Chapter 11 Three dimensional Geometry

EXERCISE 11.1

Question 1:

If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with x, y and z-axes respectively, find its direction cosines.

Solution:

Let direction cosines of the line be l, m and n.
Hence,

$$
\begin{aligned}
& l=\cos 90^{\circ}=0 \\
& m=\cos 135^{\circ}=\cos \left(90^{\circ}+45^{\circ}\right)=-\sin 45^{\circ}=-\frac{1}{\sqrt{2}} \\
& n=\cos 45^{\circ}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Thus, the direction cosines of the line are $0,-\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$

Question 2:

Find the direction cosines l, m and n of a line which makes equal angles with the coordinates axes.

Solution:

Let the direction cosines of the line make an angle α with each of the coordinates axes.
Hence,

$$
\begin{aligned}
l & =\cos \alpha \\
m & =\cos \alpha \\
n & =\cos \alpha
\end{aligned}
$$

Since, $l^{2}+m^{2}+n^{2}=1$
Hence,

$$
\begin{aligned}
& \Rightarrow \cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1 \\
& \Rightarrow 3 \cos ^{2} \alpha=1 \\
& \Rightarrow \cos ^{2} \alpha=\frac{1}{3} \\
& \Rightarrow \cos \alpha= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

Thus, the direction cosines of the line, which is equally inclined to the coordinate axes, are $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$ and $\pm \frac{1}{\sqrt{3}}$.

Question 3:

If a line has the direction ratios $-18,12,-4$, then what are its direction cosines?

Solution:

If a line has direction ratios $-18,12,-4$, then its direction cosines are

$$
\begin{aligned}
& l=\frac{-18}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}=\frac{-18}{\sqrt{484}}=\frac{-18}{22}=\frac{-9}{11} \\
& m=\frac{12}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}=\frac{12}{\sqrt{484}}=\frac{12}{22}=\frac{6}{11} \\
& n=\frac{-4}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}=\frac{-4}{\sqrt{484}}=\frac{-4}{22}=\frac{-2}{11}
\end{aligned}
$$

Hence, the direction cosines are $\frac{-9}{11}, \frac{6}{11}$ and $\frac{-2}{11}$

Question 4:

Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

Solution:

Given points are $A(2,3,4), B(-1,-2,1)$ and $C(5,8,7)$.
As we know that the direction cosines of points, $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are given by $\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right)$ and $\left(z_{2}-z_{1}\right)$.

Therefore, the direction ratios of AB are

$$
\begin{aligned}
& (-1-2),(-2-3) \text { and }(1-4) \\
& \Rightarrow-3,-5 \text { and }-3
\end{aligned}
$$

The direction ratios of BC are

$$
\begin{aligned}
& {[5-(-1)],[8-(-2)] \text { and }(7-1)} \\
& \Rightarrow 6,10 \text { and } 6
\end{aligned}
$$

It can be seen that the direction ratios of BC are -2 times that AB i.e., they are proportional.
Hence, AB is parallel to BC . Since point B is common to both AB and BC , points A, B, and C are collinear.

Question 5:

Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,2)$ and $(-5,-5,-2)$.

Solution:

Vertices of the triangle are $A(3,5,-4), B(-1,1,2)$ and $C(-5,-5,-2)$
The direction ratios of the side AB are

$$
\begin{aligned}
& (-1-3),(1-5) \text { and }[2-(-4)] \\
& \Rightarrow-4,-4 \text { and } 6
\end{aligned}
$$

Hence, the direction cosines of AB are

$$
\begin{aligned}
& l_{1}=\frac{-4}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}}=\frac{-4}{\sqrt{68}}=\frac{-4}{2 \sqrt{17}}=\frac{-2}{\sqrt{17}} \\
& m_{1}=\frac{-4}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}}=\frac{-4}{\sqrt{68}}=\frac{-4}{2 \sqrt{17}}=\frac{-2}{\sqrt{17}} \\
& n_{1}=\frac{6}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}}=\frac{6}{\sqrt{68}}=\frac{6}{2 \sqrt{17}}=\frac{3}{\sqrt{17}}
\end{aligned}
$$

The direction ratios of BC are

$$
\begin{aligned}
& {[-5(-1)],(-5-1) \text { and }(-2-2)} \\
& \Rightarrow-4,-6 \text { and }-4
\end{aligned}
$$

Hence, the direction cosines of BC are

$$
\begin{aligned}
& l_{2}=\frac{-4}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}=\frac{-4}{\sqrt{68}}=\frac{-4}{2 \sqrt{17}}=\frac{-2}{\sqrt{17}} \\
& m_{2}=\frac{-6}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}=\frac{-6}{\sqrt{68}}=\frac{-6}{2 \sqrt{17}}=\frac{-3}{\sqrt{17}} \\
& n_{2}=\frac{-4}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}=\frac{-4}{\sqrt{68}}=\frac{-4}{2 \sqrt{17}}=\frac{-2}{\sqrt{17}}
\end{aligned}
$$

The direction ratios of CA are

$$
\begin{aligned}
& (-5-3),(-5-5) \text { and }[-2-(-4)] \\
& \Rightarrow-8,-10 \text { and } 2
\end{aligned}
$$

Hence, the direction cosines of AC are

$$
\begin{aligned}
& l_{3}=\frac{-8}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}}=\frac{-8}{\sqrt{168}}=\frac{-8}{2 \sqrt{42}}=\frac{-4}{\sqrt{42}} \\
& m_{3}=\frac{-10}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}}=\frac{-10}{\sqrt{168}}=\frac{-10}{2 \sqrt{42}}=\frac{-5}{\sqrt{42}} \\
& n_{3}=\frac{2}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}}=\frac{2}{\sqrt{168}}=\frac{2}{2 \sqrt{42}}=\frac{1}{\sqrt{42}}
\end{aligned}
$$

Thus, the direction cosines of the sides of the triangle are

$$
\left(\frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right),\left(\frac{-2}{\sqrt{17}}, \frac{-3}{\sqrt{17}}, \frac{-2}{\sqrt{17}}\right) \text { and }\left(\frac{-4}{\sqrt{42}}, \frac{-5}{\sqrt{42}}, \frac{1}{\sqrt{42}}\right)
$$

EXERCISE 11.2

Question 1:

Show that the three lines with direction cosines $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13} ; \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.

Solution:

Two lines with direction cosines l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are perpendicular to each other, if $l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
For the lines with direction cosines, $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$ and $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$, we get

$$
\begin{aligned}
l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =\frac{12}{13} \times \frac{4}{13}+\left(\frac{-3}{13}\right) \times \frac{12}{13}+\left(\frac{-4}{13}\right) \times \frac{3}{13} \\
& =\frac{48}{169}-\frac{36}{169}-\frac{12}{169} \\
& =0
\end{aligned}
$$

Hence, the lines are perpendicular.

For the lines with direction cosines, $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$ and $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$, we get

$$
\begin{aligned}
l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =\frac{4}{13} \times \frac{3}{13}+\frac{12}{13} \times\left(\frac{-4}{13}\right)+\frac{3}{13} \times \frac{12}{13} \\
& =\frac{12}{169}-\frac{48}{169}+\frac{36}{169} \\
& =0
\end{aligned}
$$

Hence, the lines are perpendicular.

For the lines with direction cosines, $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ and $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$, we get

$$
\begin{aligned}
l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =\left(\frac{3}{13}\right) \times\left(\frac{12}{13}\right)+\left(\frac{-4}{13}\right) \times\left(\frac{-3}{13}\right)+\left(\frac{12}{13}\right) \times\left(\frac{-4}{13}\right) \\
& =\frac{36}{169}+\frac{12}{169}-\frac{48}{169} \\
& =0
\end{aligned}
$$

Hence, the lines are perpendicular.

So, the all three lines are mutually perpendicular.

Question 2:

Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

Solution:

Let AB be the line joining the points $(1,-1,2)$ and $(3,4,-2)$; and CD be the line through the points $(0,3,2)$ and $(3,5,6)$
Hence,

$$
\begin{aligned}
& a_{1}=(3-1)=2 \\
& b_{1}=[4-(-1)]=5 \\
& c_{1}=(-2-2)=-4 \\
& a_{2}=(3-0)=3 \\
& b_{2}=(5-3)=2 \\
& c_{2}=(6-2)=4
\end{aligned}
$$

If, $A B \perp C D ; \Rightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
Here,

$$
\begin{aligned}
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} & =2 \times 3+5 \times 2+(-4) \times 4 \\
& =6+10-16 \\
& =0
\end{aligned}
$$

Hence, AB and CD are perpendicular to each other.

Question 3:

Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$.

Solution:

Let AB be the line through the points $(4,7,8)$ and $(2,3,4)$; CD be the line through the points $(-1,-2,1)$ and $(1,2,5)$.
Hence,

$$
\begin{aligned}
& a_{1}=(2-4)=-2 \\
& b_{1}=(3-7)=-4 \\
& c_{1}=(4-8)=-4 \\
& a_{2}=[1-(-1)]=2 \\
& b_{2}=[2-(-2)]=4 \\
& c_{2}=(5-1)=4
\end{aligned}
$$

If, $A B \perp C D ; \quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=0$
Here,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{-2}{2}=-1 \\
& \frac{b_{1}}{b_{2}}=\frac{-4}{4}=-1 \\
& \frac{c_{1}}{c_{2}}=\frac{-4}{4}=-1 \\
& \Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
\end{aligned}
$$

Hence, $A B$ is parallel to $C D$.

Question 4:

Find the equation of the line which passes through point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

Solution:

It is given that the line passes through the point $A(1,2,3)$.
Therefore, the position vector through $A(1,2,3)$ is

$$
\begin{aligned}
& \vec{a}=\hat{i}+2 \hat{j}+3 \hat{k} \\
& \vec{b}=3 \hat{i}+2 \hat{j}-2 \hat{k}
\end{aligned}
$$

So, line passes through point $A(1,2,3)$ and parallel to \vec{b} is given by $\vec{r}=\vec{a}+\lambda \vec{b}$, where \square is a real number.

Hence,

$$
\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-2 \hat{k})
$$

This is the required equation of the line.

Question 5:

Find the equation of the line in vector and in Cartesian form that passes through the point with positive vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in direction $\hat{i}+2 \hat{j}-\hat{k}$

Solution:

It is given that

$$
\begin{aligned}
& \vec{a}=2 \hat{i}-\hat{j}+4 \hat{k} \\
& \vec{b}=\hat{i}+2 \hat{j}-\hat{k}
\end{aligned}
$$

Since, the vector equation of the line is given by $\vec{r}=\vec{a}+\lambda \vec{b}$, where λ is some real number. Hence,

$$
\vec{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(\hat{i}+2 \hat{j}-\hat{k})
$$

Since, \vec{r} is the position vector of any point (x, y, z) on the line Therefore,

$$
\begin{aligned}
x \hat{i}-y \hat{j}+z \hat{k} & =2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(\hat{i}+2 \hat{j}-\hat{k}) \\
& =(2+\lambda) \hat{i}+(-1+2 \lambda) \hat{j}+(4-\lambda) \hat{k}
\end{aligned}
$$

Eliminating \square, we get the Cartesian form equation as

$$
\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}
$$

Thus, the equation of the line in vector form is $\vec{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and cartesian form is $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}$

Question 6:

Find the Cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

Solution:

It is given that the required line passes through the point $(-2,4,-5)$ and is parallel to
$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
Therefore, its direction ratios are $3 k, 5 k$ and $6 k$, where $k \neq 0$
It is known that the equation of the line through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and with direction ratios a, b, c is given by $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

Hence, the equation of the required line is

$$
\begin{aligned}
& \Rightarrow \frac{x+2}{3 k}=\frac{y-4}{5 k}=\frac{z+5}{6 k} \\
& \Rightarrow \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}=k
\end{aligned}
$$

Thus, the cartesian equation of the line is $\frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}$.

Question 7:

The Cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

Solution:

It is given that the Cartesian equation of the line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
Hence,
The given line passes through the point $(5,-4,6)$
Therefoe,
The position vector of the point is $\vec{a}=5 \hat{i}-4 \hat{j}+6 \hat{k}$
Also, the direction ratios of the given line are 3,7 and 2
This means that the line is in the direction of the vector, $\vec{b}=3 \hat{i}+7 \hat{j}+2 \hat{k}$
As we known that the line through positive vector \bar{a} and in the direction of the vector \vec{b} is given by the equation, $\vec{r}=\vec{a}+\lambda \vec{b} ; \lambda \in R$

Hence,

$$
\Rightarrow \vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})
$$

This is the required equation of the given line in vector form.

Question 8:

Find the vector and the Cartesian equation of the lines that passes through the origin and $(5,-2,3)$.

Solution:

The required line passes through the origin.
Therefore, its position vector is $\vec{a}=0$

The direction ratios of the line passing through origin and $(5,-2,3)$ are

$$
\begin{aligned}
& (5-0)=5 \\
& (-2-0)=-2 \\
& (3-0)=3
\end{aligned}
$$

Hence, the line is parallel to the vector given by the equation, $\vec{b}=5 \hat{i}-2 \hat{j}+3 \hat{k}$
The equation of the line in vector form through a point with position vector a and parallel to b is,

$$
\begin{aligned}
& \Rightarrow \vec{r}=\vec{a}+\lambda \overrightarrow{b ;} \lambda \in R \\
& \Rightarrow \vec{r}=0+\lambda(5 \hat{i}-2 \hat{j}+3 \hat{k}) \\
& \Rightarrow \vec{r}=\lambda(5 \hat{i}-2 \hat{j}+3 \hat{k})
\end{aligned}
$$

The equation of the line through the point $\left(x_{1}, y_{1}, z_{1}\right)$, and direction ratios a, b, c is given by, $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

Hence, the equation of the required line in the Cartesian form is

$$
\begin{aligned}
& \Rightarrow \frac{x-0}{5}=\frac{y-0}{-2}=\frac{z-0}{3} \\
& \Rightarrow \frac{x}{5}=\frac{y}{2}=\frac{z}{3}
\end{aligned}
$$

Question 9:

Find the vector and the cartesian equations of the line that passes through the points $(3,-2,-5),(3,-2,6)$.

Solution:

Let the line passing through the points, $P(3,-2,-5)$ and $Q(3,-2,6)$ be PQ. Since PQ passes through $P(3,-2,-5)$, its position vector is given by

$$
\vec{a}=3 \hat{i}-2 \hat{j}-5 \hat{k}
$$

The direction ratios of PQ are given by

$$
\begin{aligned}
(3-3) & =0 \\
(-2+2) & =0 \\
(6+5) & =11
\end{aligned}
$$

The equation of the vector in the direction of PQ is

$$
\begin{aligned}
\vec{b} & =0 . \hat{i}-0 . \hat{j}+11 \hat{k} \\
& =11 \hat{k}
\end{aligned}
$$

The equation of PQ in vector form is given by,

$$
\begin{aligned}
\vec{r} & =\vec{a}+\lambda b, \quad \lambda \in R \\
& =(3 \hat{i}-2 \hat{j}+5 \hat{k})+11 \lambda \hat{k}
\end{aligned}
$$

The equation of PQ in Cartesian form is

$$
\begin{aligned}
& \Rightarrow \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \\
& \Rightarrow \frac{x-3}{5}=\frac{y+2}{2}=\frac{z+5}{3}
\end{aligned}
$$

Question 10:

Find the angle between the following pairs of lines:

$$
\begin{align*}
& \text { (i) } \vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \text { and } \vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k}) \tag{i}\\
& \text { (ii) } \vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k}) \text { and } \vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})
\end{align*}
$$

Solution:

Let \square be the angle between the given lines.
Then the angle between the given pairs of lines is given by

$$
\operatorname{\theta os}=\left|\overrightarrow{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}\right| \overrightarrow{\left|\overrightarrow{b_{1}}\right| \cdot\left|b_{2}\right|} \mid
$$

(i) The given lines are parallel to the vectors, $\overrightarrow{b_{1}}=3 \hat{i}+2 \hat{j}+6 \hat{k}$ and $\overrightarrow{b_{2}}=\hat{i}+2 \hat{j}+2 \hat{k}$, respectively.
Therefore,

$$
\begin{aligned}
\left|\overrightarrow{b_{1}}\right| & =\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{49}=7 \\
\left|\overrightarrow{b_{2}}\right| & =\sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{9}=3 \\
\overrightarrow{b_{1} \cdot b_{2}} & =(3 i+2 j+6 k) \cdot(i+2 j+2 k) \\
& =3 \times 1+2 \times 2+6 \times 2 \\
& =3+4+12 \\
& =19
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\theta \text { os } & \left.=\left|\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right| \cdot \mid b_{2}}\right| \right\rvert\, \\
\theta \text { os } & =\left|\frac{19}{7 \times 3}\right|=\frac{19}{21} \\
\theta & =\cos ^{-1}\left(\frac{19}{21}\right)
\end{aligned}
$$

(ii) The given lines are parallel to the vectors, $\overrightarrow{b_{1}}=\hat{i}-\hat{j}-2 \hat{k}$ and $\overrightarrow{b_{2}}=3 \hat{i}-5 \hat{j}-4 \hat{k}$, respectively. Therefore,

$$
\begin{aligned}
\left|\overrightarrow{b_{1}}\right| & =\sqrt{(1)^{2}+(-1)^{2}+(-2)^{2}}=\sqrt{6} \\
\left|\overrightarrow{b_{2}}\right| & =\sqrt{(3)^{2}+(-5)^{2}+(-4)^{2}}=\sqrt{50}=5 \sqrt{2} \\
\overrightarrow{b_{1} \cdot b_{2}} & =(\hat{i}-\hat{j}-2 \hat{k}) \cdot(3 \hat{i}-5 \hat{j}-4 \hat{k}) \\
& =1 \times 3-1 \times(-5)-2 \times(-4) \\
& =3+5+8 \\
& =16
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\text { Bos } & =\left|\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right| \cdot\left|\overrightarrow{b_{2}}\right|}\right| \\
\text { Bos } & =\left|\frac{16}{(\sqrt{6}) \cdot(5 \sqrt{2})}\right|=\left|\frac{16}{\sqrt{2} \cdot \sqrt{3} \cdot 5 \sqrt{2}}\right|=\left|\frac{16}{10 \sqrt{3}}\right| \\
\text { Bos } & =\frac{8}{5 \sqrt{3}} \\
\theta & =\cos ^{-1}\left(\frac{8}{5 \sqrt{3}}\right)
\end{aligned}
$$

Question 11:

Find the angle between the following pair of lines:
(i) $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Solution:

(i) Let $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$ be the vectors parallel to the line pair of lines $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$ respectively.

Hence, $\overrightarrow{b_{1}}=2 \hat{i}+5 \hat{j}-3 \hat{k}$ and $\overrightarrow{b_{2}}=-i+8 \hat{j}+4 \hat{k}$
Therefore,

$$
\begin{aligned}
\left|\overrightarrow{b_{1}}\right| & =\sqrt{(2)^{2}+(5)^{2}+(-3)^{2}}=\sqrt{38} \\
\left|\overrightarrow{b_{2}}\right| & =\sqrt{(-1)^{2}+(8)^{2}+(4)^{2}}=\sqrt{81}=9 \\
\overrightarrow{b_{1}} \overrightarrow{b_{2}} & =(2 \hat{i}+5 \hat{j}-3 \hat{k}) \cdot(-\hat{i}+8 \hat{j}+4 \hat{k}) \\
& =2 \times(-1)+5 \times 8+(-3) \times 4 \\
& =-2+40-12 \\
& =26
\end{aligned}
$$

The angle
between the given pair of lines is given by the relation,

$$
\begin{aligned}
\text { Bos } & =\left|\frac{\overrightarrow{b_{1}} \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right| \cdot\left|\overrightarrow{b_{2}}\right|}\right| \\
\text { Bos } & =\left|\frac{26}{\sqrt{38} \times 9}\right|=\frac{26}{9 \sqrt{38}} \\
\theta & =\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right)
\end{aligned}
$$

(ii) Let $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$ be the vectors parallel to the given pair of lines $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$, respectively.
Hence, $\overrightarrow{b_{1}}=2 \hat{i}+2 \hat{j}+\hat{k}$ and $\overrightarrow{b_{2}}=4 i+\hat{j}+8 \hat{k}$

Therefore,

$$
\begin{aligned}
\left|\overrightarrow{b_{1}}\right| & =\sqrt{(2)^{2}+(2)^{2}+(1)^{2}}=\sqrt{9}=3 \\
\left|\overrightarrow{b_{2}}\right| & =\sqrt{(4)^{2}+(1)^{2}+(8)^{2}}=\sqrt{81}=9 \\
\overrightarrow{b_{1} \cdot b_{2}} & =(2 \hat{i}+2 \hat{j}+\hat{k}) \cdot(4 \hat{i}+\hat{j}+8 \hat{k}) \\
& =2 \times 4+2 \times 1+1 \times 8 \\
& =8+2+8 \\
& =18
\end{aligned}
$$

If \square is the angle between the pair of lines, then

$$
\text { Bos }=\left|\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right| \cdot\left|\overrightarrow{b_{2}}\right|}\right|
$$

$$
\left.\begin{aligned}
& \theta \text { os }=\mid \overrightarrow{\vec{b}_{1} \cdot b_{2}} \\
&\left|\overrightarrow{b_{1}}\right| \cdot\left|b_{2}\right|
\end{aligned} \right\rvert\,
$$

Question 12:

Find the values of p so the line $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

Solution:

The given equations can be written in the standard form as $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$

The direction ratios of the lines are given by

$$
\begin{aligned}
& a_{1}=-3, b_{1}=\frac{2 p}{7} \text { and } c_{1}=2 \\
& a_{2}=\frac{-3 p}{7}, b_{2}=1 \text { and } c_{2}=-5
\end{aligned}
$$

Since, both the lines are perpendicular to each other,
Therefore,

$$
\begin{aligned}
& a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \\
& (-3) \times\left(\frac{-3 p}{7}\right)+\left(\frac{2 p}{7}\right) \times 1+2 \times(-5)=0 \\
& \frac{9 p}{7}+\frac{2 p}{7}-10=0 \\
& \frac{11}{7} p=10 \\
& 11 p=10 \times 7 \\
& p=\frac{70}{11}
\end{aligned}
$$

Hence the value of $p=\frac{70}{11}$

Question 13:

Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

Solution:

The equations of the given lines are $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ Here,

$$
\begin{aligned}
& a_{1}=7, b_{1}=-5 \text { and } c_{1}=1 \\
& a_{2}=1, b_{2}=2 \text { and } c_{2}=3
\end{aligned}
$$

Two lines with direction ratios, a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

Since,

$$
\begin{aligned}
7 \times 1+(-5) \times 2+1 \times 3 & =7-10+3 \\
& =0
\end{aligned}
$$

Hence, the given lines are perpendicular to each other.

Question 14:

Find the shortest distance between the lines

$$
\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
$$

Solution:

Given lines are $\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$ Hence,

$$
\begin{aligned}
& \overrightarrow{a_{1}}=(\hat{i}+2 \hat{j}+\hat{k}) \text { and } \overrightarrow{b_{1}}=(\hat{i}-\hat{j}+\hat{k}) \\
& \overrightarrow{a_{2}}=(2 \hat{i}-\hat{j}-\hat{k}) \text { and } \overrightarrow{b_{2}}=(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

Shortest distance between the lines $\vec{r}=\overrightarrow{a_{1}}+\lambda b_{1}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ is given by,

$$
\begin{equation*}
d=\left|\frac{\left(\overrightarrow{b_{1} \times} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right| \tag{1}
\end{equation*}
$$

Here,

$$
\begin{aligned}
\overrightarrow{a_{2}}-\overrightarrow{a_{1}} & =(2 \hat{i}-\hat{j}-\hat{k})-(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-3 \hat{j}-2 \hat{k} \\
\overrightarrow{b_{1}} \times \overrightarrow{b_{2}} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 1 \\
2 & 1 & 2
\end{array}\right| \\
& =(-2-1) \hat{i}-(2-2) \hat{j}+(1+2) \hat{k} \\
& =-3 \hat{i}+3 \hat{k} \\
\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right| & =\sqrt{(-3)^{2}+(3)^{2}} \\
& =\sqrt{9+9} \\
& =\sqrt{18} \\
& =3 \sqrt{2}
\end{aligned}
$$

Putting all the values in equation (1), we get

$$
\begin{aligned}
d & =\left|\frac{(-3 \hat{i}+3 \hat{k}) \cdot(\hat{i}-3 \hat{j}-2 \hat{k})}{3 \sqrt{2}}\right| \\
& =\left|\frac{-3 \cdot 1+3(-2)}{3 \sqrt{2}}\right| \\
& =\left|\frac{-9}{3 \sqrt{2}}\right| \\
& =\frac{3}{\sqrt{2}} \\
& =\frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{3 \sqrt{2}}{2}
\end{aligned}
$$

Hence, the shortest distance between the two lines is $\frac{3 \sqrt{2}}{2}$ units.

Question 15:

Find the shortest distance between the lines $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$.

Solution:

The given lines are $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
The shortest distance between the two lines,

$$
\begin{array}{r}
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \text { is given by, } \\
\qquad\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right| \tag{1}\\
d=\frac{}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}
\end{array}
$$

Here,

$$
\begin{aligned}
& x_{1}=-1, y_{1}=-1, z_{1}=-1 \text { and } x_{2}=3, y_{2}=5, z_{2}=7 \\
& a_{1}=7, b_{1}=-6, c_{1}=1 \text { and } a_{2}=1, b_{2}=-2, c_{2}=1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right| & =\left|\begin{array}{ccc}
4 & 6 & 8 \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right| \\
& =4(-6+2)-6(1+7)+8(-14+6) \\
& =-16-36-64 \\
& =-116
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}} & =\sqrt{(-6+2)^{2}+(1+7)^{2}+(-14+6)^{2}} \\
& =\sqrt{16+36+64} \\
& =\sqrt{116}
\end{aligned}
$$

Putting all the values in equation (1), we get

$$
\begin{aligned}
d & =\frac{-116}{\sqrt{116}} \\
& =-\sqrt{116} \\
& =-2 \sqrt{29} \\
|d| & =2 \sqrt{29}
\end{aligned}
$$

Therefore, the distance between the given lines is $2 \sqrt{29}$ units.

Question 16:

Find the shortest distance between the lines whose vector equations are

$$
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k}) .
$$

Solution:

The given lines are $\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
Hence,

$$
\begin{aligned}
& \overrightarrow{a_{1}}=(\hat{i}+2 \hat{j}+3 \hat{k}) \text { and } \overrightarrow{b_{1}}=(\hat{i}-3 \hat{j}+2 \hat{k}) \\
& \overrightarrow{a_{2}}=(4 \hat{i}+5 \hat{j}+6 \hat{k}) \text { and } \overrightarrow{b_{2}}=(2 \hat{i}+3 \hat{j}+\hat{k})
\end{aligned}
$$

Shortest distance between the lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ is given by,

$$
\begin{equation*}
d=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1} \times b_{2}}\right|}\right| \tag{1}
\end{equation*}
$$

Here,

$$
\begin{aligned}
\overrightarrow{a_{2}}-\overrightarrow{a_{1}} & =(4 \hat{i}+5 \hat{j}+6 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})=3 \hat{i}+3 \hat{j}+3 \hat{k} \\
\overrightarrow{b_{1} \times b_{2}} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 2 \\
2 & 3 & 1
\end{array}\right| \\
& =(-3-6) \hat{i}-(1-4) \hat{j}+(3+6) \hat{k} \\
& =-9 \hat{i}+3 \hat{j}+9 \hat{k} \\
\left|\overrightarrow{b_{1} \times} \times \overrightarrow{b_{2}}\right| & =\sqrt{(-9)^{2}+(3)^{2}+(9)^{2}} \\
& =\sqrt{81+9+81} \\
& =\sqrt{171} \\
& =3 \sqrt{19}
\end{aligned}
$$

Putting all the values in equation (1), we get

$$
\begin{aligned}
d & =\left|\frac{(-9 \hat{i}+3 \hat{j}+9 \hat{k}) \cdot(3 \hat{i}+3 \hat{j}+3 \hat{k})}{3 \sqrt{19}}\right| \\
& =\left|\frac{-9 \times 3+3 \times 3+9 \times 3}{3 \sqrt{19}}\right| \\
& =\left|\frac{-27+9+27}{3 \sqrt{19}}\right| \\
& =\left|\frac{9}{3 \sqrt{19}}\right| \\
& =\frac{3}{\sqrt{19}}
\end{aligned}
$$

Hence, the shortest distance between the two lines is $\frac{3}{\sqrt{19}}$ units.

Question 17:

Find the shortest distance between the lines whose vector equations are

$$
\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \text { and } \vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k} .
$$

Solution:

The given lines are $\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$ i.e., $\vec{r}=(\hat{i}-2 \hat{j}+3 \hat{k})+t(-\hat{i}+\hat{j}-2 \hat{k})$ and $\vec{r}=(\hat{i}-\hat{j}+\hat{k})+s(\hat{i}+2 \hat{j}-2 \hat{k})$

Hence,

$$
\begin{aligned}
& \overrightarrow{a_{1}}=(\hat{i}-2 \hat{j}+3 \hat{k}) \text { and } \overrightarrow{b_{1}}=(-\hat{i}+\hat{j}-2 \hat{k}) \\
& \overrightarrow{a_{2}}=(\hat{i}-\hat{j}-\hat{k}) \text { and } \overrightarrow{b_{2}}=(\hat{i}+2 \hat{j}-2 \hat{k})
\end{aligned}
$$

Shortest distance between the lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ is given by,

$$
\begin{equation*}
d=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\mid \overrightarrow{b_{1} \times b_{2} \mid}}\right| \tag{1}
\end{equation*}
$$

Here,

$$
\begin{aligned}
\overrightarrow{a_{2}}-\overrightarrow{a_{1}} & =(\hat{i}-\hat{j}-\hat{k})-(\hat{i}-2 \hat{j}+3 \hat{k})=\hat{j}-4 \hat{k} \\
\overrightarrow{b_{1}} \times \overrightarrow{b_{2}} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 1 & -2 \\
1 & 2 & -2
\end{array}\right| \\
& =(-2+4) \hat{i}-(2+2) \hat{j}+(-2-1) \hat{k} \\
& =2 \hat{i}-4 \hat{j}-3 \hat{k} \\
\left|\overrightarrow{b_{1} \times} \times \overrightarrow{b_{2}}\right| & =\sqrt{(2)^{2}+(-4)^{2}+(-3)^{2}} \\
& =\sqrt{4+16+9} \\
& =\sqrt{29}
\end{aligned}
$$

Putting all the values in equation (1), we get

$$
\begin{aligned}
d & =\left|\frac{(2 \hat{i}-4 \hat{j}-3 \hat{k}) \cdot(\hat{j}-4 \hat{k})}{\sqrt{29}}\right| \\
& =\left|\frac{-4 \times 1-3 \times(-4)}{\sqrt{29}}\right| \\
& =\left|\frac{-4+12}{\sqrt{29}}\right| \\
& =\frac{8}{\sqrt{29}}
\end{aligned}
$$

Hence, the shortest distance between the lines is $\frac{8}{\sqrt{29}}$ units.

EXERCISE 11.3

Question 1:

In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
(a) $z=2$
(b) $x+y+z=1$
(c) $2 x+3 y-z=5$
(d) $5 y+8=0$

Solution:

(a) The equation of the plane is $z=2$ or $0 x+0 y+z=2$

The direction ratios of normal are 0,0 and 1 .
Therefore,

$$
\sqrt{0^{2}+0^{2}+1^{2}}=1
$$

Dividing both sides of equation (1) by 1 , we obtain

$$
0 . x+0 . y+1 . z=2
$$

This is of the form $l x+m y+n z=d$, where l, m, n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

Hence, the direction cosines are 0,0 and 1 and the distance of the plane form the origin is 2 units.
(b) $x+y+z=1$

The direction ratios of normal are 1,1 and 1 .
Therefore,

$$
\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}=\sqrt{3}
$$

Dividing both sides of equation (1) by $\sqrt{3}$, we get

$$
\frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z=\frac{1}{\sqrt{3}}
$$

This equation is one of the form $l x+m y+n z=d$, where l, m, n are direction cosines of normal to the plane and d is the distance of normal from the origin.

Hence, the direction cosines of the normal are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$ and the distance of normal form the origin is $\frac{1}{\sqrt{3}}$ units.
(c) $2 x+3 y-z=5$

The direction ratios of normal are 2,3 and -1 .
Therefore,

$$
\sqrt{(2)^{2}+(3)^{2}+(-1)^{2}}=\sqrt{14}
$$

Dividing both sides of equation (1) by $\sqrt{14}$, we get

$$
\frac{2}{\sqrt{14}} x+\frac{3}{\sqrt{14}} y-\frac{1}{\sqrt{14}} z=\frac{5}{\sqrt{14}}
$$

This equation is one of the form $l x+m y+n z=d$, where l, m, n are direction cosines of normal to the plane and d is the distance of normal from the origin.

Hence, the direction cosines of the normal are $\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$ and $\frac{-1}{\sqrt{14}}$ and the distance of normal form the origin is $\frac{5}{\sqrt{14}}$ units.
(d) $5 y+8=0$
$\Rightarrow 0 x+5 y+0 z=8$
The direction ratios of normal are $0,-5$ and 0 .
Therefore,

$$
\sqrt{0^{2}+(-5)^{2}+0^{2}}=5
$$

Dividing both sides of equation (1) by 5 , we get

$$
0 x+y+0 z=\frac{8}{5}
$$

This equation is one of the form $l x+m y+n z=d$, where l, m, n are direction cosines of normal to the plane and d is the distance of normal from the origin.

Hence, the direction cosines of the normal to the plane are 0,1 and 0 and the distance of normal form the origin is $\frac{8}{5}$ units.

Question 2:

Find the vector equation of a plane which is at the distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

Solution:

The normal vector is, $\vec{n}=3 \hat{i}+5 \hat{j}-6 \hat{k}$

$$
\hat{n}=\frac{\vec{n}}{|\vec{n}|}=\frac{3 \hat{i}+5 \hat{j}-6 \hat{k}}{\sqrt{(3)^{2}+(5)^{2}+(6)^{2}}}=\frac{3 \hat{i}+5 \hat{j}-6 \hat{k}}{\sqrt{70}}
$$

The equation of the plane with position vector \vec{r} is given by, $\overrightarrow{r . \hat{n}}=d$ Hence,

$$
\vec{r} \cdot\left(\frac{3 \hat{i}+5 \hat{j}-6 \hat{k}}{\sqrt{70}}\right)=7
$$

Question 3:

Find the Cartesian equation of the following planes:
(a) $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
(b) $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$
(c) $\vec{r} \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$

Solution:

(a) Given equation of the plane is

$$
\begin{equation*}
\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2 \tag{1}
\end{equation*}
$$

For any arbitrary point, $P(x, y, z)$ on the plane, position vector \vec{r} is given by,

$$
\vec{r}=x \hat{i}+y \hat{j}-z \hat{k}
$$

Putting the values of \bar{r} in equation (1), we get

$$
\begin{aligned}
& (x \hat{i}+y \hat{j}-z \hat{k}) \cdot(\hat{i}+\hat{j}-\hat{k})=2 \\
& \Rightarrow x+y-z=2
\end{aligned}
$$

(b) $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$

For any arbitrary point $P(x, y, z)$ on the plane, position vector \vec{r} is given by, $\vec{r}=x \hat{i}+y \hat{j}-z \hat{k}$
Putting the values of r in equation (1), we get

$$
\begin{aligned}
& (x \hat{i}+y \hat{j}-z \hat{k}) \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1 \\
& \Rightarrow 2 x+3 y-4 z=1
\end{aligned}
$$

(c) $\overrightarrow{r \cdot}\lceil(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$

For any arbitrary point, $P(x, y, z)$ on the plane, position vector \vec{r} is given by,

$$
\vec{r}=x \hat{i}+y \hat{j}-z \hat{k}
$$

Putting the values of \vec{r} in equation (1), we get

$$
\begin{aligned}
& (x \hat{i}+y \hat{j}-z \hat{k}) \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15 \\
& \Rightarrow(s-2 t) x+(3-t) y+(2 s+t) z=15
\end{aligned}
$$

Question 4:

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
(a) $2 x+3 y+4 z-12=0$
(b) $3 y+4 z-6=0$
(c) $x+y+z=1$
(d) $5 y+8=0$

Solution:

(a) Let the coordinates of the foot of perpendicular P from the origin to the plane be $\left(x_{1}, y_{1}, z_{1}\right)$

$$
\begin{equation*}
2 x+3 y+4 z-12=0 \tag{1}
\end{equation*}
$$

The direction ratios of normal are 2,3 and 4 Therefore,

$$
\sqrt{(2)^{2}+(3)^{2}+(4)^{2}}=\sqrt{29}
$$

Dividing both sides of equation (1) by $\sqrt{29}$, we get

$$
\begin{equation*}
\frac{2}{\sqrt{29}} x+\frac{3}{\sqrt{29}} y+\frac{4}{\sqrt{29}} z=\frac{12}{\sqrt{29}} \tag{2}
\end{equation*}
$$

This equation is one of the form $l x+m y+n z=d$, where l, m, n are direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by $(l d, m d, n d)$
Hence, the coordinates of the foot of the perpendicular are

$$
\begin{aligned}
& \left(\frac{2}{\sqrt{29}} \times \frac{12}{\sqrt{29}}, \frac{3}{\sqrt{29}} \times \frac{12}{\sqrt{29}}, \frac{4}{\sqrt{29}} \times \frac{12}{\sqrt{29}}\right) \\
& \Rightarrow\left(\frac{24}{29}, \frac{36}{29}, \frac{48}{29}\right)
\end{aligned}
$$

(b) Let the coordinates of the foot of perpendicular P from the origin to the plane be $\left(x_{1}, y_{1}, z_{1}\right)$

$$
\begin{equation*}
3 y+4 z-6=0 \tag{1}
\end{equation*}
$$

The direction ratios of the normal are 0,3 and 4 .
Therefore,

$$
\sqrt{0^{2}+3^{2}+4^{2}}=5
$$

Dividing both sides of equation (1) by 5 , we get

$$
0 x+\frac{3}{5} y+\frac{4}{5} z=\frac{6}{5}
$$

This equation is one of the form $l x+m y+n z=d$, where l, m, n are direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by (ld,md,nd) Hence, the coordinates of the foot of the perpendicular are

$$
\begin{aligned}
& \left(0 \times \frac{6}{5}, \frac{3}{5} \times \frac{6}{5}, \frac{4}{5} \times \frac{6}{5}\right) \\
& \Rightarrow\left(0, \frac{18}{25}, \frac{24}{25}\right)
\end{aligned}
$$

(c) Let the coordinates of the foot of perpendicular P from the origin to the plane be

$$
\begin{equation*}
x+y+z=1 \tag{1}
\end{equation*}
$$

The direction ratios of the normal are 1,1 and 1 .
Therefore,

$$
\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}=\sqrt{3}
$$

Dividing both sides of equation (1) by $\sqrt{3}$, we get,

$$
\frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z=\frac{1}{\sqrt{3}}
$$

This equation is one of the form $l x+m y+n z=d$, where l, m, n are direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by $(l d, m d, n d)$
Hence, the coordinates of the foot of the perpendicular are

$$
\begin{aligned}
& \left(0 \times \frac{6}{5}, \frac{3}{5} \times \frac{6}{5}, \frac{4}{5} \times \frac{6}{5}\right) \\
& \Rightarrow\left(0, \frac{18}{25}, \frac{24}{25}\right)
\end{aligned}
$$

(d) Let the coordinates of the foot of perpendicular P from the origin to the plane be

$$
\begin{align*}
& 5 y+8=0 \\
& \Rightarrow 0 x-5 y+0 z=8 \tag{1}
\end{align*}
$$

The direction ratios of the normal are $0,-5$ and 0 .
Therefore,

$$
\sqrt{0^{2}+(-5)^{2}+0}=5
$$

Dividing both sides of equation (1) by 5, we obtain

$$
0 x-y+0 z=\frac{8}{5}
$$

This equation is one of the form $l x+m y+n z=d$, where l, m, n are direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by $(l d, m d, n d)$
Hence, the coordinates of the foot of the perpendicular are

$$
\begin{aligned}
& \left(0 \times \frac{8}{5},-1 \times \frac{8}{5}, 0 \times \frac{8}{5}\right) \\
& \Rightarrow\left(0,-\frac{8}{5}, 0\right)
\end{aligned}
$$

Question 5:

Find the vector and Cartesian equation of the planes
(a) that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$
(b) that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$.

Solution:

(a) The position vector of point $(1,0,-2)$ is $\vec{a}=\hat{i}-2 \hat{k}$

The normal vector \vec{N} perpendicular to the plane is $\vec{N}=\hat{i}+\hat{j}-\hat{k}$
The vector equation of the plane is given by,

$$
\begin{align*}
& \Rightarrow(\vec{r}-\vec{a}) \cdot \vec{N}=0 \\
& \Rightarrow[\vec{r}-(\vec{i}-2 \hat{k})] \cdot(\hat{i}+\hat{j}-\hat{k})=0 \tag{1}
\end{align*}
$$

Since, \vec{r} is the positive vector of any point $P(x, y, z)$ in the plane.
Hence,

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

Thus, equation (1) becomes

$$
\begin{aligned}
& \Rightarrow[(x \hat{i}+y \hat{j}+z \hat{k})-(\hat{i}-2 \hat{k})] \cdot(\hat{i}+\hat{j}-\hat{k})=0 \\
& \Rightarrow[(x-1) \hat{i}+y \hat{j}+(z+2) \hat{k}] \cdot(\hat{i}+\hat{j}-\hat{k})=0 \\
& \Rightarrow(x-1)+y-(z+2)=0 \\
& \Rightarrow x+y-z-3=0 \\
& \Rightarrow x+y-z=3
\end{aligned}
$$

(b) The position vector of point $(1,4,6)$ is $\vec{a}=\hat{i}+4 \hat{j}+6 \hat{k}$ The normal vector \vec{N} perpendicular to the plane is $\vec{N}=\hat{i}-2 \hat{j}+\hat{k}$ The vector equation of the plane is given by,

$$
\begin{align*}
& \Rightarrow(\vec{r}-\vec{a}) \cdot \vec{N}=0 \\
& \Rightarrow[\vec{r}-(\hat{i}+4 \hat{j}+6 \hat{k})] \cdot(\hat{i}-2 \hat{j}+\hat{k})=0 \tag{1}
\end{align*}
$$

Since, \vec{r} is the positive vector of any point $P(x, y, z)$ in the plane.
Hence,

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

Thus, equation (1) becomes

$$
\begin{aligned}
& \Rightarrow[(x \hat{i}+y \hat{j}+z \hat{k})-(\hat{i}+4 \hat{j}+6 \hat{k})] \cdot(\hat{i}-2 \hat{j}+\hat{k})=0 \\
& \Rightarrow[(x-1) \hat{i}+(y-4) \hat{j}+(z-6) \hat{k}] \cdot(\hat{i}-2 \hat{j}+\hat{k})=0 \\
& \Rightarrow(x-1)-2(y-4)+(z-6)=0 \\
& \Rightarrow x-2 y+z+1=0
\end{aligned}
$$

Question 6:

Find the equations of the planes that passes through the points.
(a) $(1,1,-1),(6,4,-5),(-4,2,3)$
(b) $(1,1,0),(1,2,1),(-2,2,-1)$

Solution:

(a) The given points are $A(1,1,-1), B(6,4,-5)$ and $C(-4,2,3)$.

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & 1 & -1 \\
6 & 4 & -5 \\
-4 & -2 & 3
\end{array}\right) & =(12-10)-(18-20)-(-12+16) \\
& =2+2-4 \\
& =0
\end{aligned}
$$

Since, the points are collinear, there will be infinite number of planes passing through the given points.
(b) The given points are $A(1,1,0), B(1,2,1)$ and $C(-2,2,-1)$.

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
-2 & 2 & -1
\end{array}\right) & =(-2-2)-(2+2) \\
& =-8 \\
& \neq 0
\end{aligned}
$$

Thus, a plane will pass through the points.

The equation of the plane through the points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ is given by

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right)=0 \\
& \Rightarrow\left(\begin{array}{ccc}
x-1 & y-1 & z \\
0 & 1 & 1 \\
-3 & 1 & -1
\end{array}\right)=0 \\
& \Rightarrow(-2)(x-1)-3(y-1)+3 z=0 \\
& \Rightarrow-2 x+2-3 y+3+3 z=0 \\
& \Rightarrow-2 x-3 y+3 z+5=0 \\
& \Rightarrow 2 x+3 y-3 z=5
\end{aligned}
$$

Question 7:

Find the intercepts cut off by the plane $2 x+y-z=5$

Solution:

$2 x+y-z=5$
Dividing both sides of equation by 5 , we get

$$
\begin{aligned}
& \Rightarrow \frac{2}{5} x+\frac{y}{5}-\frac{z}{5}=1 \\
& \Rightarrow \frac{x}{\frac{5}{2}}+\frac{y}{5}+\frac{z}{-5}=1
\end{aligned}
$$

The equation of a plane in intercept form is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, where a, b and c are intercepts cut off by the plane at x, y and z-axes respectively.

Hence, for the given equation,

$$
a=\frac{5}{2}, b=5 \text { and } c=-5
$$

Thus, the intercepts cut off by plane are $\frac{5}{2}, 5$ and -5 .

Question 8:

Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

Solution:

The equation of the plane ZOX is $Y=0$
Any plane parallel to it is of the form, $y=a$
Since the y-intercept of the plane is 3 ,
Therefore, $a=3$
Hence, the equation of the required plane is $y=3$.

Question 9:

Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.

Solution:

The equation of the given plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ is given by

$$
\begin{equation*}
(3 x-y+2 z-4)+\alpha(x+y+z-2)=0 ; \alpha \in R \tag{1}
\end{equation*}
$$

This plane passes through the point $(2,2,1)$.

Hence, this point will satisfy equation

$$
\begin{aligned}
& \Rightarrow(3 \times 2-2+2 \times 1-4)+\alpha(2+2+1-2)=0 \\
& \Rightarrow 2+3 \alpha=0 \\
& \Rightarrow \alpha=\frac{-2}{3}
\end{aligned}
$$

Putting $\alpha=\frac{-2}{3}$ in equation (1), we get

$$
\begin{aligned}
& \Rightarrow(3 x-y+2 z-4)-\frac{2}{3}(x+y+z-2)=0 \\
& \Rightarrow 3(3 x-y+2 z-4)-2(x+y+z-2)=0 \\
& \Rightarrow 9 x-3 y+6 z-12-2 x-2 y-2 z+4=0 \\
& \Rightarrow 7 x-5 y+4 z-8=0
\end{aligned}
$$

Question 10:

Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and through the point $(2,1,3)$.

Solution:

The equations of the planes are $\overrightarrow{r \cdot}(2 \hat{i}+2 \hat{j}-3 \hat{k})=7$ and $\vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ Hence,

$$
\begin{align*}
& \Rightarrow \overrightarrow{r .}(2 \hat{i}+2 \hat{j}-3 \hat{k})-7=0 \tag{1}\\
& \Rightarrow \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})-9=0 \tag{2}
\end{align*}
$$

Equation of the required plane is given by

$$
\lceil\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})-7\rceil+\lambda\lceil\vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})-9\rceil=0 ; \lambda \in R
$$

Therefore,

$$
\begin{align*}
& \Rightarrow \vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})-7+\lambda \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})-9 \lambda=0 \\
& \Rightarrow \vec{r} \cdot[(2 \hat{i}+2 \hat{j}-3 \hat{k})+\lambda(2 \hat{i}+5 \hat{j}+3 \hat{k})]=9 \lambda+7 \\
& \Rightarrow \vec{r} \cdot[(2+2 \lambda) \hat{i}+(2+5 \lambda) \hat{j}+(3 \lambda-3) \hat{k}]]=9 \lambda+7 \tag{3}
\end{align*}
$$

The plane passes through the point $(2,1,3)$
Hence, its position vector is given by, $\vec{r}=2 \hat{i}+\hat{j}+3 \hat{k}$
Putting in equation (3), we get

$$
\begin{aligned}
& \Rightarrow(2 \hat{i}+\hat{j}+3 \hat{k}) \cdot[(2+2 \lambda) \hat{i}+(2+5 \lambda) \hat{j}+(3 \lambda-3) \hat{k}]]=9 \lambda+7 \\
& \Rightarrow 2(2+2 \lambda)+(2+5 \lambda)+3(3 \lambda-3)=9 \lambda+7 \\
& \Rightarrow 4+4 \lambda+2+5 \lambda+9 \lambda-9-9 \lambda-7=0 \\
& \Rightarrow 9 \lambda-10=0 \\
& \Rightarrow \lambda=\frac{10}{9}
\end{aligned}
$$

Putting $\lambda=\frac{10}{9}$ in equation (3), we get

$$
\begin{aligned}
& \Rightarrow \vec{r} \cdot\left(\frac{38}{9} \hat{i}+\frac{68}{9} \hat{j}+\frac{3}{9} \hat{k}\right)=17 \\
& \Rightarrow \vec{r} \cdot(38 \hat{i}+68 \hat{j}+3 \hat{k})=153
\end{aligned}
$$

Question 11:

Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.

Solution:

The equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ is

$$
\begin{align*}
& \Rightarrow(x+y+z-1)+\lambda(2 x+3 y+4 z-5)=0 \\
& \Rightarrow(2 \lambda+1) x+(3 \lambda+1) y+(4 \lambda+1) z-(5 \lambda+1)=0 \tag{1}
\end{align*}
$$

The plane in equation (1) is perpendicular to the plane $x-y+z=0$

Since the planes are perpendicular, $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
Here,

$$
\begin{aligned}
& a_{1}=(2 \lambda+1), b_{1}=(3 \lambda+1) \text { and } c_{1}=(4 \lambda+1) \\
& a_{2}=1, b_{2}=-1 \text { and } c_{2}=1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \Rightarrow(2 \lambda+1) \times 1+(3 \lambda+1) \times(-1)+(4 \lambda+1) \times 1=0 \\
& \Rightarrow 2 \lambda+1-3 \lambda-1+4 \lambda+1=0 \\
& \Rightarrow 3 \lambda+1=0 \\
& \Rightarrow \lambda=\frac{-1}{3}
\end{aligned}
$$

Putting $\lambda=\frac{-1}{3}$ in equation (1), we get

$$
\begin{aligned}
& \Rightarrow \frac{1}{3} x+\frac{1}{3} z+\frac{2}{3}=0 \\
& \Rightarrow x-z+2=0
\end{aligned}
$$

Question 12:

Find the angle between the planes whose vector equations are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$.

Solution:

The equations of the given planes are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\overrightarrow{r \cdot}(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$ If $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ are normal to the planes, $\overrightarrow{r . n_{1}}=d_{1}$ and $\overrightarrow{r . n_{2}}=d_{2}$

Then the angle between them θ is given by,

$$
\begin{equation*}
\theta=\cos ^{-1} \frac{\left|\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}\right|}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|} \tag{1}
\end{equation*}
$$

Here,

$$
\overrightarrow{n_{1}}=2 \hat{i}+2 \hat{j}-3 \hat{k} \text { and } \overrightarrow{n_{2}}=3 \hat{i}-3 \hat{j}+5 \hat{k}
$$

Hence,

$$
\begin{aligned}
\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}} & =(2 \hat{i}+2 \hat{j}-3 \hat{k}) \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k}) \\
& =2 \times 3+2 \times(-3)+(-3) \times 5 \\
& =-15 \\
\left|\overrightarrow{n_{1}}\right| & =\sqrt{(2)^{2}+(2)^{2}+(-3)^{2}}=\sqrt{17} \\
\left|\overrightarrow{n_{2}}\right| & =\sqrt{(3)^{2}+(-3)^{2}+(5)^{2}}=\sqrt{43}
\end{aligned}
$$

Substituting these values in equation (1), we obtain

$$
\begin{aligned}
\theta & =\cos ^{-1} \frac{|-15|}{|\sqrt{17}| \cdot|\sqrt{43}|} \\
& =\cos ^{-1} \frac{15}{\sqrt{731}}
\end{aligned}
$$

Question 13:

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
(a) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5=0$
(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$
(d) $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
(e) $4 x+8 y+z-8=0$ and $y+z-4=0$

Solution:

The directions ratios of normal to be the plane $L_{1}: a_{1} x+b_{1} y+c_{1} z=0$ are a_{1}, b_{1}, c_{1} and $L_{2}: a_{2} x+b_{2} y+c_{2} z=0$ are a_{2}, b_{2}, c_{2}
If,

$$
\begin{aligned}
& L_{1} \| L_{2} ; \Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& L_{1} \perp L_{2} ; \Rightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0
\end{aligned}
$$

The angle between L_{1} and L_{2} is given by

$$
\theta=\cos ^{-1}\left|\frac{\left|a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

(a) The equations of the planes are $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$

Here,

$$
\begin{aligned}
& a_{1}=7, b_{1}=5 \text { and } c_{1}=6 \\
& a_{2}=3, b_{2}=-1 \text { and } c_{2}=-10
\end{aligned}
$$

Hence,

$$
\begin{aligned}
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} & =7 \times 3+5 \times(-1)+6 \times(-10) \\
& =-44 \\
& \neq 0
\end{aligned}
$$

Therefore, the given planes are not perpendicular.
Also,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{7}{3} \\
& \frac{b_{1}}{b_{2}}=\frac{5}{-1}=-5 \\
& \frac{c_{1}}{c_{2}}=\frac{6}{-10}=-\frac{3}{5}
\end{aligned}
$$

It can be seen that, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Therefore, the given planes are not parallel.
The angle between them is given by,

$$
\begin{aligned}
\theta & =\cos ^{-1}\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right| \\
& =\cos ^{-1}\left|\frac{7 \times 3+5 \times(-1)+6 \times(-10)}{\sqrt{(7)^{2}+(5)^{2}+(6)^{2}} \cdot \sqrt{(3)^{2}+(-1)^{2}+(-10)^{2}}}\right| \\
& =\cos ^{-1}\left|\frac{21-5-60}{\sqrt{110} \cdot \sqrt{110}}\right| \\
& =\cos ^{-1}\left|\frac{-44}{110}\right| \\
& =\cos ^{-1} \frac{2}{5}
\end{aligned}
$$

(b) The equations of the planes are $2 x+y+3 z-2=0$ and $x-2 y+5=0$

Here,

$$
\begin{aligned}
& a_{1}=2, b_{1}=1 \text { and } c_{1}=3 \\
& a_{2}=1, b_{2}=-2 \text { and } c_{2}=0
\end{aligned}
$$

Hence,

$$
\begin{aligned}
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} & =2 \times 1+1 \times(-2)+3 \times 0 \\
& =2-2+0 \\
& =0
\end{aligned}
$$

Thus, the given planes are perpendicular to each other.
(c) The equations of the planes are $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$ Here,

$$
\begin{aligned}
& a_{1}=2, b_{1}=-2 \text { and } c_{1}=4 \\
& a_{2}=3, b_{2}=-3 \text { and } c_{2}=6
\end{aligned}
$$

Hence,

$$
\begin{aligned}
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} & =2 \times 3+(-2) \times(-3)+4 \times 6 \\
& =6+6+24 \\
& =36 \\
& \neq 0
\end{aligned}
$$

Thus, the given planes are not perpendicular to each other.

Also,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{2}{3} \\
& \frac{b_{1}}{b_{2}}=\frac{-2}{-3}=\frac{2}{3} \\
& \frac{c_{1}}{c_{2}}=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

It can be seen that, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Hence, the given planes are parallel to each other.
(d) The equations of the planes are $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$ Here,

$$
\begin{aligned}
& a_{1}=2, b_{1}=-1 \text { and } c_{1}=3 \\
& a_{2}=2, b_{2}=-1 \text { and } c_{2}=3
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{2}{2}=1 \\
& \frac{b_{1}}{b_{2}}=\frac{-1}{-1}=1 \\
& \frac{c_{1}}{c_{2}}=\frac{3}{3}=1
\end{aligned}
$$

Therefore, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Hence, the given lines are parallel to each other.
(e) The equations of the given planes are $4 x+8 y+z-8=0$ and $y+z-4=0$ Here,

$$
\begin{aligned}
& a_{1}=4, b_{1}=8 \text { and } c_{1}=1 \\
& a_{2}=0, b_{2}=1 \text { and } c_{2}=1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} & =4 \times 0+8 \times 1+1 \\
& =9 \\
& \neq 0
\end{aligned}
$$

Thus, the given lines are not perpendicular to each other.

Also,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{4}{0} \\
& \frac{b_{1}}{b_{2}}=\frac{8}{1}=8 \\
& \frac{c_{1}}{c_{2}}=\frac{1}{1}=1
\end{aligned}
$$

It can be seen that, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Thus, the given lines not parallel to each other.
The angle between the planes is given by,

$$
\begin{aligned}
\theta & =\cos ^{-1}\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right| \\
& =\cos ^{-1}\left|\frac{4 \times 0+8 \times 1+1 \times 1}{\sqrt{(4)^{2}+(8)^{2}+(1)^{2}} \times \sqrt{(0)^{2}+(1)^{2}+(1)^{2}}}\right| \\
& =\cos ^{-1}\left|\frac{9}{9 \sqrt{2}}\right| \\
& =\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& =45^{\circ}
\end{aligned}
$$

Question 14:

In the following cases, find the distance of each of the given points from the corresponding given plane.

Point

(a) $(0,0,0)$
(b) $(3,-2,1)$

$$
3 x-4 y+12 z=3
$$

(c) $(2,3,-5)$

$$
2 x-y+2 z+3=0
$$

(d) $(-6,0,0)$

$$
x+2 y-2 z=9
$$

$$
2 x-3 y+6 z-2=0
$$

Plane

Solution:

The distance between a point, $P\left(x_{1}, y_{1}, z_{1}\right)$ and a plane $A x+B y+C z+D=0$ is given by,

$$
d=\left|\frac{A x_{1}+B y_{1}+C z_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|
$$

(a) The given point is $(0,0,0)$ and the plane is $3 x-4 y+12 z-3=0$

Therefore,

$$
\begin{aligned}
d & =\left|\frac{3 \times 0+(-4) \times 0+12 \times 0+(-3)}{\sqrt{(-3)^{2}+(-4)^{2}+(12)^{2}}}\right| \\
& =\left|\frac{-3}{\sqrt{169}}\right| \\
& =\frac{3}{13}
\end{aligned}
$$

(b) The given point is $(3,-2,1)$ and the plane is $2 x-y+2 z+3=0$ Therefore,

$$
\begin{aligned}
d & =\left|\frac{2 \times 3+(-1) \times(-2)+2 \times 1+3}{\sqrt{(2)^{2}+(-1)^{2}+(2)^{2}}}\right| \\
& =\left|\frac{13}{\sqrt{9}}\right| \\
& =\frac{13}{3}
\end{aligned}
$$

(c) The given point is $(2,3,-5)$ and the plane is $x+2 y-2 z-9=0$ Therefore,

$$
\begin{aligned}
d & =\left|\frac{1 \times 2+2 \times 3+(-2) \times(-5)+(-9)}{\sqrt{(1)^{2}+(2)^{2}+(-2)^{2}}}\right| \\
& =\left|\frac{9}{\sqrt{9}}\right| \\
& =\frac{9}{3} \\
& =3
\end{aligned}
$$

(d) The given point is $(-6,0,0)$ and the plane is $2 x-3 y+6 z-2=0$ Therefore,

$$
\begin{aligned}
d & =\left|\frac{2 \times(-6)+(-3) \times 0+6 \times 0+(-2)}{\sqrt{(2)^{2}+(-3)^{2}+(6)^{2}}}\right| \\
& =\left|\frac{-14}{\sqrt{49}}\right| \\
& =\frac{14}{7} \\
& =2
\end{aligned}
$$

MISCELLANEOUS EXERCISE

Question 1:

Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1),(4,3,-1)$.

Solution:

Let OA be the line joining the origin $\mathrm{O}(0,0,0)$ and the point $A(2,1,1)$.
Also, let BC be the line joining the points, $B(3,5,-1)$ and $C(4,3,-1)$.
The direction ratios of OA are 2,1 and 1 and of BC are $(4-3)=1,(3-5)=-2$ and $(-1+1)=0$

If, $O A \perp B C \Rightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
Here,

$$
\begin{aligned}
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} & =2 \times 1+1(-2)+1 \times 0 \\
& =2-2 \\
& =0
\end{aligned}
$$

Thus, $O A \perp B C$ proved.

Question 2:

If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines. Show that the direction cosines of the perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.

Solution:

$l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
$l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1$
$l_{2}{ }^{2}+m_{2}{ }^{2}+n_{2}{ }^{2}=1$
Let l, m, n be the direction cosines of the line which is perpendicular to the line with direction cosines l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}.

Therefore,

$$
\begin{align*}
& l l_{1}+m m_{1}+n n_{1}=0 \\
& l l_{2}+m m_{2}+n n_{2}=0 \\
& \Rightarrow \frac{l}{m_{1} n_{2}-m_{2} n_{1}}=\frac{m}{n_{1} l_{2}-n_{2} l_{1}}=\frac{n}{l_{1} m_{2}-l_{2} m_{1}} \\
& \Rightarrow \frac{l^{2}}{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}}=\frac{m^{2}}{\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}}=\frac{n^{2}}{\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}} \\
& \Rightarrow \frac{l^{2}+m^{2}+n^{2}}{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}} \tag{4}
\end{align*}
$$

Since, l, m, n are direction cosines of the line.
Hence,

$$
\begin{equation*}
l^{2}+m^{2}+n^{2}=1 \tag{5}
\end{equation*}
$$

As we know that,

$$
\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right)\left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)-\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)=\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}
$$

Putting the values from (1), (2) and (3), we get

$$
\begin{align*}
& \Rightarrow 1.1-0=\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2} \\
& \Rightarrow\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}=1 \tag{6}
\end{align*}
$$

Putting the values from equation (5) and (6) in equation (4), we get

$$
\frac{l^{2}+m^{2}+n^{2}}{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}}=1
$$

Hence,

$$
\frac{l^{2}}{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}}=\frac{m^{2}}{\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}}=\frac{n^{2}}{\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}}=1
$$

Therefore,

$$
\begin{aligned}
& l=m_{1} n_{2}-m_{2} n_{1} \\
& m=n_{1} l_{2}-n_{2} l_{1} \\
& n=l_{1} m_{2}-l_{2} m_{1}
\end{aligned}
$$

Hence, the direction cosines of the required line are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$ proved.

Question 3:

Find the angle between the lines whose direction ratios are a, b, c and $b-c, c-a, a-b$.

Solution:

The angle θ between the lines with direction cosines a, b, c and $(b-c),(c-a),(a-b)$ is given by,

$$
\begin{aligned}
\text { Bos } & =\left|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right| \\
\theta & =\cos ^{-1}\left|\frac{a b-a c+b c-a b+a c-b c}{\sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right| \\
& =\cos ^{-1} 0 \\
& =90^{\circ}
\end{aligned}
$$

Thus, the required angle is 90°

Question 4:

Find the equation of a line parallel to x-axis and passing through the origin.

Solution:

The line parallel to x-axis and passing through the origin is x-axis itself. Let A be a point on x-axis.

Therefore, the coordinates of A are given by $(a, 0,0)$, where $a \in R$
Hence, the direction ratios of OA are $a, 0,0$
The equation of OA is given by,

$$
\begin{aligned}
& \Rightarrow \frac{x-a}{0}=\frac{y-0}{0}=\frac{z-0}{0} \\
& \Rightarrow \frac{x}{1}=\frac{y}{0}=\frac{z}{0}=a
\end{aligned}
$$

Hence, the equation of line parallel to x-axis and passing origin is $\frac{x}{1}=\frac{y}{0}=\frac{z}{0}$

Question 5:

If the coordinates of the points A, B, C, D be $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively, then find the angle between the lines $A B$ and $C D$.

Solution:

The coordinates of A, B, C and D are $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively. Hence,

$$
\begin{array}{ll}
a_{1}=(4-1)=3 & a_{2}=[2-(-4)]=6 \\
b_{1}=(5-2)=3 & b_{2}=(9-3)=6 \\
c_{1}=(7-3)=4 & c_{2}=[2-(-6)]=8
\end{array}
$$

Therefore,

$$
\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=\frac{1}{2}
$$

Hence, $A B \| C D$

Thus, the angle between AB and CD is either 0° or 180°.

Question 6:

If the line $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k .

Solution:

Here,

$$
\begin{array}{ll}
a_{1}=-3 & a_{2}=3 k \\
b_{1}=2 k & b_{2}=1 \\
c_{1}=2 & c_{2}=-5
\end{array}
$$

Two lines with direction ratios, a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are perpendicular, if

$$
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0
$$

Therefore,

$$
\begin{aligned}
& \Rightarrow-3(3 k)+2 k \times 1+2(-5)=0 \\
& \Rightarrow-9 k+2 k-10=0 \\
& \Rightarrow 7 k=-10 \\
& \Rightarrow k=\frac{-10}{7}
\end{aligned}
$$

Hence, for $k=-\frac{10}{7}$, the given lines are perpendicular to each other.

Question 7:

Find the vector equation of the plane passing through $(1,2,3)$ and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$.

Solution:

Here,

$$
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k}) \text { and } \vec{N}=(\hat{i}+2 \hat{j}-5 \hat{k})
$$

The equation of a line passing through a point and perpendicular to the given plane is given by

$$
\vec{l}=\vec{r}+\lambda \vec{N} ; \lambda \in R
$$

Hence,

$$
\Rightarrow \vec{l}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}+2 \hat{j}-5 \hat{k})
$$

Question 8:

Find the equation of the plane passing through (a, b, c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$

Solution:

Any plane parallel to the plane, $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$, is of the form

$$
\begin{equation*}
\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=\lambda \tag{1}
\end{equation*}
$$

Since, the plane passes through the point (a, b, c).
Therefore, the position vector \vec{r} of this point is $\vec{r}=a \hat{i}+b \hat{j}+c \hat{k}$
Hence, equation (1) becomes

$$
\begin{aligned}
& \Rightarrow(a \hat{i}+b \hat{j}+c \hat{k}) \cdot(\hat{i}+\hat{j}+\hat{k})=\lambda \\
& \Rightarrow a+b+c=\lambda
\end{aligned}
$$

Putting $\lambda=a+b+c$ in equation (1), we get

$$
\begin{equation*}
\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=a+b+c \tag{2}
\end{equation*}
$$

This is vector equation of the required plane.
Putting $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ in equation (2), we get

$$
\begin{aligned}
& \Rightarrow(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+\hat{j}+\hat{k})=a+b+c \\
& \Rightarrow x+y+z=a+b+c
\end{aligned}
$$

Question 9:

Find the shortest distance between lines $\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$.

Solution:

The given lines are

$$
\begin{align*}
& \vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \tag{1}\\
& \vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}) \tag{2}
\end{align*}
$$

The shortest distance between two lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{b_{2}}$ is given by

$$
\begin{equation*}
d=\left|\frac{\left(\overrightarrow{b_{1} \times} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1} \times b_{2}}\right|}\right| \tag{3}
\end{equation*}
$$

Comparing, $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{b_{2}}$ to equation (1) and (2), we get

$$
\begin{aligned}
& \overrightarrow{a_{1}}=6 \hat{i}+2 \hat{j}+2 \hat{k} \text { and } \overrightarrow{a_{2}}=-4 \hat{i}-\hat{k} \\
& \overrightarrow{b_{1}}=\hat{i}-2 \hat{j}+2 \hat{k} \text { and } \overrightarrow{b_{2}}=3 \hat{i}-2 \hat{j}-2 \hat{k}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\overrightarrow{a_{2}}-\overrightarrow{a_{1}} & =(-4 \hat{i}-\hat{k})-(6 \hat{i}+2 \hat{j}+2 \hat{k}) \\
& =-10 \hat{i}-2 \hat{j}-3 \hat{k} \\
\overrightarrow{b_{1}} \times \overrightarrow{b_{2}} & =\left(\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 2 \\
3 & -2 & -2
\end{array}\right) \\
& =(4+4) \hat{i}-(-2-6) \hat{j}+(-2+6) \hat{k} \\
& =8 \hat{i}+8 \hat{j}+4 \hat{k}
\end{aligned}
$$

Putting all these values in equation (1), we get

$$
\begin{aligned}
d & =\left|\frac{(8 \hat{i}+8 \hat{j}+4 \hat{k}) \cdot(-10 \hat{i}-2 \hat{j}-3 \hat{k})}{|(8 \hat{i}+8 \hat{j}+4 \hat{k})|}\right| \\
& =\left|\frac{-80-16-12}{\sqrt{(8)^{2}+(8)^{2}+(4)^{2}}}\right| \\
& =\left|\frac{-108}{\sqrt{144}}\right| \\
& =\frac{108}{12} \\
& =9
\end{aligned}
$$

Hence, the shortest distance between the two given lines is 9 units.

Question 10:

Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the YZplane.

Solution:

The equation of the line passing through the points, $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

The line passing through the points $(5,1,6)$ and $(3,4,1)$ is given by,

$$
\begin{aligned}
& \frac{x-5}{3-5}=\frac{y-1}{4-1}=\frac{z-6}{1-6} \Rightarrow \frac{x-5}{-2}=\frac{y-1}{3}=\frac{z-6}{-5}=k(\text { say }) \\
& \Rightarrow x=5-2 k, y=3 k+1, z=6 k-5
\end{aligned}
$$

Any point on the line is of the form $(5-2 k, 3 k+1,6-5 k)$
Any point on the line passes through YZ-plane

$$
\begin{aligned}
& \Rightarrow 5-2 k=0 \\
& \Rightarrow k=\frac{5}{2} \\
& \Rightarrow 3 k+1=3 \times\left(\frac{5}{2}\right)+1=\frac{17}{2} \\
& \Rightarrow 6-5 k=6-5 \times\left(-\frac{5}{2}\right)=-\frac{13}{2}
\end{aligned}
$$

Hence, the required point is $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$

Question 11:

Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the ZXplane.

Solution:

The equation of the line passing through the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

The line passing through the points $(5,1,6)$ and $(3,4,1)$ is given by,

$$
\begin{aligned}
& \frac{x-5}{3-5}=\frac{y-1}{4-1}=\frac{z-6}{1-6} \Rightarrow \frac{x-5}{-2}=\frac{y-1}{3}=\frac{z-6}{-5}=k(\text { say }) \\
& \Rightarrow x=5-2 k, y=3 k+1, z=6 k-5
\end{aligned}
$$

Any point on the line is of the form $(5-2 k, 3 k+1,6-5 k)$
Any point on the line passes through ZX-plane

$$
\begin{aligned}
& \Rightarrow 3 k+1=0 \\
& \Rightarrow k=-\frac{1}{3} \\
& \Rightarrow 5-2 k=5-2\left(-\frac{1}{3}\right)=\frac{17}{3} \\
& \Rightarrow 6-5 k=6-5\left(-\frac{1}{3}\right)=\frac{23}{2}
\end{aligned}
$$

Hence, the required point is $\left(\frac{17}{3}, 0, \frac{23}{2}\right)$

Question 12:

Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$.

Solution:

The equation of the line through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Since the line passes through the points $(3,-4,-5)$ and $(2,-3,1)$ its equation is given by,

$$
\begin{aligned}
& \Rightarrow \frac{x-3}{2-3}=\frac{y+4}{-3+4}=\frac{z+5}{1+5} \\
& \Rightarrow \frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6}=k(\text { say }) \\
& \Rightarrow x=3-k, y=k-4, z=6 k-5
\end{aligned}
$$

Thus, any point on the line is of the form $(3-k, k-4,6 k-5)$
This point lies on the plane, $2 x+y+z=7$

$$
\begin{aligned}
& \Rightarrow 2(3-k)+(k-4)+(6 k-5)=7 \\
& \Rightarrow 5 k-3=7 \\
& \Rightarrow k=2
\end{aligned}
$$

Hence, the coordinates of the required point are

$$
\begin{aligned}
& \Rightarrow(3-2,2-4,6 \times 2-5) \\
& \Rightarrow(1,-2,7)
\end{aligned}
$$

Question 13:

Find the equation of the plane passing through the points $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$

Solution:

The equation of the plane passing through the point $(-1,3,2)$ is

$$
\begin{equation*}
a(x+1)+b(y-3)+c(z-2)=0 \tag{1}
\end{equation*}
$$

where a, b, c are direction ratios of normal to the plane.
We know that two planes, $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ are perpendicular, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

Since, plane (1) is perpendicular to the plane, $x+2 y+3 z=5$
Therefore,

$$
\begin{align*}
& \Rightarrow a .1+b .2+c .3=0 \\
& \Rightarrow a+2 b+3 c=0 \tag{2}
\end{align*}
$$

Also, plane (1) is perpendicular to the plane, $3 x+3 y+z=0$

$$
\begin{align*}
& \Rightarrow a .3+b .3+c .1=0 \\
& \Rightarrow 3 a+3 b+c=0 \tag{3}
\end{align*}
$$

From equation (2) and (3), we get

$$
\begin{aligned}
& \Rightarrow \frac{a}{2 \times 1-3 \times 3}=\frac{b}{3 \times 3-1 \times 1}=\frac{c}{1 \times 3-2 \times 3} \\
& \Rightarrow \frac{a}{-7}=\frac{b}{8}=\frac{c}{3}=k(\text { say }) \\
& \Rightarrow a=-7 k, b=8 k, c=-3 k
\end{aligned}
$$

Putting the values of a, b and c in equation (1), we get

$$
\begin{aligned}
& \Rightarrow-7 k(x+1)+8 k(y-3)-3 k(z-2)=0 \\
& \Rightarrow(-7 x-7)+(8 y-24)-3 z+6=0 \\
& \Rightarrow-7 x+8 y-3 z-25=0 \\
& \Rightarrow 7 x-8 y+3 z+25=0
\end{aligned}
$$

Question 14:

If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$ then find the value of p.

Solution:

Here,

$$
\begin{aligned}
& \overrightarrow{a_{1}}=\hat{i}+\hat{j}+p \hat{k} \\
& \overrightarrow{a_{2}}=-3 \hat{i}+\hat{k}
\end{aligned}
$$

The equation of the given plane is $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$
The perpendicular distance between a point whose vector is \bar{a} and the plane $\overrightarrow{r . N}=d$ is given by

$$
D=\frac{|\overrightarrow{a \cdot N}-d|}{|\vec{N}|}
$$

Here,

$$
\vec{N}=3 \hat{i}+4 \hat{j}-12 \hat{k} \text { and } d=-13
$$

Hence, the distance between the point $(1,1, p)$ and the given plane is

$$
\begin{align*}
& \Rightarrow D_{1}=\frac{|(\hat{i}+\hat{j}+p \hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})-(-13)|}{|3 \hat{i}+4 \hat{j}-12 \hat{k}|} \\
& \Rightarrow D_{1}=\frac{|3+4-12 p+13|}{\sqrt{3^{2}+4^{2}+(-12)^{2}}} \\
& \Rightarrow D_{1}=\frac{|20-12 p|}{13} \tag{1}
\end{align*}
$$

Similarly, the distance between the point $(-3,0,1)$ and the given plane is

$$
\begin{align*}
& \Rightarrow D_{2}=\frac{|(-3 \hat{i}+\hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})-(-13)|}{|3 \hat{i}+4 \hat{j}-12 \hat{k}|} \\
& \Rightarrow D_{2}=\frac{|-9-12+13|}{\sqrt{3^{2}+4^{2}+(-12)^{2}}} \\
& \Rightarrow D_{2}=\frac{8}{13} \tag{2}
\end{align*}
$$

From the given condition, $D_{1}=D_{2}$

$$
\begin{aligned}
& \Rightarrow \frac{|20-12 p|}{13}=\frac{8}{13} \\
& \Rightarrow|20-12 p|=8 \\
& \Rightarrow 20-12 p=8 \text { or }-(20-12 p)=8 \\
& \Rightarrow 12 p=12 \text { or } 12 p=28 \\
& \Rightarrow p=1 \text { or } p=\frac{7}{3}
\end{aligned}
$$

Thus, the value of $p=1$ or $p=\frac{7}{3}$.

Question 15:

Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x-axis.

Solution:

The given planes are $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\overrightarrow{r .}(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$
The equation of any plane passing through the line of intersection of these planes is given by

$$
\begin{align*}
& {[\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1]+\lambda[\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4]=0} \\
& \overrightarrow{r .}[(2 \lambda+1) \hat{i}+(3 \lambda+1) \hat{j}+(1-\lambda) \hat{k}]+(4 \lambda-1)=0 \tag{1}
\end{align*}
$$

Here,

$$
a_{1}=(2 \lambda+1), b_{1}=(3 \lambda+1) \text { and } c_{1}=(1-\lambda)
$$

Since, the required plane is parallel to x-axis.
Therefore, its normal is perpendicular to x-axis.
The direction ratios of x-axis are 1,0 and 0 .
Therefore,

$$
a_{2}=1, b_{2}=0 \text { and } c_{2}=0
$$

Hence,

$$
\begin{aligned}
& \Rightarrow 1 \cdot(2 \lambda+1)+0(3 \lambda+1)+0(1-\lambda)=0 \\
& \Rightarrow 2 \lambda+1=0 \\
& \Rightarrow \lambda=-\frac{1}{2}
\end{aligned}
$$

Putting, $\lambda=-\frac{1}{2}$ in equation (1), we get

$$
\begin{aligned}
& \Rightarrow \vec{r}\left[-\frac{1}{2} \hat{j}+\frac{3}{2} \hat{k}\right]+(-3)=0 \\
& \Rightarrow \vec{r}(\hat{j}-3 \hat{k})+6=0
\end{aligned}
$$

Thus, its Catersian equation is $y-3 z+6=0$

Question 16:

If O be the origin and the coordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to OP.

Solution:

The given points are $\mathrm{O}(0,0,0)$ and $P(1,2,-3)$
The direction ratios of OP are

$$
\begin{aligned}
& a=(1-0)=1 \\
& b=(2-0)=2 \\
& c=(-3-0)=-3
\end{aligned}
$$

The equation of the plane passing through the point $\left(x_{1}, y_{1}, z_{1}\right)$ is

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
$$

where, a, b and c are the direction ratios of normal.

Here, the direction ratios of normal are 1,2 and -3 and the point P is $(1,2,-3)$.
Hence, the equation of the required plane is

$$
\begin{aligned}
& \Rightarrow 1(x-1)+2(y-2)-3(z+3)=0 \\
& \Rightarrow x+2 y-3 z-14=0
\end{aligned}
$$

Question 17:

Find the equation of the plane which contains the line of intersection of the planes $\vec{r} .(\hat{i}+2 \hat{j}+3 \hat{k})-4=0, \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} .(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$.

Solution:

The equations of the given planes are

$$
\begin{align*}
& \vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \tag{1}\\
& \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0 \tag{2}
\end{align*}
$$

The equation of the required plane is,

$$
\begin{align*}
& {[\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4]+\lambda[\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5]=0} \\
& \vec{r}[(2 \lambda+1) \hat{i}+(\lambda+2) \hat{j}+(3-\lambda) \hat{k}]+(5 \lambda-4)=0 \tag{3}
\end{align*}
$$

The plane in equation (3) is perpendicular to the plane, $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$ Therefore,

$$
\begin{aligned}
& \Rightarrow 5(2 \lambda+1)+3(\lambda+2)-6(3-\lambda)=0 \\
& \Rightarrow 19 \lambda-7=0 \\
& \Rightarrow \lambda=\frac{7}{19}
\end{aligned}
$$

Putting $\lambda=\frac{7}{19}$ in equation (3), we get

$$
\begin{align*}
& \Rightarrow \vec{r} \cdot\left[\frac{33}{19} \hat{i}+\frac{45}{19} \hat{j}+\frac{50}{19} \hat{k}\right] \frac{-41}{19}=0 \\
& \Rightarrow \vec{r} \cdot(33 \hat{i}+45 \hat{j}+50 \hat{k})-41=0 \tag{4}
\end{align*}
$$

The Cartesian equation of this plane is given by

$$
\begin{aligned}
& \Rightarrow(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(33 \hat{i}+45 \hat{j}+50 \hat{k})-41=0 \\
& \Rightarrow 33 x+45 y+50 z-41=0
\end{aligned}
$$

Question 18:

Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

Solution:

The equation of the given line is

$$
\begin{equation*}
\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k}) \tag{1}
\end{equation*}
$$

The equation of the given plane is

$$
\begin{equation*}
\vec{r}(\hat{i}-\hat{j}+\hat{k})=5 \tag{2}
\end{equation*}
$$

Putting the value of r from equation (1) in equation (2), we get

$$
\begin{aligned}
& \Rightarrow[2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})] \cdot(\hat{i}-\hat{j}+\hat{k})=5 \\
& \Rightarrow[(3 \lambda+2) \hat{i}+(4 \lambda-1) \hat{j}+(2 \lambda+2) \hat{k}] \cdot(\hat{i}-\hat{j}+\hat{k})=5 \\
& \Rightarrow(3 \lambda+2)-(4 \lambda-1)+(2 \lambda+2)=5 \\
& \Rightarrow \lambda=0
\end{aligned}
$$

Putting this value in equation (1), we get the equation of the line as $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}$
This means that the position vector of the point of intersection of the line and plane is
$\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}$
This shows that the point of intersection of the given line and plane is given by the coordinates $(2,-1,2)$ and $(-1,-5,-10)$.

The required distance between the points $(2,-1,2)$ and $(-1,-5,-10)$ is

$$
\begin{aligned}
d & =\sqrt{(-1-2)^{2}+(-5+1)^{2}+(-10-2)^{2}} \\
& =\sqrt{9+16+144} \\
& =\sqrt{169} \\
& =13
\end{aligned}
$$

Question 19:

Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} .(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\overrightarrow{r .}(3 \hat{i}+\hat{j}+\hat{k})=6$

Solution:

Let the required line be parallel to vector \vec{b} given by,

$$
\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}
$$

The postion vector of the point $(1,2,3)$ is

$$
\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}
$$

The equation of line passing through $(1,2,3)$ and parallel to \vec{b} is given by,

$$
\begin{align*}
& \Rightarrow \vec{r}=\vec{a}+\lambda \vec{b} \\
& \Rightarrow \vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})+\lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \tag{1}
\end{align*}
$$

The equations of the given planes are

$$
\begin{align*}
& \vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5 \tag{2}\\
& \vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6 \tag{3}
\end{align*}
$$

The line in equation (1) and plane in equation (2) are parallel.
Therefore, the normal to the plane of equation (2) and the given line are perpendicular.

$$
\begin{align*}
& \Rightarrow(\hat{i}-\hat{j}+2 \hat{k}) \cdot \lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)=0 \\
& \Rightarrow \lambda\left(b_{1}-b_{2}+2 b_{3}\right)=0 \\
& \Rightarrow b_{1}-b_{2}+2 b_{3}=0 \tag{4}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \Rightarrow(3 \hat{i}+\hat{j}+\hat{k}) \cdot \lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)=0 \\
& \Rightarrow \lambda\left(3 b_{1} \hat{i}+b_{2}+b_{3}\right)=0 \\
& \Rightarrow 3 b_{1}+b_{2}+b_{3}=0 \tag{5}
\end{align*}
$$

From equation (4) and (5), we obtain

$$
\begin{aligned}
& \Rightarrow \frac{b_{1}}{(-1) \times 1-1 \times 2}=\frac{b_{2}}{2 \times 3-1 \times 1}=\frac{b_{3}}{1 \times 1-3(-1)} \\
& \Rightarrow \frac{b_{1}}{-3}=\frac{b_{2}}{5}=\frac{b_{3}}{4}
\end{aligned}
$$

Thus,
The direction ratios of \vec{b} are $-3,5$ and 4 .
Hence,

$$
\begin{aligned}
\vec{b} & =b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \\
& =-3 \hat{i}+5 \hat{j}+4 \hat{k}
\end{aligned}
$$

Putting, the value of \vec{b} in eqation (1), we get

$$
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-3 \hat{i}+5 \hat{j}+4 \hat{k})
$$

Question 20:

Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

Solution:

Here,

$$
\begin{aligned}
& \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \\
& \vec{a}=\hat{i}+2 \hat{j}-4 \hat{k}
\end{aligned}
$$

The equation of the line passing through $(1,2,-4)$ and parallel to vector \vec{b} is given by

$$
\begin{align*}
& \Rightarrow \vec{r}=\vec{a}+\lambda \vec{b} \\
& \Rightarrow \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \tag{1}
\end{align*}
$$

The equations of the lines are

$$
\begin{align*}
& \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \tag{2}\\
& \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5} \tag{3}
\end{align*}
$$

Since, lines of the equations (1) and (2) are perpendicular to each other

$$
\begin{equation*}
\Rightarrow 3 b_{1}-16 b_{2}+7 b_{3}=0 \tag{4}
\end{equation*}
$$

Also,
Lines (1) and (3) are perpendicular to each other

$$
\Rightarrow 3 b_{1}+8 b_{2}-5 b_{3}=0
$$

From equations (4) and (5), we obtain

$$
\begin{aligned}
& \Rightarrow \frac{b_{1}}{(-16) \times(-5)-8 \times 7}=\frac{b_{2}}{7 \times 3-3 \times(-5)}=\frac{b_{3}}{3 \times 8-3 \times(-16)} \\
& \Rightarrow \frac{b_{1}}{24}=\frac{b_{2}}{36}=\frac{b_{3}}{72} \Rightarrow \\
& \frac{b_{1}}{2}=\frac{b_{2}}{3}=\frac{b_{3}}{6}
\end{aligned}
$$

Hence,
The direction ratios of \vec{b} are 2,3 and 6
Therefore,

$$
\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}
$$

Putting $\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$ in equation (1), we get

$$
\Rightarrow \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
$$

Question 21:

Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.

Solution:

The equation of the plane having intercepts a, b, c with x, y, z axes respectively is given by,

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \tag{1}
\end{equation*}
$$

The distance p of the plane from the origin is given by,

$$
\begin{aligned}
p & =\left|\frac{\frac{0}{a}+\frac{0}{b}+\frac{0}{c}-1}{\sqrt{\left(\frac{1}{a^{2}}\right)+\left(\frac{1}{b^{2}}\right)+\left(\frac{1}{c^{2}}\right)}}\right| \\
& =\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} \\
p^{2} & =\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}} \\
\frac{1}{p^{2}} & =\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}
\end{aligned}
$$

Hence, $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$ proved.

Question 22:

Distance between the two planes: $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is
(A) 2 units
(B) 4 units
(C) 8 units
(D) $\frac{2}{\sqrt{29}}$ units

Solution:

The equations of the planes are

$$
\begin{align*}
& \Rightarrow 2 x+3 y+4 z=4 \tag{1}\\
& \Rightarrow 4 x+6 y+8 z=12 \\
& \Rightarrow 2 x+3 y+4 z=4 \tag{2}
\end{align*}
$$

Since given planes are parallel, and we know that the distance between two parallel planes $a x+b y+c z=d_{1}$ and $a x+b y+c z=d_{2}$ is given by,

$$
\begin{aligned}
D & =\left|\frac{d_{2}-d_{1}}{\sqrt{a^{2}+b^{2}+c^{2}}}\right| \\
& =\left|\frac{6-4}{\sqrt{(2)^{2}+(3)^{2}+(4)^{2}}}\right| \\
& =\frac{2}{\sqrt{29}}
\end{aligned}
$$

Hence, the distance between the given plane is $\frac{2}{\sqrt{29}}$ units.
Therefore, the correct answer is D.

Question 23:

The planes: $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are
(A) Perpendicular
(B) Parallel
(C) intersect y-axis (D) passes through $\left(0,0, \frac{5}{4}\right)$

Solution:

The equations of the planes are

$$
\begin{align*}
& 2 x-y+4 z=5 \tag{1}\\
& 5 x-2.5 y+10 z=6 \tag{2}
\end{align*}
$$

Here,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{2}{5} \\
& \frac{b_{1}}{b_{2}}=\frac{-1}{-2.5}=\frac{2}{5} \\
& \frac{c_{1}}{c_{2}}=\frac{4}{10}=\frac{2}{5}
\end{aligned}
$$

Therefore,

$$
\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

Hence, the given planes are parallel.
Therefore, the correct answer is B.

