligned}
\bar{c} & =a+b \\
& =(2+1) \hat{c} i+(3-2 \hat{)} j+(-1+1) k \\
& =\hat{3} i \hat{+} j \\
|\vec{c}| & =\sqrt{3^{2}+1^{2}} \\
& =\sqrt{9+1} \\
& =\sqrt{10}
\end{aligned}
$$

Therefore,

$$
c=\frac{\vec{c}}{|c|}=\frac{(\hat{3 i+}+j)}{\sqrt{10}}
$$

So, a vector of magnitude 5 and parallel to the resultant of a and b is

$$
\begin{aligned}
\pm \hat{(c)} & = \pm 5\left(\frac{1}{\sqrt{10}}(\hat{3} \hat{i} \hat{j})\right) \\
& = \pm \frac{3 \sqrt{10}}{2} i \pm \frac{\sqrt{10}}{2} j
\end{aligned}
$$

Question 7:

If $\overrightarrow{a=i+\hat{j}+k}, \quad \vec{b}=\hat{2 i} \hat{i-j}+\hat{3} k$ and $\overrightarrow{c=i} \hat{2} j \hat{+} k$ find a unit vector parallel to the vector $\overrightarrow{2 a}-\dot{b}+3 c$.

Solution:

We have $\overrightarrow{a=} \hat{i} \hat{+j+k}, \vec{b}=\hat{2} i \hat{-j}+\hat{3} k$ and $\overrightarrow{c=} \hat{i}-\hat{2} \hat{j}+\hat{k}$ Therefore,

$$
\begin{aligned}
2 \overrightarrow{a-} \vec{b}+3 \vec{c} & =2 \hat{(i+} \hat{j+} \hat{+})-(\hat{2} i \hat{-} j+\hat{3} k)+3(i-2 \hat{j}+k) \\
& =\hat{2} i+\hat{2} j+\hat{2} k-\hat{2} i \hat{+} j-\hat{3} k+\hat{3} i-\hat{6} j+\hat{3} k \\
& =\hat{3} i-\hat{3} j+\hat{2} k \\
|2 \vec{a}-\vec{b}+3 \vec{c}| & =\sqrt{3^{2}+(-3)^{2}+2^{2}} \\
& =\sqrt{9+9+4} \\
& =\sqrt{22}
\end{aligned}
$$

So, the required unit vector is

$$
\begin{aligned}
& \xrightarrow[|2 \overrightarrow{a-b} \vec{b}+3 c|]{\overrightarrow{2 \vec{b}+3 \vec{c}}}=\frac{\hat{3} i-\hat{3} j+\hat{2} k}{\sqrt{22}} \\
&=\frac{3^{n}}{\sqrt{22}} i-\frac{3^{n}}{\sqrt{22}} j+\frac{2^{n}}{\sqrt{22}} k
\end{aligned}
$$

Question 8:

Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear and find the ratio in which B divides AC.

Solution:

We have points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$
Therefore,

$$
\begin{aligned}
& \stackrel{\Perp}{A B}=(5-1) \hat{i} i+(0+2) j+(-2+8) k=\hat{4} i+\hat{2} j+\hat{6} k \\
& \xrightarrow[B C]{\| C}=(11-5) i+(3-0) \hat{}) j+(7+2 \hat{)} k=\hat{6} i+\hat{3} j+\hat{9} k \\
& \stackrel{\|}{A C}=(11-1) \hat{i}+(3+2) \hat{j}+(7+8) \hat{)} k=1 \hat{0} i+\hat{5} j+1 \hat{5} k \\
& |\overrightarrow{A B}|=\sqrt{4^{2}+2^{2}+6^{2}}=\sqrt{16+4+36}=\sqrt{56}=2 \sqrt{14} \\
& |\overrightarrow{B C}|=\sqrt{6^{2}+3^{2}+9^{2}}=\sqrt{36+9+81}=\sqrt{126}=3 \sqrt{14} \\
& |\overrightarrow{A C}|=\sqrt{10^{2}+5^{2}+15^{2}}=\sqrt{100+25+225}=\sqrt{350}=5 \sqrt{14}
\end{aligned}
$$

Now,

$$
\begin{aligned}
|\overrightarrow{A B}|+|\overrightarrow{B C}| & =2 \sqrt{14}+3 \sqrt{14} \\
& =5 \sqrt{14} \\
& =|\overrightarrow{A C}|
\end{aligned}
$$

Thus，the points are collinear．

Let B divides AC in the ratio $\lambda: 1$

Therefore，

$$
\begin{aligned}
& \overrightarrow{O B}=\frac{\lambda 山 己 ⿱ 一 𫝀 口}{(\lambda+1)} \\
& \Rightarrow \hat{5} i-\hat{2} k=\frac{\lambda(1 \hat{1} i+\hat{3} j+\hat{7} k)+(i-\hat{2} j-\hat{8} k)}{\lambda+1} \\
& \Rightarrow(\lambda+1)(\hat{5} i-\hat{2} k)=11 \hat{\lambda} i+3 \hat{\lambda} j+7 \hat{\lambda} k+\hat{i}-\hat{2} j-\hat{8} k \\
& \Rightarrow 5(\lambda+1) i-2(\lambda+1) k=(11 \lambda+1) i+(3 \lambda-2) j+(7 \lambda-8) k
\end{aligned}
$$

On equating the corresponding components，we get

$$
\begin{aligned}
& \Rightarrow 5(\lambda+1)=(11 \lambda+1) \\
& \Rightarrow 5 \lambda+5=11 \lambda+1 \\
& \Rightarrow 6 \lambda=4 \\
& \Rightarrow \lambda=\frac{2}{3}
\end{aligned}
$$

Thus，the ratio is $2: 3$ ．

Question 9：

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ externally in the ratio $1: 2$ ．Also show that P is midpoint of the line segment RQ．

Solution：

We have $\stackrel{\breve{W}}{O P}=2 \vec{a}+\vec{b}, \overrightarrow{O Q}=\vec{a}-3 \vec{b}$
It is given that point R divides a line segment joining two points P and Q externally in the ratio 1： 2.

Then，on using the section formula，we get：

$$
\begin{aligned}
\underset{O R}{\|} & =\frac{2(2 \vec{a}+\vec{b})-(\vec{a}-2 \vec{b})}{\overrightarrow{2-1}} \\
& =\frac{4 \vec{a}+2 \overrightarrow{b-a}-3 \vec{b}}{1} \\
& =3 \vec{a}+5 \vec{b}
\end{aligned}
$$

Hence, the position vector of R is $3 \vec{a}+5 \vec{b}$
Thus, the position vector of midpoint of $R Q=\frac{\stackrel{U}{O Q}+\amalg \mathbb{O R}}{2}$

$$
\begin{aligned}
\frac{\xrightarrow[O Q]{\| \longrightarrow}+\| R}{2} & =\frac{(\vec{a}-3 b)+(3 \vec{a}+5 \vec{b})}{2} \\
& =2 \overrightarrow{a+b} \\
& =\overrightarrow{O P}
\end{aligned}
$$

Thus, P is the midpoint of line segment RQ.

Question 10:

The two adjacent sides of a parallelogram are $\hat{2} i-\hat{4} j+\hat{5} k$ and $i-\hat{2} j-\hat{3} k$. Find the unit vector parallel to its diagonal. Also, find its area.

Solution:

Diagonal of a parallelogram is $\vec{a}+\vec{b}$

$$
\begin{aligned}
\vec{a}+\vec{b} & =(2+1) i+(-4-2) j+(5-3) \hat{k} \\
& =\hat{3} i-\hat{6} j+\hat{2} k
\end{aligned}
$$

So, the unit vector parallel to the diagonal is

$$
\begin{aligned}
\stackrel{\overrightarrow{a+b} \vec{b}}{|\overrightarrow{a+b}|} & =\frac{\hat{3} i-\hat{6} j+\hat{2} k}{\sqrt{3^{2}+(-6)^{2}+2^{2}}} \\
& =\frac{\hat{3} i-\hat{6} j+\hat{2} k}{\sqrt{9+36+4}} \\
& =\frac{\hat{3} i-\hat{6} j+\hat{2} k}{7} \\
& =\frac{1}{7}(\hat{3} i-\hat{6} j+\hat{2} k)
\end{aligned}
$$

Area of the parallelogram is $|\vec{a}+\vec{b}|$
Now,

$$
\begin{aligned}
\overrightarrow{a \times} \vec{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -4 & 5 \\
1 & -2 & -3
\end{array}\right| \\
& =\hat{i}(12+10) \hat{-j}(-6-5) \hat{+} k(-4+4) \\
& =2 \hat{2} i+\hat{1} j \\
& =11(\hat{2} \hat{i} \hat{j}) \\
|\vec{a}+\vec{b}| & =11 \sqrt{2^{2}+1^{2}}=11 \sqrt{5}
\end{aligned}
$$

So, area of parallelogram is $11 \sqrt{5}$ square units.

Question 11:

Show that the direction cosines of a vector equally inclined to the axis OX, OY and OZ are $\pm\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

Solution:

Let a vector be equally inclined to OX, OY and OZ at an angle α
So, the DCs of the vectors are $\cos \alpha, \cos \alpha$ and $\cos \alpha$.
Therefore,

$$
\begin{aligned}
& \cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1 \\
& \Rightarrow 3 \cos ^{2} \alpha=1 \\
& \Rightarrow \cos ^{2} \alpha=\frac{1}{3} \\
& \Rightarrow \cos \alpha= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

Thus, the DCs of the vector are $\pm\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

Question 12:

Let $\vec{a} \hat{=} i+\hat{4} j+\hat{2} k, \vec{b}=\hat{3} i-\hat{2} j+\hat{7} k$ and $\vec{c}=\hat{2} i \hat{-j}+\hat{4} k$. Find a vector \dot{d} which is perpendicular to both \vec{a} and \vec{b}, and $\vec{c} \cdot \bar{d}^{\prime}=15$.

Solution:

Let $\vec{d}=\hat{d_{1}} i+\hat{d_{2}} j+\hat{d_{3}} k$

Since, \dot{d} is perpendicular to both \vec{a} and \vec{b}, we have

$$
\begin{align*}
& \text { U. } \cdot a=0 \\
& \Rightarrow d_{1}+4 d_{2}+2 d_{3}=0 \tag{1}
\end{align*}
$$

And

$$
\begin{align*}
& \vec{d} \cdot \vec{b}=0 \\
& \Rightarrow 3 d_{1}-2 d_{2}+7 d_{3}=0 \tag{2}
\end{align*}
$$

Also, it is given that

$$
\begin{align*}
& \overline{c \cdot d}=15 \\
& \Rightarrow 2 d_{1}-d_{2}+4 d_{3}=15 \tag{3}
\end{align*}
$$

On solving equations (1), (2) and (3), we get

$$
d_{1}=\frac{160}{3}, d_{2}=-\frac{5}{3}, d_{3}=-\frac{70}{3}
$$

Therefore,

$$
\begin{aligned}
\vec{d} & =\frac{16 \theta}{3} i-\frac{5}{3} j-\frac{7 \theta}{3} k \\
& =\frac{1}{3}(16 \hat{0} i-\hat{5} j-7 \hat{0} k)
\end{aligned}
$$

Question 13:

The scalar product of the vector $\hat{i+\hat{j+k}}$ with a unit vector along the sum of vectors $\hat{2} i+\hat{4} j-\hat{5} k$ and $\hat{\lambda} i+\hat{2} j+\hat{3} k$ is equal to one. Find the value of λ.

Solution:

$(\hat{2} i+\hat{4} j-\hat{5} k)+(\hat{\lambda} i+\hat{2} j+\hat{3} k)=(2+\lambda) i+\hat{6} j-\hat{2} k$
Therefore, unit vector along $(\hat{2} i+\hat{4} j-\hat{5} k)+(\hat{\lambda} i+\hat{2} j+\hat{3} k)$ is

$$
\frac{(2+\lambda) i+\hat{6} j-\hat{2} k}{\sqrt{(2+\lambda)^{2}+6^{2}+(-2)^{2}}}=\frac{(2+\lambda) i+\hat{6} j-\hat{2} k}{\sqrt{4+4 \lambda+\lambda^{2}+36+4}}=\frac{(2+\lambda) i+\hat{6} j-\hat{2} k}{\sqrt{\lambda^{2}+4 \lambda+44}}
$$

Scalar product of $\hat{i+\hat{j+} k}$ with this unit vector is 1 .

$$
\begin{aligned}
& \Rightarrow(\hat{i+j+k}) \cdot\left(\frac{(2+\lambda) \hat{)} i+\hat{6} j-\hat{2} k}{\sqrt{\lambda^{2}+4 \lambda+44}}\right)=1 \\
& \Rightarrow \frac{(2+\lambda)+6-2}{\sqrt{\lambda^{2}+4 \lambda+44}}=1 \\
& \Rightarrow \sqrt{\lambda^{2}+4 \lambda+44}=\lambda+6 \\
& \Rightarrow \lambda^{2}+4 \lambda+44=(\lambda+6)^{2} \\
& \Rightarrow \lambda^{2}+4 \lambda+44=\lambda^{2}+12 \lambda+36 \\
& \Rightarrow 8 \lambda=8 \\
& \Rightarrow \lambda=1
\end{aligned}
$$

Question 14:

If a, b, c are mutually perpendicular vectors of equal magnitudes, show that the vector $a+b+c$ is inclined to a, b, c.

Solution:

Since, a, b, c are mutually perpendicular vectors of equal magnitudes
Therefore,

$$
\ddot{a \cdot b}=\overrightarrow{b \cdot c}=\overrightarrow{c \cdot a}=0
$$

And

$$
|\vec{a}|=|\vec{b}|=|\vec{c}|
$$

Let $\vec{a}+\dot{b}+c$ be inclined to a, b, c at angles $\theta_{1}, \theta_{2}, \theta_{3}$ respectively.

$$
\begin{aligned}
& \cos \theta_{1}=\frac{(\vec{a}+\vec{b}+\vec{c} \cdot \vec{a}}{|\vec{a}+\vec{b}+\vec{c}||\vec{a}|}=\frac{\overrightarrow{a \cdot a}+\overrightarrow{b \cdot a}+\overrightarrow{c \cdot a}}{|\vec{a}+\vec{b}+\vec{c}||\vec{a}|}=\overrightarrow{|\vec{a}+b+\vec{b}||\vec{a}|}=\overrightarrow{|\vec{a}|^{2}}|\vec{a}+\vec{b}| \\
& \left.\cos \theta_{2}=\xrightarrow{\mid \vec{a}+\vec{b}+\vec{c}) \cdot \vec{b}} \overrightarrow{|\vec{b}+\vec{c}| \vec{b} \mid}=\frac{\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\overrightarrow{c \cdot b}}{|\vec{a}+\vec{b}+\vec{c}||\vec{b}|}=\overrightarrow{|\vec{a}+b+c||\vec{b}|} \right\rvert\, \overrightarrow{|\vec{b}|^{2}}=\overrightarrow{|\vec{b}+\vec{c}|} \\
& \cos \theta_{3}=\frac{(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{c}}{|\overrightarrow{a+b}+\vec{c}||\vec{c}|}=\frac{\overrightarrow{a \cdot c}+\overrightarrow{b \cdot c}+\overrightarrow{c \cdot c}}{\mid \vec{a}+\vec{b}+\overrightarrow{c|c|}}=\overrightarrow{|\vec{c}|}, \overrightarrow{|\vec{c}|^{2}} \overrightarrow{|\vec{b}+|\vec{c}|}=\overrightarrow{|\vec{a}+\vec{b}+\vec{c}|}
\end{aligned}
$$

Since $|\vec{a}|=|\vec{b}|=\mid \vec{c},, \cos \theta_{1}=\cos \theta_{2}=\cos \theta_{3}$

Thus, $\theta_{1}=\theta_{2}=\theta_{3}$

Question 15:

Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$ if and only if \vec{a} and \vec{b} are perpendicular, given $\vec{a} \neq 0, \vec{b} \neq 0$.
Solution:
$(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$
$\Rightarrow \overrightarrow{a \cdot a}+\overrightarrow{a \cdot b}+\overrightarrow{b \cdot a}+\overrightarrow{b \cdot b}=|\vec{a}|^{2}+|\vec{b}|^{2}$
$\Rightarrow\left|\overrightarrow{\left.a\right|^{2}}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}\right.$
$\Rightarrow 2 a \cdot b=0$
$\Rightarrow \vec{a} \cdot b=0$

Thus, a and b are perpendicular.

Question 16:

If θ is the angle between two vectors a and b, then $a \cdot b \geq 0$ only when
(A) $0<\theta<\frac{\pi}{2}$
(B) $0 \leq \theta \leq \frac{\pi}{2}$
(C) $0<\theta<\pi$
(D) $0 \leq \theta \leq \pi$

Solution:

$\overline{a \cdot b} \geq 0$
$\Rightarrow|\vec{a}| \vec{b} \mid \cos \theta \geq 0$
$\Rightarrow \cos \theta \geq 0$

$$
[\because \mid \vec{a} \geq 0 \text { and }|\vec{b}| \geq 0]
$$

$\Rightarrow 0 \leq \theta \leq \frac{\pi}{2}$

Hence $a . b \geq 0$ if $0 \leq \theta \leq \frac{\pi}{2}$

Thus, the correct option is B.

Question 17:

Let a and b be two unit vectors and θ is the right angle between them. Then $a+b$ is a unit vector
(A) $\theta=\frac{\pi}{4}$
(B) $\theta=\frac{\pi}{3}$
(C) $\theta=\frac{\pi}{2}$
(D) $\theta=\frac{2 \pi}{3}$

Solution:

We have a and b, two unit vectors and θ is the angle between them.
Then,

$$
|\vec{a}|=|\vec{b}|=1
$$

Now, $\vec{a}+\vec{b}$ is a unit vector if $|\vec{a}+\vec{b}|=1$
Therefore,

$$
\begin{aligned}
& \Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=1 \\
& \Rightarrow \overrightarrow{a \cdot a}+\overrightarrow{a \cdot b}+\overrightarrow{b \cdot a}+\overrightarrow{b \cdot b}=1 \\
& \Rightarrow|\vec{a}|^{2}+2 \overrightarrow{a \cdot b}+|\vec{b}|^{2}=1 \\
& \Rightarrow 1^{2}+2|\vec{a}| \vec{b} \mid \cos \theta+1^{2}=1 \\
& \Rightarrow 1+2(1)(1) \cos \theta+1=1 \\
& \Rightarrow \cos \theta=-\frac{1}{2} \\
& \Rightarrow \theta=\frac{2 \pi}{2}
\end{aligned}
$$

Hence, $a+b$ is a unit vector if $\theta=\frac{2 \pi}{2}$
Thus, the correct option is D.

Question 18:

The value of $i \cdot(j \hat{\times k}) \hat{+} j \cdot(\hat{l \times k}) \hat{+}+\hat{(}(\hat{\times} j)$ is
(A) 0
(B) -1
(C) 1
(D) 3

Solution:

$$
\text { i. } \begin{aligned}
(j \hat{\times k}) \hat{+} \cdot \cdot(i \hat{\times k} k) \hat{+} k(i \hat{\times} j) & =\hat{i} \cdot \hat{l}+j \cdot(\hat{-j}) \hat{+} \hat{k} \cdot k \\
& =1-1+1 \\
& =1
\end{aligned}
$$

Thus, the correct option is C.

Question 19:

If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to
(A) 0
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) n

Solution:

Let θ be the angle between two vectors a and b.
Then, without loss of generality, \dot{a} and \dot{b} are non-zero vectors, so that $|\vec{a}|$ and $|\vec{b}|$ are positive. Now,

$$
\begin{aligned}
& \Rightarrow|\overrightarrow{a \cdot b}|=|\vec{a} \times \vec{b}| \\
& \Rightarrow|\vec{a}||\vec{b}| \cos \theta=|\vec{a}| \vec{b} \mid \sin \theta \\
& \Rightarrow \cos \theta=\sin \theta \\
& \Rightarrow \tan \theta=1 \\
& \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

So, $|\overrightarrow{a \cdot b}|=|\vec{a} \times \vec{b}|_{\text {when }} \theta=\frac{\pi}{4}$
Thus, the correct option is B.

