(Chapter 2)(Solutions)

XII

Intext Questions

Question 2.1:

Calculate the mass percentage of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ if 22 g of benzene is dissolved in 122 g of carbon tetrachloride. Answer

Mass percentage of $\mathrm{C}_{6} \mathrm{H}_{6}$

$$
=\frac{\text { Mass of } \mathrm{C}_{6} \mathrm{H}_{6}}{\text { Total mass of the solution }} \times 100 \%
$$

$=\frac{\text { Mass of } \mathrm{C}_{6} \mathrm{H}_{6}}{\text { Mass of } \mathrm{C}_{6} \mathrm{H}_{6}+\text { Mass of } \mathrm{CCl}_{4}} \times 100 \%$
$=\frac{22}{22+122} \times 100 \%$
$=15.28 \%$

$$
=\frac{\text { Mass of } \mathrm{CCl}_{4}}{\text { Total mass of the solution }} \times 100 \%
$$

Mass percentage of CCl_{4}
$=\frac{\text { Mass of } \mathrm{CCl}_{4}}{\text { Mass of } \mathrm{C}_{6} \mathrm{H}_{6}+\text { Mass of } \mathrm{CCl}_{4}} \times 100 \%$
$=\frac{122}{22+122} \times 100 \%$
$=84.72 \%$
Alternatively,
Mass percentage of $\mathrm{CCl}_{4}=(100-15.28) \%$
$=84.72 \%$

Question 2.2:

Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.

Answer

Let the total mass of the solution be 100 g and the mass of benzene be 30 g .

\therefore Mass of carbon tetrachloride $=(100-30) \mathrm{g}$
$=70 \mathrm{~g}$
Molar mass of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=(6 \times 12+6 \times 1) \mathrm{g} \mathrm{mol}^{-1}$
$=78 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore Number of moles of

$$
\mathrm{C}_{6} \mathrm{H}_{6}=\frac{30}{78} \mathrm{~mol}
$$

$=0.3846 \mathrm{~mol}$
Molar mass of carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)=1 \times 12+4 \times 355$
$=154 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore Number of moles of $\mathrm{CCl}_{4}=\frac{70}{154} \mathrm{~mol}$
$=0.4545 \mathrm{~mol}$
Thus, the mole fraction of $\mathrm{C}_{6} \mathrm{H}_{6}$ is given as:
$\frac{\text { Number of moles of } \mathrm{C}_{6} \mathrm{H}_{6}}{\text { Number of moles of } \mathrm{C}_{6} \mathrm{H}_{6}+\text { Number of moles of } \mathrm{CCl}_{4}}$
$=\frac{0.3846}{0.3846+0.4545}$
$=0.458$

Question 2.3:

Calculate the molarity of each of the following solutions: (a) 30 g of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ in 4.3 L of solution (b) 30 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ diluted to 500 mL .

Answer
Molarity is given by:
Molarity $=\frac{\text { Moles of solute }}{\text { Volume of solution in litre }}$
(a) Molar mass of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=59+2(14+3 \times 16)+6 \times 18$
$=291 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore Moles of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=\frac{30}{291} \mathrm{~mol}$

$=0.103 \mathrm{~mol}$
Therefore, molarity $=\frac{0.103 \mathrm{~mol}}{4.3 \mathrm{~L}}$
$=0.023 \mathrm{M}$
(b) Number of moles present in 1000 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=0.5 \mathrm{~mol}$
\therefore Number of moles present in 30 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=\frac{0.5 \times 30}{1000} \mathrm{~mol}$
$=0.015 \mathrm{~mol}$
Therefore, molarity $=\frac{0.015}{0.5 \mathrm{~L}} \mathrm{~mol}$
$=0.03 \mathrm{M}$

Question 2.4:

Calculate the mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ required in making 2.5 kg of 0.25 molal aqueous solution.

Answer
Molar mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=2(1 \times 14+2 \times 1)+1 \times 12+1 \times 16$
$=60 \mathrm{~g} \mathrm{~mol}^{-1}$
0.25 molar aqueous solution of urea means:

1000 g of water contains $0.25 \mathrm{~mol}=(0.25 \times 60) \mathrm{g}$ of urea
$=15 \mathrm{~g}$ of urea
That is,
$(1000+15) \mathrm{g}$ of solution contains 15 g of urea
Therefore, $2.5 \mathrm{~kg}(2500 \mathrm{~g})$ of solution contains $=\frac{15 \times 2500}{1000+15} \mathrm{~g}$
$=36.95 \mathrm{~g}$
$=37 \mathrm{~g}$ of urea (approximately)
Hence, mass of urea required $=37 \mathrm{~g}$
Note: There is a slight variation in this answer and the one given in the NCERT textbook.

Question 2.5:

Calculate (a) molality (b) molarity and (c) mole fraction of KI if the density of $\mathbf{2 0 \%}$ (mass/mass) aqueous KI is $1.202 \mathrm{~g} \mathrm{~mL}^{-1}$.

Answer
(a) Molar mass of $\mathrm{KI}=39+127=166 \mathrm{~g} \mathrm{~mol}^{-1}$
20% (mass/mass) aqueous solution of KI means 20 g of KI is present in 100 g of solution.
That is,
20 g of KI is present in $(100-20) \mathrm{g}$ of water $=80 \mathrm{~g}$ of water $=\frac{\text { Moles of KI }}{\text { Mass of water in } \mathrm{kg}}$
Therefore, molality of the solution
$=\frac{\frac{20}{166}}{0.08} \mathrm{~m}$
$=1.506 \mathrm{~m}$
$=1.51 \mathrm{~m}$ (approximately)
(b) It is given that the density of the solution $=1.202 \mathrm{~g} \mathrm{~mL}^{-1}$
\therefore Volume of 100 g solution $=\frac{\text { Mass }}{\text { Density }}$
$=\frac{100 \mathrm{~g}}{1.202 \mathrm{~g} \mathrm{~mL}^{-1}}$
$=83.19 \mathrm{~mL}$
$=83.19 \times 10^{-3} \mathrm{~L}$
Therefore, molarity of the solution $=\frac{\frac{20}{166} \mathrm{~mol}}{83.19 \times 10^{-3} \mathrm{~L}}$
$=1.45 \mathrm{M}$
(c) Moles of KI

Moles of water

$$
=\frac{\text { Moles of KI }}{\text { Moles of KI + Moles of water }}
$$

$\mathrm{H}_{2} \mathrm{~S}$, a toxic
mole fraction of KI
$=\frac{0.12}{0.12+4.44}$
gas with rotten egg like
smell, is used for the qualitative analysis. If the solubility of $\mathrm{H}_{2} \mathrm{~S}$ in water at STP is 0.195 m, calculate Henry's law constant.

Answer
It is given that the solubility of $\mathrm{H}_{2} \mathrm{~S}$ in water at STP is 0.195 m , i.e., 0.195 mol of $\mathrm{H}_{2} \mathrm{~S}$ is dissolved in 1000 g of water.
Moles of water $=\frac{1000 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}$
$=55.56 \mathrm{~mol}$
\therefore Mole fraction of $\mathrm{H}_{2} \mathrm{~S}, x \quad=\frac{\text { Moles of } \mathrm{H}_{2} \mathrm{~S}}{\text { Moles of } \mathrm{H}_{2} \mathrm{~S}+\text { Moles of water }}$
$=\frac{0.195}{0.195+55.56}$
$=0.0035$
At STP, pressure $(p)=0.987$ bar
According to Henry's law: $p=$
$\mathrm{K}_{\mathrm{H} X}$

$$
\begin{aligned}
\Rightarrow \mathrm{K}_{\mathrm{H}} & =\frac{p}{x} \\
& =\frac{0.987}{0.0035} \mathrm{bar}
\end{aligned}
$$

$=282$ bar

Question 2.7:

Henry's law constant for CO_{2} in water is $1.67 \times 10^{8} \mathrm{~Pa}$ at 298 K . Calculate the quantity of CO_{2} in 500 mL of soda water when packed under $2.5 \mathrm{~atm} \mathrm{CO}_{2}$ pressure at 298 K .

Answer
It is given that:
$\mathrm{K}_{\mathrm{H}}=1.67 \times 10^{8} \mathrm{~Pa}$
$p_{\mathrm{CO}_{2}}=2.5 \mathrm{~atm}=2.5 \times 1.01325 \times 10^{5} \mathrm{~Pa}$
$=2.533125 \times 10^{5} \mathrm{~Pa}$
According to Henry's law:
$p_{\mathrm{CO}_{2}}=\mathrm{K}_{\mathrm{H}} x$
$\Rightarrow x=\frac{p_{\mathrm{CO}_{2}}}{\mathrm{~K}_{\mathrm{H}}}$

$$
=\frac{2.533125 \times 10^{5}}{1.67 \times 10^{8}}
$$

$=0.00152$

We

$$
x=\frac{n_{\mathrm{CO}_{2}}}{n_{\mathrm{CO}_{2}}+n_{\mathrm{H}_{2} \mathrm{O}}} \approx \frac{n_{\mathrm{CO}_{2}}}{n_{\mathrm{H}_{2} \mathrm{O}}}
$$

$$
n_{\mathrm{CO}_{2}} \text { is negligible as compared to }{ }^{n_{\mathrm{H}_{2} \mathrm{O}}} \text { [Since,] }
$$

In 500 mL of soda water, the volume of water $=500 \mathrm{~mL}$
[Neglecting the amount of soda present] We
can write:
500 mL of water $=500 \mathrm{~g}$ of water
$=\frac{500}{18} \mathrm{~mol}$ of water
$=27.78 \mathrm{~mol}$ of water

Now, $_{\frac{n_{\mathrm{CO}_{2}}}{n_{\mathrm{H}_{2} \mathrm{O}}}}=x$
$\frac{n_{\mathrm{CO}_{2}}}{27.78}=0.00152$
$n_{\mathrm{CO}_{2}}=0.042 \mathrm{~mol}$
Hence, quantity of CO_{2} in 500 mL of soda water $=(0.042 \times 44) \mathrm{g}$
$=1.848 \mathrm{~g}$

Question 2.8:

The vapour pressure of pure liquids A and B are 450 and 700 mm Hg respectively, at 350 K. Find out the composition of the liquid mixture if total vapour pressure is 600 mm Hg . Also find the composition of the vapour phase.

Answer
It is given that:
$p_{\mathrm{A}}^{0}=450 \mathrm{~mm}$ of Hg
$p_{\mathrm{B}}^{0}=700 \mathrm{~mm}$ of $\mathrm{Hg} \Rightarrow p_{\text {total }}=p_{\mathrm{A}}^{0} x_{\mathrm{A}}+p_{\mathrm{B}}^{0}\left(1-x_{\mathrm{A}}\right)$
$\begin{aligned} & p_{\text {total }}=600 \mathrm{~mm} \text { of } \mathrm{Hg} \Rightarrow p_{\text {total }}=p_{\mathrm{A}}^{0} x_{\mathrm{A}}+p_{\mathrm{B}}^{0}-p_{\mathrm{B}}^{0} x_{\mathrm{A}} \\ & \text { From Raoult's law, we }\end{aligned} \Rightarrow p_{\text {total }}=\left(p_{\mathrm{A}}^{0}-p_{\mathrm{B}}^{0}\right) x_{\mathrm{A}}+p_{\mathrm{B}}^{0}$
$\begin{array}{llr}p_{\mathrm{A}}=p_{\mathrm{A}}^{0} x_{\mathrm{A}} & \Rightarrow 600=(450-700) x_{\mathrm{A}}+700 \\ p_{\mathrm{B}}=p_{\mathrm{B}}^{0} x_{\mathrm{B}}=p_{\mathrm{B}}^{0}\left(1-x_{\mathrm{A}}\right) & \Rightarrow-100=-250 x_{\mathrm{A}} & \\ & \Rightarrow x_{\mathrm{A}}=0.4 & \text { Therefore, total } \\ & x_{\mathrm{B}}=1-x_{\mathrm{A}} & \text { pressure, } \\ & p_{\text {total }}=p_{\mathrm{A}}+p_{\mathrm{B}}\end{array}$

Therefore,
$=1-0.4$
$=0.6$
Now, $p_{\mathrm{A}}=p_{\mathrm{A}}^{0} x_{\mathrm{A}}$
$=450 \times 0.4=180 \mathrm{~mm}$ of Hg
$p_{\mathrm{B}}=p_{\mathrm{B}}^{0} x_{\mathrm{B}}$
$=700 \times 0.6$
$=420 \mathrm{~mm}$ of Hg Now, in the vapour phase: Mole fraction of liquid $\mathrm{A}=\frac{p_{\mathrm{A}}}{p_{\mathrm{A}}+p_{\mathrm{B}}}$
$=\frac{180}{180+420}$
$=\frac{180}{600}$
$=0.30$
And, mole fraction of liquid $B=1-0.30$
$=0.70$

Question 2.9:

Vapour pressure of pure water at 298 K is 23.8 mm Hg .50 g of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering.

Answer
It is given that vapour pressure of water, $p_{1}^{0}=23.8 \mathrm{~mm}$ of Hg
Weight of water taken, $w_{1}=850 \mathrm{~g}$
Weight of urea taken, $w_{2}=50 \mathrm{~g}$
Molecular weight of water, $M_{1}=18 \mathrm{~g} \mathrm{~mol}^{-1}$
Molecular weight of urea, $M_{2}=60 \mathrm{~g} \mathrm{~mol}^{-1}$
Now, we have to calculate vapour pressure of water in the solution. We take vapour pressure as p_{1}.
Now, from Raoult's law, we have:

$$
\begin{aligned}
& \frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}=\frac{n_{2}}{n_{1}+n_{2}} \\
& \Rightarrow \frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}=\frac{\frac{w_{2}}{M_{2}}}{\frac{w_{1}}{M_{1}}+\frac{w_{2}}{M_{2}}} \\
& \Rightarrow \frac{23.8-p_{1}}{23.8}=\frac{\frac{50}{60}}{\frac{850}{18}+\frac{50}{60}} \\
& \Rightarrow \frac{23.8-p_{1}}{23.8}=\frac{0.83}{47.22+0.83} \\
& \Rightarrow \frac{23.8-p_{1}}{23.8}=0.0173 \\
& \Rightarrow p_{1}=23.4 \mathrm{~mm} \text { of } \mathrm{Hg}
\end{aligned}
$$

Hence, the vapour pressure of water in the given solution is 23.4 mm of Hg and its relative lowering is 0.0173 .

Question 2.10:

Boiling point of water at 750 mm Hg is $99.63^{\circ} \mathrm{C}$. How much sucrose is to be added to 500 g of water such that it boils at $100^{\circ} \mathrm{C}$. Molal elevation constant for water is $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.

Answer
Here, elevation of boiling point $\Delta T_{b}=(100+273)-(99.63+273)$
$=0.37 \mathrm{~K}$
Mass of water, $w_{1}=500 \mathrm{~g}$
Molar mass of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right), M_{2}=11 \times 12+22 \times 1+11 \times 16$
$=342 \mathrm{~g} \mathrm{~mol}^{-1}$
Molal elevation constant, $K_{b}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \mathrm{We}$
know that:
$\Delta T_{b}=\frac{K_{b} \times 1000 \times w_{2}}{M_{2} \times w_{1}}$
$\Rightarrow w_{2}=\frac{\Delta T_{b} \times M_{2} \times w_{1}}{K_{b} \times 1000}$
$=\frac{0.37 \times 342 \times 500}{0.52 \times 1000}$
$=121.67 \mathrm{~g}$ (approximately)
Hence, 121.67 g of sucrose is to be added.
Note: There is a slight variation in this answer and the one given in the NCERT textbook.

Question 2.11:

Calculate the mass of ascorbic acid (Vitamin C, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$) to be dissolved in 75 g of acetic acid to lower its melting point by $1.5^{\circ} \mathrm{C} . K_{f}=3.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.

Answer
Mass of acetic acid, $w_{1}=75 \mathrm{~g}$
Molar mass of ascorbic acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right), M_{2}=6 \times 12+8 \times 1+6 \times 16$
$=176 \mathrm{~g} \mathrm{~mol}^{-1}$
Lowering of melting point, $\Delta T_{f}=1.5 \mathrm{~K} \mathrm{We}$
know that:

$$
\begin{aligned}
\Delta T_{f} & =\frac{K_{f} \times w_{2} \times 1000}{M_{2} \times w_{1}} \\
\Rightarrow w_{2} & =\frac{\Delta T_{f} \times M_{2} \times w_{1}}{K_{f} \times 1000} \\
& =\frac{1.5 \times 176 \times 75}{3.9 \times 1000}
\end{aligned}
$$

$=5.08 \mathrm{~g}$ (approx)
Hence, 5.08 g of ascorbic acid is needed to be dissolved.
Note: There is a slight variation in this answer and the one given in the NCERT textbook.

Question 2.12:

Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at $37^{\circ} \mathrm{C}$.

Answer
It is given that:
Volume of water, $V=450 \mathrm{~mL}=0.45 \mathrm{~L}$
Temperature, $T=(37+273) \mathrm{K}=310 \mathrm{~K}$
Number of moles of the polymer, $n=\frac{1}{185000} \mathrm{~mol}$
We know that:
Osmotic pressure, $\quad \pi=\frac{n}{V} \mathrm{R} T$
$=\frac{1}{185000} \mathrm{~mol} \times \frac{1}{0.45 \mathrm{~L}} \times 8.314 \times 10^{3} \mathrm{PaLK} \mathrm{K}^{-1} \mathrm{~mol}^{-1} \times 310 \mathrm{~K}$
$=30.98 \mathrm{~Pa}$
$=31 \mathrm{~Pa}$ (approximately)

