Chemistry

(Chapter 5)(States of Matter) XI

Question 5.1:

What will be the minimum pressure required to compress $500 \mathrm{dm}^{3}$ of air at 1 bar to 200 dm^{3} at $30^{\circ} \mathrm{C}$?

Answer
Given,
Initial pressure, $p_{1}=1$ bar
Initial volume, $V_{1}=500 \mathrm{dm}^{3}$
Final volume, $V_{2}=200 \mathrm{dm}^{3}$
Since the temperature remains constant, the final pressure (p_{2}) can be calculated using Boyle's law.

According to Boyle's law,

$$
\begin{aligned}
p_{1} V_{1} & =p_{2} V_{2} \\
\Rightarrow p_{2} & =\frac{p_{1} V_{1}}{V_{2}} \\
& =\frac{1 \times 500}{200} \mathrm{bar} \\
& =2.5 \mathrm{bar}
\end{aligned}
$$

Therefore, the minimum pressure required is 2.5 bar.

Question 5.2:

A vessel of 120 mL capacity contains a certain amount of gas at $35^{\circ} \mathrm{C}$ and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at $35^{\circ} \mathrm{C}$. What would be its pressure?

Answer
Given,
Initial pressure, $p_{1}=1.2$ bar
Initial volume, $V_{1}=120 \mathrm{~mL}$
Final volume, $V_{2}=180 \mathrm{~mL}$
Since the temperature remains constant, the final pressure (p_{2}) can be calculated using Boyle's law.
According to Boyle's law,

$$
\begin{aligned}
p_{1} V_{1} & =p_{2} V_{2} \\
p_{2} & =\frac{p_{1} V_{1}}{V_{2}} \\
& =\frac{1.2 \times 120}{180} \mathrm{bar} \\
& =0.8 \mathrm{bar}
\end{aligned}
$$

Therefore, the pressure would be 0.8 bar.

Question 5.3:

Using the equation of state $p V=n \mathrm{R} T$; show that at a given temperature density of a gas is proportional to gas pressurep.
Answer
The equation of state is given by,
$p V=n \mathrm{R} T$ \qquad (i) Where,
$p \rightarrow$ Pressure of gas
$V \rightarrow$ Volume of gas
$n \rightarrow$ Number of moles of gas
$\mathrm{R} \rightarrow$ Gas constant
$T \rightarrow$ Temperature of gas
From equation (i) we have,
$\frac{n}{V}=\frac{p}{\mathrm{R} T}$
Replacing n with $\frac{m}{M}$, we have
$\frac{m}{M V}=\frac{p}{\mathrm{R} T}$
Where, $m \rightarrow$ Mass of gas
$M \rightarrow$ Molar mass of gas
But, $\frac{m}{V}=d \quad(d=$ density of gas)
Thus, from equation (ii), we have
$\frac{d}{M}=\frac{p}{\mathrm{R} T}$
$\Rightarrow d=\left(\frac{M}{\mathrm{R} T}\right) p$
Molar mass (M) of a gas is always constant and therefore, at constant temperature
(T), $\frac{M}{\mathrm{R} T}=$ constant.
$d=($ constant $) p$
$\Rightarrow d \propto p$
Hence, at a given temperature, the density (d) of gas is proportional to its pressure (p)

Question 5.4:

At $0^{\circ} \mathrm{C}$, the density of a certain oxide of a gas at 2 bar is same as that of dinitrogen at 5 bar. What is the molecular mass of the oxide?

Answer
Density (d) of the substance at temperature (T) can be given by the expression,
$d=\frac{M p}{\mathrm{R} T}$
Now, density of oxide $\left(d_{1}\right)$ is given by,
$d_{1}=\frac{M_{1} p_{1}}{\mathrm{R} T}$
Where, M_{1} and p_{1} are the mass and pressure of the oxide respectively.
Density of dinitrogen gas $\left(d_{2}\right)$ is given by,
$d_{2}=\frac{M_{2} p_{2}}{\mathrm{R} T}$
Where, M_{2} and p_{2} are the mass and pressure of the oxide respectively.
According to the given question,
$d_{1}=d_{2}$
$\therefore M_{1} p_{1}=M_{2} p_{2}$
Given,
$p_{1}=2$ bar
$p_{2}=5$ bar
Molecular mass of nitrogen, $M_{2}=28 \mathrm{~g} / \mathrm{mol}$
Now, $M_{1}=\frac{M_{2} p_{2}}{p_{1}}$

$$
\begin{aligned}
& =\frac{28 \times 5}{2} \\
& =70 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Hence, the molecular mass of the oxide is $70 \mathrm{~g} / \mathrm{mol}$.

Question 5.5:

Pressure of 1 g of an ideal gas A at $27^{\circ} \mathrm{C}$ is found to be 2 bar. When 2 g of another ideal gas B is introduced in the same flask at same temperature the pressure becomes 3 bar. Find a relationship between their molecular masses.

Answer
For ideal gas A, the ideal gas equation is given by,
$p_{\mathrm{A}} V=n_{\mathrm{A}} \mathrm{R} T$
Where, p_{A} and n_{A} represent the pressure and number of moles of gas A .
For ideal gas B, the ideal gas equation is given by,
$p_{B} V=n_{B} \mathrm{R} T$
Where, p_{B} and n_{B} represent the pressure and number of moles of gas B.
[V and T are constants for gases A and B]
From equation (i), we have

$$
\begin{equation*}
p_{A} V=\frac{m_{A}}{\mathrm{M}_{A}} \mathrm{R} T \Rightarrow \frac{p_{A} \mathrm{M}_{A}}{m_{A}}=\frac{\mathrm{R} T}{V} \tag{iii}
\end{equation*}
$$

From equation (ii), we have

$$
\begin{equation*}
p_{\mathrm{B}} V=\frac{m_{\mathrm{B}}}{\mathrm{M}_{\mathrm{B}}} \mathrm{R} T \Rightarrow \frac{p_{\mathrm{B}} \mathrm{M}_{\mathrm{B}}}{m_{\mathrm{B}}}=\frac{\mathrm{R} T}{V} \tag{iv}
\end{equation*}
$$

\qquad

Where, M_{A} and M_{B} are the molecular masses of gases A and B respectively.
Now, from equations (iii) and (iv), we have

$$
\frac{p_{A} \mathrm{M}_{A}}{m_{A}}=\frac{p_{B} \mathrm{M}_{B}}{m_{B}} \ldots \ldots \ldots(v)
$$

Given,
$m_{A}=1 \mathrm{~g}$
$p_{A}=2$ bar
$m_{B}=2 \mathrm{~g}$
$p_{B}=(3-2)=1$ bar
(Since total pressure is 3 bar)
Substituting these values in equation (v), we have
$\frac{2 \times \mathrm{M}_{A}}{1}=\frac{1 \times \mathrm{M}_{B}}{2}$
$\Rightarrow 4 \mathrm{M}_{A}=\mathrm{M}_{B}$
Thus, a relationship between the molecular masses of A and B is given by $4 \mathrm{M}_{A}=\mathrm{M}_{B}$

Question 5.6:

The drain cleaner, Drainex contains small bits of aluminum which react with caustic soda to produce dihydrogen. What volume of dihydrogen at $20^{\circ} \mathrm{C}$ and one bar will be released when 0.15 g of aluminum reacts?

Answer
The reaction of aluminium with caustic soda can be represented as:

$$
\begin{aligned}
& 2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2} \\
& 2 \times 27 \mathrm{~g} \\
& 3 \times 22400 \mathrm{~mL}
\end{aligned}
$$

At STP (273.15 K and 1 atm), $54 \mathrm{~g}(2 \times 27 \mathrm{~g})$ of Al gives $3 \times 22400 \mathrm{~mL}$ of H_{2}.
$\therefore 0.15 \mathrm{~g} \mathrm{Al}$ gives $\frac{3 \times 22400 \times 0.15}{54} \mathrm{~mL}$ of H_{2} i.e., 186.67 mL of H_{2}.
At STP,
$p_{1}=1 \mathrm{~atm}$
$V_{1}=186.67 \mathrm{~mL}$
$T_{1}=273.15 \mathrm{~K}$
Let the volume of dihydrogen be ${ }^{V_{2}}$ at $p_{2}=0.987 \mathrm{~atm}$ (since $1 \mathrm{bar}=0.987 \mathrm{~atm}$) and $T_{2}=$ $20^{\circ} \mathrm{C}=(273.15+20) \mathrm{K}=293.15 \mathrm{~K}$.

Now,

$$
\begin{aligned}
\frac{p_{1} V_{1}}{T_{1}} & =\frac{p_{2} V_{2}}{T_{2}} \\
\Rightarrow V_{2} & =\frac{p_{1} V_{1} T_{2}}{p_{2} T_{1}} \\
& =\frac{1 \times 186.67 \times 293.15}{0.987 \times 273.15} \\
& =202.98 \mathrm{~mL} \\
& =203 \mathrm{~mL}
\end{aligned}
$$

Therefore, 203 mL of dihydrogen will be released.

Question 5.7:

What will be the pressure exerted by a mixture of 3.2 g of methane and 4.4 g of carbon dioxide contained in a $9 \mathrm{dm}^{3}$ flask at $27^{\circ} \mathrm{C}$?

Answer
It is known that,

$$
p=\frac{m}{M} \frac{\mathrm{R} T}{V}
$$

For methane $\left(\mathrm{CH}_{4}\right)$,

$$
\begin{aligned}
p_{\mathrm{CH}_{+}} & =\frac{3.2}{16} \times \frac{8.314 \times 300}{9 \times 10^{-3}}\left[\begin{array}{l}
\text { Since } 9 \mathrm{dm}^{3}=9 \times 10^{-3} \mathrm{~m}^{3} \\
27^{\circ} \mathrm{C}=300 \mathrm{~K}
\end{array}\right] \\
& =5.543 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

For carbon dioxide $\left(\mathrm{CO}_{2}\right)$,

$$
\begin{aligned}
p_{\mathrm{CO}_{2}} & =\frac{4.4}{44} \times \frac{8.314 \times 300}{9 \times 10^{-3}} \\
& =2.771 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

Total pressure exerted by the mixture can be obtained as:

$$
\begin{aligned}
p & =p_{\mathrm{CH}_{4}}+p_{\mathrm{CO}_{2}} \\
& =\left(5.543 \times 10^{4}+2.771 \times 10^{4}\right) \mathrm{Pa} \\
& =8.314 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

Hence, the total pressure exerted by the mixture is $8.314 \times 10^{4} \mathrm{~Pa}$.

Question 5.8:

What will be the pressure of the gaseous mixture when 0.5 L of H_{2} at 0.8 bar and 2.0 L of dioxygen at 0.7 bar are introduced in a 1 L vessel at $27^{\circ} \mathrm{C}$?

Answer
Let the partial pressure of H_{2} in the vessel be ${ }^{p_{\mathrm{H}_{2}}}$.
Now,

$$
\begin{array}{ll}
p_{1}=0.8 \text { bar } & p_{2}=p_{H_{2}} \\
V_{1}=0.5 \mathrm{~L} & V_{2}=1 \mathrm{~L}=?
\end{array}
$$

It is known that,

$$
\begin{aligned}
& p_{1} V_{1}=p_{2} V_{2} \\
& \Rightarrow p_{2}=\frac{p_{1} V_{1}}{V_{2}} \\
& \Rightarrow p_{H_{2}}=\frac{0.8 \times 0.5}{1} \\
&=0.4 \mathrm{bar}
\end{aligned}
$$

Now, let the partial pressure of O_{2} in the vessel be ${ }^{p_{\mathrm{O}_{2}}}$.

Now,
$p_{1}=0.7$ bar $\quad p_{2}=p_{\mathrm{O}_{2}}=$?
$V_{1}=2.0 \mathrm{~L} \quad V_{2}=1 \mathrm{~L}$
$p_{1} V_{1}=p_{2} V_{2}$
$\Rightarrow p_{2}=\frac{p_{1} V_{1}}{V_{2}}$
$\Rightarrow p_{\mathrm{O}_{2}}=\frac{0.7 \times 20}{1}$
$=0.4 \mathrm{bar}$
Total pressure of the gas mixture in the vessel can be obtained as:

$$
\begin{aligned}
p_{\text {toatal }} & =p_{\mathrm{H}_{2}}+p_{\mathrm{o}_{2}} \\
& =0.4+1.4 \\
& =1.8 \mathrm{bar}
\end{aligned}
$$

Hence, the total pressure of the gaseous mixture in the vessel is 1.8 bar .

Question 5.9:

Density of a gas is found to be $5.46 \mathrm{~g} / \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ at 2 bar pressure. What will be its density at STP?

Answer
Given,

$$
\begin{aligned}
& d_{1}=5.46 \mathrm{~g} / \mathrm{dm}^{3} \\
& p_{1}=2 \mathrm{bar} \\
& T_{1}=27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K} \\
& p_{2}=1 \mathrm{bar} \\
& \mathrm{~T}_{2}=273 \mathrm{~K} \\
& d_{2}=?
\end{aligned}
$$

The density $\left(d_{2}\right)$ of the gas at STP can be calculated using the equation,
$d=\frac{M p}{\mathrm{R} T}$

$$
\begin{aligned}
& \therefore \frac{d_{1}}{d_{2}}=\frac{\frac{M p_{1}}{\mathrm{R} T_{1}}}{\frac{M p_{2}}{2}} \\
& \mathrm{R} T_{2} \\
& \Rightarrow \frac{d_{1}}{d_{2}}=\frac{p_{1} T_{2}}{p_{2} T_{1}} \\
& \Rightarrow d_{2}=\frac{p_{2} T_{1} d_{1}}{p_{1} T_{2}} \\
& =\frac{1 \times 300 \times 5.46}{2 \times 273} \\
& =3 \mathrm{~g} \mathrm{dm}^{-3}
\end{aligned}
$$

Hence, the density of the gas at STP will be $3 \mathrm{~g} \mathrm{dm}^{-3}$.

Question 5.10:

34.05 mL of phosphorus vapour weighs 0.0625 g at $546^{\circ} \mathrm{C}$ and 0.1 bar pressure. What is the molar mass of phosphorus?
Answer
Given, $p=$
0.1 bar V
$=34.05$
$\mathrm{mL}=$
$34.05 \times$
$10^{-3} \mathrm{~L}=$
$34.05 \times$
$10^{-3} \mathrm{dm}^{3}$
$\mathrm{R}=0.083{\text { bar } \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}^{-1}$
$T=546^{\circ} \mathrm{C}=(546+273) \mathrm{K}=819 \mathrm{~K}$
The number of moles (n) can be calculated using the ideal gas equation as:

$$
\begin{aligned}
p V & =n \mathrm{R} T \\
\Rightarrow n & =\frac{p V}{\mathrm{R} T} \\
& =\frac{0.1 \times 34.05 \times 10^{-3}}{0.083 \times 819} \\
& =5.01 \times 10^{-5} \mathrm{~mol}
\end{aligned}
$$

Therefore, molar mass of phosphorus $=\frac{0.0625}{5.01 \times 10^{-5}}=1247.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Hence, the molar mass of phosphorus is $1247.5 \mathrm{~g} \mathrm{~mol}^{-1}$.

Question 5.11:

A student forgot to add the reaction mixture to the round bottomed flask at $27^{\circ} \mathrm{C}$ but instead he/she placed the flask on the flame. After a lapse of time, he realized his mistake, and using a pyrometer he found the temperature of the flask was $477^{\circ} \mathrm{C}$. What fraction of air would have been expelled out?

Answer
Let the volume of the round bottomed flask be V.
Then, the volume of air inside the flask at $27^{\circ} \mathrm{C}$ is V.
Now,
$V_{1}=V$
$T_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K} \mathrm{~V} 2$
$=$?
$T_{2}=477^{\circ} \mathrm{C}=750 \mathrm{~K}$
According to Charles's law,
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
$\Rightarrow V_{2}=\frac{V_{1} T_{2}}{T_{1}}$

$$
\begin{aligned}
& =\frac{750 \mathrm{~V}}{300} \\
& =2.5 \mathrm{~V}
\end{aligned}
$$

Therefore, volume of air expelled out $=2.5 V-V=1.5 V$
Hence, fraction of air expelled out $=\frac{1.5 \mathrm{~V}}{2.5 \mathrm{~V}}=\frac{3}{5}$

Question 5.12:

Calculate the temperature of 4.0 mol of a gas occupying $5 \mathrm{dm}^{3}$ at 3.32 bar.
$\left(\mathrm{R}=0.083\right.$ bar $\left.\mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$.
Answer
Given, $n=$
$4.0 \mathrm{~mol} V=$
$5 \mathrm{dm}^{3} p=$
3.32 bar
$\mathrm{R}=0.083$ bar $\mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
The temperature (T) can be calculated using the ideal gas equation as:

$$
\begin{aligned}
p V & =n \mathrm{R} T \\
\Rightarrow T & =\frac{p V}{n \mathrm{R}} \\
& =\frac{3.32 \times 5}{4 \times 0.083} \\
& =50 \mathrm{~K}
\end{aligned}
$$

Hence, the required temperature is 50 K .

Question 5.13:

Calculate the total number of electrons present in 1.4 g of dinitrogen gas.
Answer
Molar mass of dinitrogen $\left(\mathrm{N}_{2}\right)=28 \mathrm{~g} \mathrm{~mol}^{-1}$

Thus, 1.4 g of $\mathrm{N}_{2}=\frac{1.4}{28}=0.05 \mathrm{~mol}$
$=0.05 \times 6.02 \times 10^{23}$ number of molecules
$=3.01 \times 10^{23}$ number of molecules
Now, 1 molecule of ${ }^{N_{2}}$ contains 14 electrons.
Therefore, 3.01×10^{23} molecules of N_{2} contains $=14 \times 3.01 \times 1023$
$=4.214 \times 10^{23}$ electrons

Question 5.14:

How much time would it take to distribute one Avogadro number of wheat grains, if 10^{10} grains are distributed each second?

Answer
Avogadro number $=6.02 \times 10^{23}$
Thus, time required

$$
\begin{aligned}
& \frac{6.02 \times 10^{23}}{10^{10}} \mathrm{~s} \\
= & 6.02 \times 10^{23} \mathrm{~s} \\
= & \frac{6.02 \times 10^{23}}{60 \times 60 \times 24 \times 365} \text { years } \\
= & 1.909 \times 10^{6} \text { years }
\end{aligned}
$$

Hence, the time taken would be 1.909×10^{6} years

Question 5.15:

Calculate the total pressure in a mixture of 8 g of dioxygen and 4 g of dihydrogen confined

Answer
Given,
Mass of dioxygen $\left(\mathrm{O}_{2}\right)=8 \mathrm{~g}$

Thus, number of moles of $\mathrm{O}_{2}=\frac{8}{32}=0.25$ mole
Mass of dihydrogen $\left(\mathrm{H}_{2}\right)=4 \mathrm{~g}$
Thus, number of moles of $\mathrm{H}_{2}=\frac{4}{2}=2$ mole
Therefore, total number of moles in the mixture $=0.25+2=2.25$ mole
Given, $V=$
$1 \mathrm{dm}^{3} n=$
2.25 mol
$\mathrm{R}=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$T=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
Total pressure (p) can be calculated as: $p V$
$=n \mathrm{R} T$

$$
\begin{aligned}
\Rightarrow p & =\frac{n \mathrm{R} T}{V} \\
& =\frac{225 \times 0.083 \times 300}{1} \\
& =56.025 \mathrm{bar}
\end{aligned}
$$

Hence, the total pressure of the mixture is 56.025 bar.

Question 5.16:

Pay load is defined as the difference between the mass of displaced air and the mass of the balloon. Calculate the pay load when a balloon of radius 10 m , mass 100 kg is filled with helium at 1.66 bar at $27^{\circ} \mathrm{C}$. (Density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$ and $\mathrm{R}=0.083 \mathrm{bar}_{\mathrm{dm}} \mathrm{K}^{-1}$ mol^{-1}).

Answer
Given,
Radius of the balloon, $r=10 \mathrm{~m}$
\therefore Volume of the balloon $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times 10^{3}$
$=4190.5 \mathrm{~m}^{3}$ (approx)
Thus, the volume of the displaced air is $4190.5 \mathrm{~m}^{3}$.
Given,
Density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$
Then, mass of displaced air $=4190.5 \times 1.2 \mathrm{~kg}$
$=5028.6 \mathrm{~kg}$
Now, mass of helium (m) inside the balloon is given by,
$m=\frac{M p V}{\mathrm{R} T}$
Here,
$M=4 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$
$p=1.66$ bar
$V=$ Volume of the balloon
$=4190.5 \mathrm{~m}^{3}$
$\mathrm{R}=0.083 \mathrm{bardm}^{3} K^{-1} \mathrm{~mol}^{-1}$
$T=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
Then, $m=\frac{4 \times 10^{-3} \times 1.66 \times 4190.5 \times 10^{3}}{0.083 \times 300}$

$$
=1117.5 \mathrm{~kg}(\text { approx })
$$

Now, total mass of the balloon filled with helium $=(100+1117.5) \mathrm{kg}$
$=1217.5 \mathrm{~kg}$
Hence, pay load $=(5028.6-1217.5) \mathrm{kg}$
$=3811.1 \mathrm{~kg}$
Hence, the pay load of the balloon is 3811.1 kg .

Question 5.17:

Calculate the volume occupied by 8.8 g of CO_{2} at $31.1^{\circ} \mathrm{C}$ and 1 bar pressure.
$\mathrm{R}=0.083$ bar $\mathrm{LK}^{-1} \mathrm{~mol}^{-1}$.
Answer
It is known that,
$p V=\frac{m}{M} \mathrm{R} T$
$\Rightarrow V=\frac{m \mathrm{R} T}{M p}$
Here, m
$=8.8 \mathrm{~g}$
$\mathrm{R}=0.083 \mathrm{bar} \mathrm{LK}^{-1} \mathrm{~mol}^{-1}$
$T=31.1^{\circ} \mathrm{C}=304.1 \mathrm{~K}$
$M=44 \mathrm{~g} p=1 \mathrm{bar}$
Thus, volume $(V)=\frac{8.8 \times 0.083 \times 304.1}{44 \times 1}$

$$
\begin{aligned}
& =5.04806 \mathrm{~L} \\
& =5.05 \mathrm{~L}
\end{aligned}
$$

Hence, the volume occupied is 5.05 L .

Question 5.18:

2.9 g of a gas at $95^{\circ} \mathrm{C}$ occupied the same volume as 0.184 g of dihydrogen at $17^{\circ} \mathrm{C}$, at the same pressure. What is the molar mass of the gas?
Answer
Volume (V) occupied by dihydrogen is given by,

$$
\begin{aligned}
V & =\frac{m}{M} \frac{\mathrm{R} T}{p} \\
& =\frac{0.184}{2} \times \frac{\mathrm{R} \times 290}{p}
\end{aligned}
$$

Let M be the molar mass of the unknown gas. Volume (V) occupied by the unknown gas can be calculated as:

$$
\begin{aligned}
V & =\frac{m}{M} \frac{\mathrm{R} T}{p} \\
& =\frac{2.9}{M} \times \frac{\mathrm{R} \times 368}{p}
\end{aligned}
$$

According to the question,

$$
\begin{aligned}
& \frac{0.184}{2} \times \frac{\mathrm{R} \times 290}{p}=\frac{2.9}{M} \times \frac{\mathrm{R} \times 368}{p} \\
& \Rightarrow \frac{0.184 \times 290}{2}=\frac{2.9 \times 368}{M} \\
& \Rightarrow M=\frac{2.9 \times 368 \times 2}{0.184 \times 290} \\
& \quad=40 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

Hence, the molar mass of the gas is $40 \mathrm{~g} \mathrm{~mol}^{-1}$.

Question 5.19:

A mixture of dihydrogen and dioxygen at one bar pressure contains 20% by weight of dihydrogen. Calculate the partial pressure of dihydrogen.

Answer

Let the weight of dihydrogen be 20 g and the weight of dioxygen be 80 g .
Then, the number of moles of dihydrogen, $\quad n_{H_{2}}=\frac{20}{2}=10$ moles and the number of moles of dioxygen, ${ }^{n_{\mathrm{O}_{2}}}=\frac{80}{32}=2.5 \mathrm{moles}$.
Given,
Total pressure of the mixture, $p_{\text {total }}=1$ bar
Then, partial pressure of dihydrogen,

$$
\begin{aligned}
p_{\mathrm{H}_{2}} & =\frac{n_{\mathrm{H}_{2}}}{n_{\mathrm{H}_{2}}+n_{\mathrm{O}_{2}}} \times P_{\text {tolal }} \\
& =\frac{10}{10+2.5} \times 1 \\
& =0.8 \mathrm{bar}
\end{aligned}
$$

Hence, the partial pressure of dihydrogen is 0.8 bar .

Question 5.20:

What would be the SI unit for the quantity $p V^{2} T^{2} / n$?

Answer

The SI unit for pressure, p is Nm^{-2}.
The SI unit for volume, V is m^{3}.
The SI unit for temperature, T is K .
The SI unit for the number of moles, n is mol.
Therefore, the SI unit for quantity $\frac{p V^{2} T^{2}}{n}$ is given by,
$=\frac{\left(\mathrm{Nm}^{-2}\right)\left(\mathrm{m}^{3}\right)^{2}(\mathrm{~K})^{2}}{\mathrm{~mol}}$
$=\mathrm{Nm}^{4} \mathrm{~K}^{2} \mathrm{~mol}^{-1}$

Question 5.21:

In terms of Charles' law explain why $-273^{\circ} \mathrm{C}$ is the lowest possible temperature.
Answer
Charles' law states that at constant pressure, the volume of a fixed mass of gas is directly proportional to its absolute temperature.

It was found that for all gases (at any given pressure), the plots of volume vs. temperature (in ${ }^{\circ} \mathrm{C}$) is a straight line. If this line is extended to zero volume, then it intersects the
temperature-axis at $-273^{\circ} \mathrm{C}$. In other words, the volume of any gas at $-273^{\circ} \mathrm{C}$ is zero. This is because all gases get liquefied before reaching a temperature of $-273^{\circ} \mathrm{C}$. Hence, it can be concluded that $-273^{\circ} \mathrm{C}$ is the lowest possible temperature.

Question 5.22:

Critical temperature for carbon dioxide and methane are $31.1{ }^{\circ} \mathrm{C}$ and $-81.9{ }^{\circ} \mathrm{C}$ respectively. Which of these has stronger intermolecular forces and why?

Answer
Higher is the critical temperature of a gas, easier is its liquefaction. This means that the intermolecular forces of attraction between the molecules of a gas are directly proportional to its critical temperature. Hence, intermolecular forces of attraction are stronger in the case of CO_{2}.

Question 5.23:

Explain the physical significance of Van der Waals parameters.
Answer

Physical significance of 'a':

' a ' is a measure of the magnitude of intermolecular attractive forces within a gas.

Physical significance of ' \mathbf{b} ':

' b ' is a measure of the volume of a gas molecule.

