Vector Algebra

Short Answer Type Questions

- **Q.** 1 Find the unit vector in the direction of sum of vectors $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{k}$.
 - **Thinking Process**

We know that, unit vector in the direction of a vector \overrightarrow{a} is $\frac{\overrightarrow{a}}{1-1}$. So, first we will find the

sum of vectors and then we will use this concept.

Sol. Let \vec{c} denote the sum of \vec{a} and \vec{b} .

We have.

$$\vec{c} = \vec{a} + \vec{b}$$

$$= 2\hat{i} - \hat{j} + \hat{k} + 2\hat{j} + \hat{k} = 2\hat{i} + \hat{j} + 2\hat{k}$$

We have, $\vec{\mathbf{c}} = \vec{\mathbf{a}} + \vec{\mathbf{b}}$ $= 2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ $\therefore \text{ Unit vector in the direction of } \vec{\mathbf{c}} = \frac{\vec{\mathbf{c}}}{|\vec{\mathbf{c}}|} = \frac{2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{\sqrt{2^2 + 1^2 + 2^2}} = \frac{2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{\sqrt{9}}$ $\hat{\mathbf{c}} = \frac{2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{2}$

Q. 2 If $\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j} + 2\hat{k}$, then find the unit vector in the direction of

(i)
$$\overrightarrow{\mathbf{b}}$$

(ii)
$$2\overrightarrow{a} - \overrightarrow{b}$$

Sol. Here, $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - 2\hat{k}$

(i) Since,

$$6\vec{\mathbf{b}} = 12\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 12\hat{\mathbf{k}}$$

:. Unit vector in the direction of $6\vec{b} = \frac{6\vec{b}}{}$ $= \frac{12\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 12\hat{\mathbf{k}}}{\sqrt{12^2 + 6^2 + 12^2}} = \frac{6(2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}})}{\sqrt{324}}$ $= \frac{6(2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}})}{18} = \frac{2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}}{3}$

(ii) Since,
$$2\vec{a} - \vec{b} = 2(\hat{i} + \hat{j} + 2\hat{k}) - (2\hat{i} + \hat{j} - 2\hat{k})$$

= $2\hat{i} + 2\hat{j} + 4\hat{k} - 2\hat{i} - \hat{j} + 2\hat{k} = \hat{j} + 6\hat{k}$
:: Unit vector in the direction of $2\vec{a} - \vec{b} = \frac{2\vec{a} - \vec{b}}{|2\vec{a} - \vec{b}|} = \frac{\hat{j} + 6\hat{k}}{\sqrt{1 + 36}} = \frac{1}{\sqrt{37}}(\hat{j} + 6\hat{k})$

- **Q. 3** Find a unit vector in the direction of \overrightarrow{PQ} , where P and Q have coordinates (5, 0, 8) and (3, 3, 2), respectively.
- **Sol.** Since, the coordinates of *P* and *Q* are (5, 0, 8) and (3, 3, 2), respectively.

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$$

$$= (3\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) - (5\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + 8\hat{\mathbf{k}})$$

$$= -2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}$$

$$\therefore \text{ Unit vector in the direction of } \overrightarrow{PQ} = \frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|} = \frac{-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{\sqrt{2^2 + 3^2 + 6^2}}$$

$$= \frac{-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{\sqrt{49}} = \frac{-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{7}$$

Q. 4 If \overrightarrow{a} and \overrightarrow{b} are the position vectors of \overrightarrow{A} and \overrightarrow{B} respectively, then find the position vector of a point \overrightarrow{C} in \overrightarrow{BA} produced such that $\overrightarrow{BC} = 1.5 \overrightarrow{BA}$.

Sol. Since,
$$\overrightarrow{OA} = \overrightarrow{a}$$
 and $\overrightarrow{OB} = \overrightarrow{b}$

$$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{a} - \overrightarrow{b}$$
and
$$1.5\overrightarrow{BA} = 1.5(\overrightarrow{a} - \overrightarrow{b})$$
Since,
$$\overrightarrow{BC} = 1.5\overrightarrow{BA} = 1.5(\overrightarrow{a} - \overrightarrow{b})$$

$$\overrightarrow{OC} - \overrightarrow{OB} = 1.5\overrightarrow{a} - 1.5\overrightarrow{b}$$

$$\overrightarrow{OC} = 1.5\overrightarrow{a} - 1.5\overrightarrow{b} + \overrightarrow{b}$$

$$= 1.5\overrightarrow{a} - 0.5\overrightarrow{b}$$

$$= \frac{3\overrightarrow{a} - \overrightarrow{b}}{2}$$

Graphically, explanation of the above solution is given below

Q. 5 Using vectors, find the value of k, such that the points (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.

Thinking Process

Here, use the following stepwise approach first, get the values of |AB|, |BC| and |AC|

and then use the concept that three points are collinear, if $|\overrightarrow{AB}| + |\overrightarrow{BC}| = |\overrightarrow{AC}|$ such that.

Sol. Let the points are A(k, -10, 3), B(1, -1, 3) and C(3, 5, 3).

So,
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3 \hat{\mathbf{k}}) - (k \hat{\mathbf{i}} - 10 \hat{\mathbf{j}} + 3 \hat{\mathbf{k}})$$

$$= (1 - k)\hat{\mathbf{i}} + (-1 + 10)\hat{\mathbf{j}} + (3 - 3)\hat{\mathbf{k}}$$

$$= (1 - k)\hat{\mathbf{i}} + 9\hat{\mathbf{j}} + 0 \hat{\mathbf{k}}$$

$$\therefore \qquad |\overrightarrow{AB}| = \sqrt{(1 - k)^2 + (9)^2 + 0} = \sqrt{(1 - k)^2 + 81}$$
Similarly,
$$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$$

$$= (3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 3 \hat{\mathbf{k}}) - (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3 \hat{\mathbf{k}})$$

$$= 2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 0 \hat{\mathbf{k}}$$

$$\therefore \qquad |\overrightarrow{BC}| = \sqrt{2^2 + 6^2 + 0} = 2\sqrt{10}$$
and
$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$$

$$= (3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) - (k\hat{\mathbf{i}} - 10\hat{\mathbf{j}} + 3 \hat{\mathbf{k}})$$

$$= (3 - k)\hat{\mathbf{i}} + 15\hat{\mathbf{j}} + 0 \hat{\mathbf{k}}$$

$$\therefore |\overrightarrow{AC}| = \sqrt{(3 - k)^2 + 225}$$

If A, B and C are collinear, then sum of modulus of any two vectors will be equal to the modulus of third vectors

For
$$|\overrightarrow{AB}| + |\overrightarrow{BC}| = |\overrightarrow{AC}|$$
,
 $\sqrt{(1-k)^2 + 81} + 2\sqrt{10} = \sqrt{(3-k)^2 + 225}$
 $\Rightarrow \sqrt{(3-k)^2 + 225} - \sqrt{(1-k)^2 + 81} = 2\sqrt{10}$
 $\Rightarrow \sqrt{9 + k^2 - 6k + 225} - \sqrt{1 + k^2 - 2k + 81} = 2\sqrt{10}$
 $\Rightarrow \sqrt{k^2 - 6k + 234} - 2\sqrt{10} = \sqrt{k^2 - 2k + 82}$
 $\Rightarrow k^2 - 6k + 234 + 40 - 2\sqrt{k^2 - 6k + 234} \cdot 2\sqrt{10} = k^2 - 2k + 82$
 $\Rightarrow k^2 - 6k + 234 + 40 - k^2 + 2k - 82 = 4\sqrt{10}\sqrt{k^2 + 234 - 6k}$
 $\Rightarrow -4k + 192 = 4\sqrt{10}\sqrt{k^2 + 234 - 6k}$
 $\Rightarrow -k + 48 = \sqrt{10}\sqrt{k^2 + 234 - 6k}$
On squaring both sides, we get
 $48 \times 48 + k^2 - 96k = 10(k^2 + 234 - 6k)$
 $\Rightarrow k^2 - 96k - 10k^2 + 60k = -48 \times 48 + 2340$

 $-9k^2 - 36k = -48 \times 48 + 2340$

 \Rightarrow

$$\Rightarrow \qquad (k^2 + 4k) = + 16 \times 16 - 260 \qquad \text{[dividing by 9 in both sides]}$$

$$\Rightarrow \qquad k^2 + 4k = -4$$

$$k^2 + 4k + 4 = 0$$

$$\Rightarrow \qquad (k + 2)^2 = 0$$

$$\therefore \qquad k = -2$$

- \mathbf{Q} . 6 A vector $\overrightarrow{\mathbf{r}}$ is inclined at equal angles to the three axes. If the magnitude of \overrightarrow{r} is $2\sqrt{3}$ units, then find the value of \overrightarrow{r} .
 - **Thinking Process**

If a vector $\overrightarrow{\mathbf{r}}$ is inclined at equal angles to the three axes, then direction cosines of vector, $\overrightarrow{\mathbf{r}}$ will be same and then use, $\overrightarrow{\mathbf{r}} = \overrightarrow{\mathbf{r}} \cdot | \overrightarrow{\mathbf{r}}|$.

Sol. We have,
$$|\overrightarrow{\mathbf{r}}| = 2\sqrt{3}$$

Since, \vec{r} is equally inclined to the three axes, \vec{r} so direction cosines of the unit vector \vec{r} will be same. *i.e.*, l = m = n. We know that.

 $\hat{\mathbf{r}} = \pm \left(\frac{1}{\sqrt{3}}\right)$ $\hat{\mathbf{r}} = \pm \frac{1}{\sqrt{3}}\hat{\mathbf{i}} \pm \frac{1}{\sqrt{3}}\hat{\mathbf{j}} \pm \frac{1}{\sqrt{3}}\hat{\mathbf{k}}$ $\vec{\mathbf{r}} = \hat{\mathbf{r}}|\vec{\mathbf{r}}|$ $= \left[\pm -\frac{1}{2}\right]^{2}$ \Rightarrow So,

 $\therefore \hat{\mathbf{r}} = \frac{\vec{\mathbf{r}}}{|\vec{\mathbf{r}}|}$ ∴. $= \left[\pm \frac{1}{\sqrt{3}} \hat{\mathbf{i}} \pm \frac{1}{\sqrt{3}} \hat{\mathbf{j}} \pm \frac{1}{\sqrt{3}} \hat{\mathbf{k}} \right] 2\sqrt{3} \qquad [\because |r| = 2\sqrt{3}]$ $= \pm 2\hat{\mathbf{i}} \pm 2\hat{\mathbf{i}} \pm 2\hat{\mathbf{k}} = \pm 2(\hat{\mathbf{i}} + \hat{\mathbf{i}} + \hat{\mathbf{k}})$

- \mathbf{Q} . 7 If a vector $\overrightarrow{\mathbf{r}}$ has magnitude 14 and direction ratios 2, 3 and 6. Then, find the direction cosines and components of \overrightarrow{r} , given that \overrightarrow{r} makes an acute angle with X-axis.
- **Sol.** Here, $|\overrightarrow{\mathbf{r}}| = 14$, $\overrightarrow{\mathbf{a}} = 2k$, $\overrightarrow{\mathbf{b}} = 3k$ and $\overrightarrow{\mathbf{c}} = -6k$ \therefore Direction cosines l, m and n are $l = \frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{r}}|} = \frac{2k}{14} = \frac{k}{7}$ $m = \frac{\overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{r}}|} = \frac{3k}{14}$ $n = \frac{\overrightarrow{\mathbf{c}}}{|\overrightarrow{\mathbf{r}}|} = \frac{-6k}{14} = \frac{-3k}{7}$ and

Also, we know that

$$l^{2} + m^{2} + n^{2} = 1$$

$$\Rightarrow \frac{k^{2}}{49} + \frac{9k^{2}}{196} + \frac{9k^{2}}{49} = 1$$

$$\Rightarrow \frac{4k^{2} + 9k^{2} + 36k^{2}}{196} = 1$$

$$\Rightarrow k^{2} = \frac{196}{49} = 4$$

$$\Rightarrow k = \pm 2$$
So, the direction cosines (l, m, n) are $\frac{2}{7}, \frac{3}{7}$ and $\frac{k}{7}$.

[since, \overrightarrow{r} makes an acute angle with X-axis]

$$\vec{r} = \hat{\mathbf{r}} \cdot |\vec{\mathbf{r}}|$$

$$\vec{r} = (l\hat{\mathbf{i}} + m\hat{\mathbf{j}} + n\hat{\mathbf{k}})|\vec{\mathbf{r}}|$$

$$= \left(\frac{+2}{7}\hat{\mathbf{i}} + \frac{3}{7}\hat{\mathbf{j}} - \frac{6}{7}\hat{\mathbf{k}}\right) \cdot 14$$

$$= +4\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 12\hat{\mathbf{k}}$$

Q. 8 Find a vector of magnitude 6, which is perpendicular to both the vectors $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $4\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$.

Thinking Process

First, we will use this concept any vector perpendicular to both the vectors
$$\overrightarrow{\mathbf{a}}$$
 and $\overrightarrow{\mathbf{b}}$ is given by $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ and then we will find the vector with magnitude 6.

Sol. Let
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 4\hat{i} - \hat{j} + 3\hat{k}$

So, any vector perpendicular to both the vectors \overrightarrow{a} and \overrightarrow{b} is given by

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -1 & 2 \\ 4 & -1 & 3 \end{vmatrix}$$
$$= \hat{\mathbf{i}}(-3+2) - \hat{\mathbf{j}}(6-8) + \hat{\mathbf{k}}(-2+4)$$
$$= -\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}} = \vec{\mathbf{r}}$$
[say]

A vector of magnitude 6 in the direction of \vec{r}

$$= \frac{\vec{r}}{|\vec{r}|} \cdot 6 = \frac{-\hat{i} + 2\hat{j} + 2\hat{k}}{\sqrt{1^2 + 2^2 + 2^2}} \cdot 6$$
$$= \frac{-6}{3}\hat{i} + \frac{12}{3}\hat{j} + \frac{12}{3}\hat{k}$$
$$= -2\hat{i} + 4\hat{j} + 4\hat{k}$$

- **Q. 9** Find the angle between the vectors $2\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} \hat{\mathbf{k}}$.
 - Thinking Process

If \overrightarrow{a} and \overrightarrow{b} are two vectors, making angle θ with each other, then $\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$, using

this concept we will find θ .

Sol. Let $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = 3\hat{i} + 4\hat{j} - \hat{k}$

We know that, angle between two vectors \vec{a} and \vec{b} is given by

$$\cos \theta = \frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}$$

$$= \frac{(2\widehat{\mathbf{i}} - \widehat{\mathbf{j}} + \widehat{\mathbf{k}})(3\widehat{\mathbf{i}} + 4\widehat{\mathbf{j}} - \widehat{\mathbf{k}})}{\sqrt{4 + 1 + 1}\sqrt{9 + 16 + 1}}$$

$$= \frac{6 - 4 - 1}{\sqrt{6}\sqrt{26}} = \frac{1}{2\sqrt{39}}$$

$$\theta = \cos^{-1}\left(\frac{1}{2\sqrt{39}}\right)$$

: .

Q. 10 If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, then show that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$. Interpret the result geometrically.

Sol. Since,
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$

Since,
$$\vec{a} + \vec{b} + \vec{c} = 0$$

$$\Rightarrow \qquad \vec{b} = -\vec{c} - \vec{a}$$

Now,
$$\vec{a} \times \vec{b} = \vec{a} \times (-\vec{c} - \vec{a})$$

$$\vec{a} \times \vec{b} = \vec{a} \times (-\vec{c} - \vec{a})$$

$$= \vec{a} \times (-\vec{c}) + \vec{a} \times (-\vec{a}) = -\vec{a} \times \vec{c}$$

$$\vec{a} \times \vec{b} = \vec{c} \times \vec{a}$$

$$\Rightarrow \qquad \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{a} \qquad \dots (i)$$

Also,
$$\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} = (-\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{c}}$$

$$= (-\overrightarrow{c} \times \overrightarrow{c}) + (-\overrightarrow{a} \times \overrightarrow{c}) = -\overrightarrow{a} \times \overrightarrow{c}$$

$$\Rightarrow \qquad \qquad \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a} \qquad \qquad \dots (ii)$$

 $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$ From Eqs. (i) and (ii),

Geometrical interpretation of the result

If ABCD is a parallelogram such that $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{AD} = \overrightarrow{b}$ and these adjacent sides are making angle θ between each other, then we say that

Area of parallelogram $ABCD = |\vec{a}| |\vec{b}| |\sin \theta| = |\vec{a} \times \vec{b}|$

Since, parallelogram on the same base and between the same parallels are equal in area.

We can say that,

$$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a} \times \overrightarrow{c}| = |\overrightarrow{b} \times \overrightarrow{c}|$$

This also implies that,

$$\vec{a} \times \vec{b} = \vec{a} \times \vec{c} = \vec{b} \times \vec{c}$$

So, area of the parallelograms formed by taking any two sides represented by \vec{a} , \vec{b} and \vec{c} as adjacent are equal.

- **Q. 11** Find the sine of the angle between the vectors $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{\mathbf{b}} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}.$
 - **Thinking Process**

We know that, if
$$\overrightarrow{\mathbf{a}}$$
 and $\overrightarrow{\mathbf{b}}$ are in their component form, then $\cos\theta = \frac{a_1b_1 + a_2\,b_2 + a_3\,b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}$. After getting $\cos\theta$, we shall find the sine of the

angle.

Sol. Here, $a_1 = 3$, $a_2 = 1$, $a_3 = 2$ and $b_1 = 2$, $b_2 = -2$, $b_3 = 4$ We know that,

$$\cos \theta = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

$$= \frac{3 \times 2 + 1 \times (-2) + 2 \times 4}{\sqrt{3^2 + 1^2 + 2^2} \sqrt{2^2 + (-2)^2 + 4^2}}$$

$$= \frac{6 - 2 + 8}{\sqrt{14} \sqrt{24}} = \frac{12}{2\sqrt{14} \sqrt{6}} = \frac{6}{\sqrt{84}} = \frac{6}{2\sqrt{21}} = \frac{3}{\sqrt{21}}$$

$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$

$$= \sqrt{1 - \frac{9}{21}} = \sqrt{\frac{12}{21}} = \frac{2\sqrt{3}}{\sqrt{3}\sqrt{7}} = \frac{2}{\sqrt{7}}$$

: .

$$=\sqrt{1-\frac{9}{21}}=\sqrt{\frac{12}{21}}=\frac{2\sqrt{3}}{\sqrt{3}\sqrt{7}}=\frac{2}{\sqrt{7}}$$

- **Q. 12** If A, B, C and D are the points with position vectors $\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$, $2\hat{\mathbf{i}} - 3\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ respectively, then find the projection of AB along CD.
 - Thinking Process

We shall use the concept that projection of $\overrightarrow{\mathbf{a}}$ along $\overrightarrow{\mathbf{b}}$ is $\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}$.

Sol. Here,
$$\overrightarrow{OA} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$$
, $\overrightarrow{OB} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$, $\overrightarrow{OC} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{k}}$ and $\overrightarrow{OD} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$
 \therefore

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (2 - 1)\hat{\mathbf{i}} + (-1 - 1)\hat{\mathbf{j}} + (3 + 1)\hat{\mathbf{k}}$$

$$= \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$
and
$$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC} = (3 - 2)\hat{\mathbf{i}} + (-2 - 0)\hat{\mathbf{j}} + (1 + 3)\hat{\mathbf{k}}$$

$$= \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$

So, the projection of
$$\overrightarrow{AB}$$
 along $\overrightarrow{CD} = \overrightarrow{AB} \cdot \frac{\overrightarrow{CD}}{|\overrightarrow{CD}|}$

$$= \frac{(\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) \cdot (\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}})}{\sqrt{1^2 + 2^2 + 4^2}}$$

$$= \frac{1 + 4 + 16}{\sqrt{21}} = \frac{21}{\sqrt{21}}$$

$$= \sqrt{21} \text{ units}$$

- **Q.13** Using vectors, find the area of the $\triangle ABC$ with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).
 - **Thinking Process**

We know that,

Area of $\triangle ABC = \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$. So, here we shall use this concept.

$$\overrightarrow{AB} = (2 - 1)\hat{i} + (-1 - 2)\hat{j} + (4 - 3)\hat{k}$$
$$= \hat{i} - 3\hat{j} + \hat{k}$$

$$= \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$$

$$\overrightarrow{\mathbf{AC}} = (4 - 1)\hat{\mathbf{i}} + (5 - 2)\hat{\mathbf{j}} + (-1 - 3)\hat{\mathbf{k}}$$

$$= 3\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -3 & 1 \\ 3 & 3 & -4 \end{vmatrix}$$
$$= \hat{\mathbf{i}}(12 - 3) - \hat{\mathbf{j}}(-4 - 3) + \hat{\mathbf{k}}(3 + 9)$$
$$= 9\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 12\hat{\mathbf{k}}$$

and

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{9^2 + 7^2 + 12^2}$$

= $\sqrt{81 + 49 + 144}$

:.

$$= \sqrt{274}$$
Area of $\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$

$$= \frac{1}{2} \sqrt{274} \text{ sq units}$$

- Q. 14 Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.
- **Sol.** Let *ABCD* and *ABFE* are parallelograms on the same base *AB* and between the same parallel lines *AB* and *DF*.

 Here, *AB* || *CD* and *AE* || *BF*

D E C F

Let

$$\overrightarrow{AB} = \overrightarrow{a}$$
 and $\overrightarrow{AD} = \overrightarrow{b}$

 \therefore Area of parallelogram $ABCD = \overrightarrow{a} \times \overrightarrow{b}$

Now, area of parallelogram $\overrightarrow{ABFF} = \overrightarrow{AB} \times \overrightarrow{AE}$ $= \overrightarrow{AB} \times (\overrightarrow{AD} + \overrightarrow{DE})$ $= \overrightarrow{AB} \times (\overrightarrow{b} + k\overrightarrow{a}) \qquad [let \overrightarrow{DE} = k\overrightarrow{a}, where k is a scalar]$ $= \overrightarrow{a} \times (\overrightarrow{b} + k\overrightarrow{a})$ $= (\overrightarrow{a} \times \overrightarrow{b}) + (\overrightarrow{a} \times k\overrightarrow{a})$ $= (\overrightarrow{a} \times \overrightarrow{b}) + k(\overrightarrow{a} \times \overrightarrow{a})$ $= (\overrightarrow{a} \times \overrightarrow{b}) + k(\overrightarrow{a} \times \overrightarrow{a})$ $= (\overrightarrow{a} \times \overrightarrow{b}) \qquad [\because \overrightarrow{a} \times \overrightarrow{a} = 0]$

=Area of parallelogram ABCD

Hence proved.

Tiefice prove

Long Answer Type Questions

- **Q. 15** Prove that in any $\triangle ABC$, $\cos A = \frac{b^2 + c^2 a^2}{2bc}$, where a, b and c are the magnitudes of the sides opposite to the vertices A, B and C, respectively.
- **Sol.** Here, components of C are $c \cos A$ and $c \sin A$ is drawn.

Since,
$$\overrightarrow{CD} = b - \cos A$$

$$\ln \Delta BDC,$$

$$a^2 = (b - \cos A)^2 + (\sin A)^2$$

$$\Rightarrow \qquad a^2 = b^2 + c^2 \cos^2 A - 2b \cos A + c^2 \sin^2 A$$

$$\Rightarrow \qquad 2b \cos A = b^2 - a^2 + c^2 (\cos^2 A + \sin^2 A)$$

$$\therefore \qquad \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Q. 16 If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} determine the vertices of a triangle, show that $\frac{1}{2}[\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}]$ gives the vector area of the triangle. Hence,

deduce the condition that the three points \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are collinear. Also, find the unit vector normal to the plane of the triangle.

• Thinking Process

Here, we shall use the following two concepts.

- (i) If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are collinear, then the area of the triangle formed by the vectors will be zero.
- (ii) We know that, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = |\overrightarrow{\mathbf{a}}| |\overrightarrow{\mathbf{b}}| \sin \theta \hat{\mathbf{n}}$.
- **Sol.** Since, \vec{a} , \vec{b} and \vec{c} are the vertices of a $\triangle ABC$ as shown.

For three points to be collinear, area of the Δ ABC should be equal to zero.

$$\Rightarrow \frac{1}{2} [\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}] = 0$$

$$\Rightarrow \vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}} = 0 \qquad \dots(ii)$$

This is the required condition for collinearity of three points \vec{a} , \vec{b} and \vec{c} .

Let \hat{n} be the unit vector normal to the plane of the \triangle ABC.

$$\hat{n} = \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|}$$

$$= \frac{\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}}{|\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}|}$$

Q. 17 Show that area of the parallelogram whose diagonals are given by \vec{a} and \vec{b} is $\frac{|\vec{a} \times \vec{b}|}{2}$. Also, find the area of the parallelogram, whose diagonals are $2\hat{i} - \hat{j} + k$ and $\hat{i} + 3\hat{j} - \hat{k}$.

Thinking Process

If $\overrightarrow{\mathbf{p}}$ and $\overrightarrow{\mathbf{q}}$ are adjacent sides of a parallelogram, then the area formed by parallelogram $= |\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{q}}|$ and then we shall obtained the desired result.

Sol. Let ABCD be a parallelogram such that

$$\overrightarrow{AB} = \overrightarrow{p}, \overrightarrow{AD} = \overrightarrow{q} \Rightarrow \overrightarrow{BC} = \overrightarrow{q}$$

By triangle law of addition, we get

$$\overrightarrow{AC} = \overrightarrow{p} + \overrightarrow{q} = \overrightarrow{a}$$
 [say] ...(i)

Similarly,

$$\overrightarrow{BD} = -\overrightarrow{p} + \overrightarrow{q} = \overrightarrow{b}$$
 [say] ...(ii)

On adding Eqs. (i) and (ii), we get

$$\vec{a} + \vec{b} = 2\vec{q} \Rightarrow \vec{q} = \frac{1}{2}(\vec{a} + \vec{b})$$

On subtracting Eq. (ii) from Eq. (i), we get

$$\vec{a} - \vec{b} = 2\vec{p} \Rightarrow \vec{p} = \frac{1}{2}(\vec{a} - \vec{b})$$

Now,

$$\vec{\mathbf{p}} \times \vec{\mathbf{q}} = \frac{1}{4} (\vec{\mathbf{a}} - \vec{\mathbf{b}}) \times (\vec{\mathbf{a}} + \vec{\mathbf{b}})$$

$$= \frac{1}{4} (\vec{\mathbf{a}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}} - \vec{\mathbf{b}} \times \vec{\mathbf{a}} - \vec{\mathbf{b}} \times \vec{\mathbf{b}})$$

$$= \frac{1}{4} [\vec{\mathbf{a}} \times \vec{\mathbf{b}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$$

$$= \frac{1}{2} (\vec{\mathbf{a}} \times \vec{\mathbf{b}})$$

So, area of a parallelogram $ABCD = |\vec{\mathbf{p}} \times \vec{\mathbf{q}}| = \frac{1}{2} |\vec{\mathbf{a}} \times \vec{\mathbf{b}}|$

Now, area of a parallelogram, whose diagonals are
$$2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$$
 and $\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$.

$$= \frac{1}{2} |(2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}) \times (\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}})|$$

$$= \frac{1}{2} \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -1 & 1 \\ 1 & 3 & -1 \end{vmatrix}$$

$$= \frac{1}{2} |[\hat{\mathbf{i}} (1 - 3) - \hat{\mathbf{j}} (-2 - 1) + \hat{\mathbf{k}} (6 + 1)]|$$

$$= \frac{1}{2} |-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 7\hat{\mathbf{k}}|$$

$$= \frac{1}{2} \sqrt{4 + 9 + 49}$$

$$= \frac{1}{2} \sqrt{62} \text{ sq units}$$

Q. 18 If $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$, then find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} = 3$.

Thinking Process

We know that, for any two vectors
$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = a_1b_1 + a_2b_2 + a_3b_3$, where $\overrightarrow{\mathbf{a}} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}} = b_1\hat{\mathbf{i}} + b_2\hat{\mathbf{j}} + b_3\hat{\mathbf{k}}$. So, we shall use this concept.

Also

$$\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\vec{a} = \hat{i} + \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{j} - \hat{k}$$

For $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{b}}$,

$$\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = \hat{\mathbf{j}} - \hat{\mathbf{k}}$$

$$\begin{vmatrix} x & y & z \\ \\ \Rightarrow & \hat{\mathbf{i}}(z-y) - \hat{\mathbf{j}}(z-x) + \hat{\mathbf{k}}(y-x) = \hat{\mathbf{j}} - \hat{\mathbf{k}} \\ \\ \therefore & z-y=0 \end{vmatrix}$$

$$\therefore \qquad \qquad z - y = 0 \qquad \qquad \dots (i)$$

$$z - z = 1 \qquad \qquad \dots (ii)$$

$$x-y=1$$
 ...(iii)
Also. $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} = 3$

$$(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot (x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}) = 3$$

$$\Rightarrow \qquad x + y + z = 3 \qquad \dots (iv)$$

On adding Eqs. (ii) and (iii), we get

$$2x - y - z = 2 \qquad \dots(v)$$

$$x = \frac{5}{3}$$

$$y = \frac{5}{3} - 1 = \frac{2}{3} \text{ and } z = \frac{2}{3}$$
Now,
$$\vec{\mathbf{c}} = \frac{5}{3}\hat{\mathbf{i}} + \frac{2}{3}\hat{\mathbf{j}} + \frac{2}{3}\hat{\mathbf{k}}$$

$$= \frac{1}{3}(5\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$$

Objective Type Questions

 $\mathbf{Q.19}$ The vector in the direction of the vector $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ that has magnitude 9 is

(a)
$$\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$$

(b)
$$\frac{\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{3}$$

(c)
$$3(\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$$

(b)
$$\frac{3}{3}$$
 (d) $9(\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$

Sol. (c) Let
$$\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}$$

Any vector in the direction of a vector \vec{a} is given by $\frac{\vec{a}}{|\vec{a}|}$.

$$=\frac{\hat{\mathbf{i}}-2\hat{\mathbf{j}}+2\hat{\mathbf{k}}}{\sqrt{1^2+2^2+2^2}}=\frac{\hat{\mathbf{i}}-2\hat{\mathbf{j}}+2\hat{\mathbf{k}}}{3}$$

$$= \frac{\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{3}$$

$$\therefore \text{ Vector in the direction of } \vec{\mathbf{a}} \text{ with magnitude } 9 = 9 \cdot \frac{\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{3}$$

$$=3(\hat{\mathbf{i}}-2\hat{\mathbf{j}}+2\hat{\mathbf{k}})$$

Q. 20 The position vector of the point which divides the join of points $2\overrightarrow{a} - 3\overrightarrow{b}$ and $\overrightarrow{a} + \overrightarrow{b}$ in the ratio 3:1, is

(a)
$$\frac{3\vec{\mathbf{a}} - 2\vec{\mathbf{b}}}{2}$$
 (b) $\frac{7\vec{\mathbf{a}} - 8\vec{\mathbf{b}}}{4}$ (c) $\frac{3\vec{\mathbf{a}}}{4}$

(b)
$$\frac{7\overrightarrow{a} - 8\overrightarrow{b}}{4}$$

(c)
$$\frac{3\overrightarrow{a}}{4}$$

(d)
$$\frac{5\overrightarrow{a}}{4}$$

Sol. (d) Let the position vector of the point R divides the join of points $2\vec{a} - 3\vec{b}$ and $\vec{a} + \vec{b}$.

$$\therefore \qquad \text{Position vector } R = \frac{3(\overrightarrow{a} + \overrightarrow{b}) + 1(2\overrightarrow{a} - 3\overrightarrow{b})}{3 + 1}$$

Since, the position vector of a point R dividing the line segment joining the points P and Q, whose position vectors are $\vec{\mathbf{p}}$ and $\vec{\mathbf{q}}$ in the ratio m:n internally, is given by $\frac{m\vec{\mathbf{q}}+n\vec{\mathbf{p}}}{m+n}$.

$$R = \frac{5\overrightarrow{a}}{4}$$

Q. 21	The vector having	initial and terminal points as	(2, 5, 0) and (-3, 7,
	4), respectively is	-	, ,
	$(a) - \hat{\mathbf{i}} + 12\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$	(b) $5\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$	
	$(c) -5\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$	(d) $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$	
Sol. (c)	Required vector = (-3)	$(-2)\hat{\mathbf{i}} + (7-5)\hat{\mathbf{j}} + (4-0)\hat{\mathbf{k}}$	

 $= -5\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$

Similarly, we can say that for having initial and terminal points as

- (i) (4, 1, 1) and (3, 13, 5), respectively.
- (ii) (1, 1, 9) and (6, 3, 5), respectively.
- (iii) (1, 2, 3) and (2, 3, 4), respectively, we shall get (a), (b) and (d) as its correct

Q. 22 The angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ and 4, respectively and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = 2\sqrt{3}$ is

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$

 $|\vec{\mathbf{a}}| = \sqrt{3}, |\vec{\mathbf{b}}| = 4$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 2\sqrt{3}$ Sol. (b) Here, [given]

 $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$ We know that, $2\sqrt{3} = \sqrt{3} \cdot 4 \cdot \cos \theta$ $\cos \theta = \frac{2\sqrt{3}}{4\sqrt{3}} = \frac{1}{2}$ $\theta = \frac{\pi}{3}$

Q. 23 Find the value of λ such that the vectors $\vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal.

- (a) 0 (b) 1
- Thinking Process

Two non-zero vectors are orthogonal, if their dot product is zero. So, by using this concept, we shall get the value of λ .

Sol. (d) Since, two non-zero vectors \vec{a} and \vec{b} are orthogonal i.e., $\vec{a} \cdot \vec{b} = 0$.

Q.	24	The	value	of λ	for	which	the	vectors	3î	-6 ĵ	$+\;\hat{\mathbf{k}}$	and	2î	– 4 ĵ	$+\lambda\hat{\boldsymbol{k}}$	are
		para	allel, i	S												

(a)
$$\frac{2}{3}$$

(b)
$$\frac{3}{2}$$

(c)
$$\frac{5}{2}$$

(d)
$$\frac{2}{5}$$

Sol. (a) Since, two vectors are parallel i.e., angle between them is zero.

$$\therefore (3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot (2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + \lambda \hat{\mathbf{k}}) = |3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + \hat{\mathbf{k}}| \cdot |2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + \lambda \hat{\mathbf{k}}|$$

$$[\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = |\mathbf{a}| |\mathbf{b}| \cos 0^{\circ} \Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = |\overrightarrow{\mathbf{a}}| |\overrightarrow{\mathbf{b}}|]$$

$$\Rightarrow \qquad 6 + 24 + \lambda = \sqrt{9 + 36 + 1} \sqrt{4 + 16 + \lambda^2}$$

$$\Rightarrow \qquad 30 + \lambda = \sqrt{46} \sqrt{20 + \lambda^2}$$

$$\Rightarrow \qquad 900 + \lambda^2 + 60\lambda = 46(20 + \lambda^2) \qquad \text{[on squaring both sides]}$$

$$\Rightarrow \qquad \lambda^2 + 60\lambda - 46\lambda^2 = 920 - 900$$

$$\Rightarrow \qquad -45\lambda^2 + 60\lambda - 20 = 0$$

$$\Rightarrow \qquad -45\lambda^2 + 30\lambda + 30\lambda - 20 = 0$$

$$\Rightarrow \qquad -15\lambda(3\lambda - 2) + 10(3\lambda - 2) = 0$$

$$\Rightarrow \qquad (10 - 15\lambda)(3\lambda - 2) = 0$$

Alternate Method

$$\vec{a} = 3\hat{i} - 6\hat{j} + \hat{k}$$
 and $\vec{b} = 2\hat{i} - 4\hat{j} + \lambda\hat{k}$

Since,

$$\frac{\vec{a} \parallel \vec{b}}{3} = \frac{-6}{-4} = \frac{1}{\lambda} \Rightarrow \lambda = \frac{2}{3}$$

Q. 25 The vectors from origin to the points A and B are $\mathbf{a} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\mathbf{b} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ respectively, then the area of $\triangle OAB$ is equal to

(b)
$$\sqrt{25}$$

(c)
$$\sqrt{229}$$

(d)
$$\frac{1}{2}\sqrt{229}$$

Sol. (d) :. Area of $\triangle OAB = \frac{1}{2} | \overrightarrow{OA} \times \overrightarrow{OB} |$ $= \frac{1}{2} | (2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) \times (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}) |$ $= \frac{1}{2} \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix}$ $= \frac{1}{2} | [\hat{\mathbf{i}}(-3 - 6) - \hat{\mathbf{j}}(2 - 4) + \hat{\mathbf{k}}(6 + 6)] |$ $= \frac{1}{2} | -9\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 12\hat{\mathbf{k}} |$ $\therefore \text{ Area of } \triangle OAB = \frac{1}{2} \sqrt{(81 + 4 + 144)} = \frac{1}{2} \sqrt{229}$

Q. 26 For any vector
$$\vec{a}$$
, the value of $(\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{j})^2 + (\vec{a} \times \hat{k})^2$ is

(a)
$$\overrightarrow{\mathbf{a}}^2$$

(b)
$$3 \stackrel{\rightarrow}{a}^2$$

(c)
$$4 \stackrel{\rightarrow}{a}^2$$

(d)
$$2\overrightarrow{\mathbf{a}}^2$$

$$\vec{\mathbf{a}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

$$\vec{\mathbf{a}}^2 = x^2 + y^2 + z^2$$

$$\vec{\mathbf{a}} \times \hat{\mathbf{i}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x & y & z \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \hat{\mathbf{i}}[0] - \hat{\mathbf{j}}[-z] + \hat{\mathbf{k}}[-y]$$

$$(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})^2 = (z\hat{\mathbf{j}} - y\hat{\mathbf{k}})(z\hat{\mathbf{j}} - y\hat{\mathbf{k}})$$

$$(\vec{\mathbf{a}} \times \hat{\mathbf{i}})^2 = x^2 + z^2$$

$$(\vec{\mathbf{a}} \times \hat{\mathbf{k}})^2 = x^2 + v^2$$

$$= y^{2} + z^{2}$$
Similarly,
$$(\vec{\mathbf{a}} \times \hat{\mathbf{j}})^{2} = x^{2} + z^{2}$$
and
$$(\vec{\mathbf{a}} \times \hat{\mathbf{k}})^{2} = x^{2} + y^{2}$$

$$\therefore (\vec{\mathbf{a}} \times \hat{\mathbf{i}})^{2} + (\vec{\mathbf{a}} \times \hat{\mathbf{j}})^{2} + (\vec{\mathbf{a}} \times \hat{\mathbf{k}})^{2} = y^{2} + z^{2} + x^{2} + z^{2} + x^{2} + y^{2}$$

$$= 2(x^{2} + y^{2} + z^{2}) = 2\vec{\mathbf{a}}^{2}$$

Q. 27 If $|\overrightarrow{a}| = 10$, $|\overrightarrow{b}| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, then the value of $|\overrightarrow{a} \times \overrightarrow{b}|$ is (b) 10 (c) 14

Thinking Process

We know that, $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\sin \theta| \hat{n}$ and $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\cos \theta|$. So, we shall use these formulae to get the value of $|\overrightarrow{a} \times \overrightarrow{b}|$.

$$|\vec{\mathbf{a}}| = 10, |\vec{\mathbf{b}}| = 2 \text{ and } \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 12$$

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$$

$$12 = 10 \times 2\cos\theta$$

$$\Rightarrow \qquad \cos \theta = \frac{12}{20} = \frac{3}{5}$$

$$\Rightarrow \qquad \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{9}{25}}$$

$$\sin \theta = \pm \frac{4}{5}$$

$$|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| |\sin \theta|$$

= $10 \times 2 \times \frac{4}{5}$
= 16

Q. 28 The vectors
$$\lambda \hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$$
, $\hat{\mathbf{i}} + \lambda \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \lambda \hat{\mathbf{k}}$ are coplanar, if

(a)
$$\lambda = -2$$

(b)
$$\lambda = 0$$

(c)
$$\lambda = 1$$

(d)
$$\lambda = -1$$

Sol. (a) Let
$$\vec{a} = \lambda \hat{i} + \hat{j} + 2\hat{k}$$
, $\vec{b} = \hat{i} + \lambda \hat{j} - \hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + \lambda \hat{k}$

For \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} to be coplanar,

$$\begin{vmatrix} \lambda & 1 & 2 \\ 1 & \lambda & -1 \\ 2 & -1 & \lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda(\lambda^2 - 1) - 1(\lambda + 2) + 2(-1 - 2\lambda) = 0$$

$$\Rightarrow \qquad \lambda^3 - \lambda - \lambda - 2 - 2 - 4\lambda = 0$$

$$\Rightarrow \qquad \qquad \lambda^3 - 6\lambda - 4 = 0$$

$$\Rightarrow \qquad (\lambda + 2)(\lambda^2 - 2\lambda - 2) = 0$$

$$\lambda = -2 \text{ or } \lambda = \frac{2 \pm \sqrt{12}}{2}$$

$$\Rightarrow \qquad \lambda = -2 \text{ or } \lambda = \frac{2 \pm 2\sqrt{3}}{2} = 1 \pm \sqrt{3}$$

$$\Rightarrow \qquad \lambda = -2 \text{ or } \lambda = \frac{2 \pm 2\sqrt{3}}{2} = 1 \pm \sqrt{3}$$

Q. 29 If
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ is

(c)
$$-\frac{3}{2}$$

Sol. (c) We have,
$$\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}} = 0$$
 and $\overrightarrow{\mathbf{a}}^2 = 1$, $\overrightarrow{\mathbf{b}}^2 = 1$, $\overrightarrow{\mathbf{c}}^2 = 1$

$$(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = 0$$

$$\Rightarrow \overrightarrow{\mathbf{a}}^2 + \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}^2 + \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}^2 = 0$$

$$\overrightarrow{\mathbf{a}}^2 + \overrightarrow{\mathbf{b}}^2 + \overrightarrow{\mathbf{c}}^2 + 2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) = 0$$

$$[\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}, \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{b} \text{ and } \vec{c} \cdot \vec{a} = \vec{a} \cdot \vec{c}]$$

$$\rightarrow$$

$$1 + 1 + 1 + 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = 0$$

$$\Rightarrow$$

$$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{3}{2}$$

Q. 30 The projection vector of \overrightarrow{a} on \overrightarrow{b} is

(a)
$$\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}\right) \overrightarrow{\mathbf{b}}$$
 (b) $\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}$ (c) $\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}$

(b)
$$\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}$$

(c)
$$\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|}$$

(d)
$$\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|^2}\right) \hat{\mathbf{b}}$$

Sol. (a) Projection vector of
$$\vec{a}$$
 on \vec{b} is given by $= \vec{a} \cdot \frac{\vec{b}}{|\vec{b}|} \vec{b} = \left(\vec{a} \cdot \frac{\vec{b}}{|\vec{b}|} \right) \cdot \vec{b}$

Q. 31 If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ and $|\overrightarrow{a}| = 2$, $|\overrightarrow{\mathbf{b}}| = 3$ and $|\overrightarrow{\mathbf{c}}| = 5$, then the value of $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$ is

$$(c) -19$$

$$\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{0}}$$
 and $\overrightarrow{\mathbf{a}}^2 = 4$, $\overrightarrow{\mathbf{b}}^2 = 9$, $\overrightarrow{\mathbf{c}}^2 = 25$

$$(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{a^2} + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{b}^2 + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} + \overrightarrow{c} \cdot \overrightarrow{b} + \overrightarrow{c^2} = \overrightarrow{0}$$

$$\rightarrow$$

$$\overrightarrow{\mathbf{a}^2} + \overrightarrow{\mathbf{b}^2} + \overrightarrow{\mathbf{c}^2} + 2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) = 0$$

$$[\because \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}]$$

$$\Rightarrow$$

$$4 + 9 + 25 + 2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) = 0$$

$$\Rightarrow$$

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} = \frac{-38}{2} = -19$$

Q. 32 If $|\overrightarrow{a}| = 4$ and $-3 \le \lambda \le 2$, then the range of $|\lambda \overrightarrow{a}|$ is

(b)
$$[-12, 8]$$

Sol. (c) We have,

$$|\overrightarrow{\mathbf{a}}| = 4$$
 and $-3 \le \lambda \le 2$

$$|\lambda \overrightarrow{a}| = |\lambda||\overrightarrow{a}| = \lambda|4|$$

$$\Rightarrow$$

$$|\lambda \overrightarrow{a}| = |-3|4 = 12$$
, at $\lambda = -3$

$$|\lambda \overrightarrow{a}| = |0|4 = 0$$
, at $\lambda = 0$

and

$$|\lambda \vec{a}| = |2|4 = 8$$
, at $\lambda = 2$

So, the range of $|\lambda \vec{a}|$ is [0, 12].

Alternate Method

Since.

$$-3 \le \lambda \le 2$$

$$0 \le |\lambda| \le 3$$

 \Rightarrow

$$0 \le 4 |\lambda| \le 12$$

 $|\lambda \vec{\mathbf{a}}| \in [0, 12]$

Q. 33 The number of vectors of unit length perpendicular to the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$ is

(a) one

(b) two

(c) three

(d) infinite

Sol. (b) The number of vectors of unit length perpendicular to the vectors \vec{a} and \vec{b} is \vec{c} (say)

 $\vec{c} = \pm (\vec{a} \times \vec{b})$. i.e.,

So, there will be two vectors of unit length perpendicular to the vectors \vec{a} and \vec{b} .

Fillers

- **Q.** 34 The vector $\overrightarrow{a} + \overrightarrow{b}$ bisects the angle between the non-collinear vectors \overrightarrow{a} and \overrightarrow{b} , if......
- **Sol.** If vector $\vec{a} + \vec{b}$ bisects the angle between the non-collinear vectors, then

$$\vec{\mathbf{a}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}}) = |\vec{\mathbf{a}}| |\vec{\mathbf{a}} + \vec{\mathbf{b}}| \cos \theta$$

$$\vec{\mathbf{a}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}}) = a\sqrt{a^2 + b^2} \cos \theta$$

$$\Rightarrow \qquad \cos \theta = \frac{\vec{\mathbf{a}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}})}{a\sqrt{a^2 + b^2}} \qquad ...(i)$$
and
$$\vec{\mathbf{b}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}}) = |\vec{\mathbf{b}}| \cdot |\vec{\mathbf{a}} + \vec{\mathbf{b}}| \cos \theta$$

$$\vec{\mathbf{b}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}}) = b\sqrt{a^2 + b^2} \cos \theta \qquad [since, \theta \text{ should be same}]$$

 $\cos \theta = \frac{\vec{\mathbf{b}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}})}{b\sqrt{a^2 + b^2}} \qquad \dots (ii)$

From Eqs. (i) and (ii),

$$\frac{\vec{\mathbf{a}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}})}{a\sqrt{a^2 + b^2}} = \frac{\vec{\mathbf{b}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}})}{b\sqrt{a^2 + b^2}} \Rightarrow \frac{\vec{\mathbf{a}}}{|\vec{\mathbf{a}}|} = \frac{\vec{\mathbf{b}}}{|\vec{\mathbf{b}}|}$$

- $\hat{\mathbf{a}} = \hat{\mathbf{b}} \Rightarrow \vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are equal vectors.
- **Q.** 35 If $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}} = 0$, $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}} = 0$ and $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}} = 0$ for some non-zero vector $\overrightarrow{\mathbf{r}}$, then the value of $\overrightarrow{\mathbf{a}} \cdot (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ is......
- **Sol.** Since, \vec{r} is a non-zero vector. So, we can say that \vec{a} , \vec{b} and \vec{c} are in a same plane.

$$\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = 0$$

[since, angle between \vec{a} , \vec{b} and \vec{c} are zero i.e., $\theta = 0$]

- **Q.** 36 The vectors $\vec{a} = 3\hat{i} 2\hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} 2\hat{k}$ are the adjacent sides of a parallelogram. The angle between its diagonals is.....
- **Sol.** We have, $\vec{a} = 3\hat{i} 2\hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} 2\hat{k}$ $\therefore \qquad \vec{a} + \vec{b} = 2\hat{i} - 2\hat{j}$ and $\vec{a} - \vec{b} = 4\hat{i} - 2\hat{j} + 4\hat{k}$

Now, let θ is the acute angle between the diagonals \vec{a} + \vec{b} and \vec{a} - \vec{b} .

$$\cos \theta = \frac{(\vec{\mathbf{a}} + \vec{\mathbf{b}}) \cdot (\vec{\mathbf{a}} - \vec{\mathbf{b}})}{|\vec{\mathbf{a}} + \vec{\mathbf{b}}||\vec{\mathbf{a}} - \vec{\mathbf{b}}|} \\
= \frac{(2\hat{\mathbf{i}} - 2\hat{\mathbf{j}}) \cdot (4\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}})}{\sqrt{8}\sqrt{16 + 4 + 16}} = \frac{8 + 4}{2\sqrt{2} \cdot 6} = \frac{1}{\sqrt{2}}$$

$$\therefore \qquad \theta = \frac{\pi}{4} \qquad \qquad \left[\because \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \right]$$

- **Q. 37** The values of k, for which $|k| \overrightarrow{a}| < \overrightarrow{a}|$ and $k| \overrightarrow{a}| + \frac{1}{2} \overrightarrow{a}|$ is parallel to $\overrightarrow{a}|$ holds true are
- **Sol.** We have, $|k\vec{a}| < |\vec{a}|$ and $k\vec{a} + \frac{1}{2}\vec{a}$ is parallel to \vec{a} .

$$|k\vec{\mathbf{a}}| < |\vec{\mathbf{a}}| \Rightarrow |k||\vec{\mathbf{a}}| < |\vec{\mathbf{a}}|$$

$$\Rightarrow |k| < 1 \Rightarrow -1 < k < 1$$

Also, since $k\vec{a} + \frac{1}{2}\vec{a}$ is parallel to \vec{a} , then we see that at $k = \frac{-1}{2}$, $k\vec{a} + \frac{1}{2}\vec{a}$ becomes a null vector and then it will not be parallel to \vec{a} .

So, $k\vec{a} + \frac{1}{2}\vec{a}$ is parallel to \vec{a} holds true when $k \in]-1, 1$ [$k \neq \frac{-1}{2}$.

Q. 38 The value of the expression $|\overrightarrow{a} \times \overrightarrow{b}|^2 + (\overrightarrow{a} \cdot \overrightarrow{b})^2$ is

Sol.
$$|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|^2 + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2 = |\vec{\mathbf{a}}|^2 |\vec{\mathbf{b}}|^2 \sin^2 \theta + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2$$

$$= |\vec{\mathbf{a}}|^2 |\vec{\mathbf{b}}|^2 (1 - \cos^2 \theta) + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2$$

$$= |\vec{\mathbf{a}}|^2 |\vec{\mathbf{b}}|^2 - |\vec{\mathbf{a}}|^2 |\vec{\mathbf{b}}|^2 \cos^2 \theta + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2$$

$$= |\vec{\mathbf{a}}|^2 |\vec{\mathbf{b}}|^2 - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2 + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2$$

$$|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|^2 + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2 = |\vec{\mathbf{a}}|^2 |\vec{\mathbf{b}}|^2$$

- **Q.** 39 If $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|^2 + |\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|^2 = 144$ and $|\overrightarrow{\mathbf{a}}| = 4$, then $|\overrightarrow{\mathbf{b}}|$ is equal to
 - Thinking Process

We know that, $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|^2 + |\vec{\mathbf{a}} \cdot \vec{\mathbf{a}}|^2 = |\vec{\mathbf{a}}|^2 |\vec{\mathbf{b}}|^2$. So, we shall use this concept here to find the value of $|\vec{\mathbf{b}}|$.

Sol. :
$$|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|^2 + |\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}|^2 = 144 = |\vec{\mathbf{a}}|^2 \cdot |\vec{\mathbf{b}}|^2$$

$$\Rightarrow \qquad |\vec{\mathbf{a}}|^2 |\vec{\mathbf{b}}|^2 = 144$$

$$\Rightarrow \qquad |\vec{\mathbf{b}}|^2 = \frac{1444}{|\vec{\mathbf{a}}|^2} = \frac{1444}{16} = 9$$

$$\therefore \qquad |\vec{\mathbf{b}}| = 3$$

Q. 40 If \overrightarrow{a} is any non-zero vector, then $(\overrightarrow{a} \cdot \hat{i}) \cdot \hat{i} + (\overrightarrow{a} \cdot \hat{j}) \cdot \hat{j} + (\overrightarrow{a} \cdot \hat{k}) \hat{k}$ is equal to

Sol. Let
$$\overrightarrow{\mathbf{a}} = a_1 \hat{\mathbf{i}} + a_2 \hat{\mathbf{j}} + a_3 \hat{\mathbf{k}}$$

$$\therefore \qquad \overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}} = a_1, \ \overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{j}} = a_2 \ \text{and} \ \overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}} = a_3$$

$$\therefore \qquad (\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}) \hat{\mathbf{i}} + (\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{j}}) \hat{\mathbf{j}} + (\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}} = a_1 \hat{\mathbf{i}} + a_2 \hat{\mathbf{j}} + a_3 \hat{\mathbf{k}} = \overrightarrow{\mathbf{a}}$$

True/False

Q. 41 If $|\vec{a}| = |\vec{b}|$, then necessarily it implies $\vec{a} = \pm \vec{b}$.

Sol. True

If
$$|\vec{a}| = |\vec{b}| \implies \vec{a} = \pm \vec{b}$$

So, it is a true statement.

 $\mathbf{Q.42}$ Position vector of a point \overrightarrow{P} is a vector whose initial point is origin.

Sol. True

Since, $\overrightarrow{P} = \overrightarrow{OP} =$ displacement of vector \overrightarrow{P} from origin

Q. 43 If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$, then the vectors \overrightarrow{a} and \overrightarrow{b} are orthogonal

Sol. True

Since,
$$|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overline{b}|$$

Since,
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$$

$$\Rightarrow \qquad 2|\vec{\mathbf{a}}||\vec{\mathbf{b}}| = -2|\vec{\mathbf{a}}||\vec{\mathbf{b}}|$$

$$\Rightarrow \qquad 4|\vec{\mathbf{a}}||\vec{\mathbf{b}}| = 0$$

$$\Rightarrow |\vec{\mathbf{a}}||\vec{\mathbf{b}}| = 0$$

Hence, **a** and **b** are orthogonal.

$$[: \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = |\overrightarrow{\mathbf{a}}| \cdot |\overrightarrow{\mathbf{b}}| \cos 90^{\circ} = 0]$$

Q. 44 The formula $(\overrightarrow{a} + \overrightarrow{b})^2 = \overrightarrow{a}^2 + \overrightarrow{b}^2 + 2\overrightarrow{a} \times \overrightarrow{b}$ is valid for non-zero vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$.

Sol. False

$$(\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}})^2 = (\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}) \cdot (\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}})$$

= $\overrightarrow{\mathbf{a}}^2 + \overrightarrow{\mathbf{b}}^2 + 2\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$

- $\mathbf{Q.45}$ If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are adjacent sides of a rhombus, then
- Sol. False

If
$$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = 0$$
, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = |\overrightarrow{\mathbf{a}}| |\overrightarrow{\mathbf{b}}| \cos 90^{\circ}$

Hence, angle between \vec{a} and \vec{b} is 90°, which is not possible in a rhombus. Since, angle between adjacent sides in a rhombus is not equal to 90°.