9

Sequence and Series

Short Answer Type Questions

Q. 1 The first term of an AP is a and the sum of the first p terms is zero, show that the sum of its next q terms is $\frac{-a(p+q) q}{p-1}$.
Sol. Let the common difference of an AP is d.
According to the question,

$$
\begin{aligned}
& & S_{p} & =0 \\
\Rightarrow & \frac{p}{2}[2 a+(p-1) d] & =0 & {\left[\because S_{n}=\frac{n}{2}\{2 a+(n-1) d\}\right] } \\
& \therefore & 2 a+(p-1) d & =0 \\
& & d & =\frac{-2 a}{p-1}
\end{aligned}
$$

Now, sum of next q terms $=S_{p+q}-S_{p}=S_{p+q}-0$

$$
\begin{aligned}
& =\frac{p+q}{2}[2 a+(p+q-1) d] \\
& =\frac{p+q}{2}[2 a+(p-1) d+q d] \\
& =\frac{p+q}{2}\left[2 a+(p-1) \cdot \frac{-2 a}{p-1}+\frac{q(-2 a)}{p-1}\right] \\
& =\frac{p+q}{2}\left[2 a+(-2 a)-\frac{2 a q}{p-1}\right] \\
& =\frac{p+q}{2}\left[\frac{-2 a q}{p-1}\right] \\
& =\frac{-a(p+q) q}{(p-1)}
\end{aligned}
$$

Q. 2 A man saved ₹ 66000 in 20 yr . In each succeeding year after the first year, he saved ₹ 200 more than what he saved in the previous year. How much did he save in the first year?
Sol. Let saved in first year ₹ a. Since, each succeeding year an increment ₹ 200 has made.
So, it forms an AP whose
First term $=a$, common difference $(d)=200$ and $n=20 \mathrm{yr}$

$$
\begin{array}{lll}
\therefore & S_{20}=\frac{20}{2}[2 a+(20-1) d] & {\left[\because S_{n}=\frac{n}{2}\{2 a+(n-1) d\}\right]} \\
\Rightarrow & 66000=10[2 a+19 d] \\
\Rightarrow & 66000=20 a+190 d \\
\Rightarrow & 66000=20 a+190 \times 200 \\
\Rightarrow & 20 a=66000-38000 \\
\Rightarrow & 20 a=28000 \\
\therefore & a=\frac{28000}{20}=1400
\end{array}
$$

Hence, he saved ₹ 1400 in the first year.
Q. 3 A man accepts a position with an initial salary of ₹ 5200 per month. It is understood that he will receive an automatic increase of ₹ 320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?

Sol. Since, the man get a fixed increment of ₹ 320 each month.
Therefore, this forms an AP whose First term $=5200$ and Common difference $(d)=320$
(i) Salary for tenth month i.e., for $n=10$,

$$
a_{10}=a+(n-1) d
$$

$$
\Rightarrow \quad a_{10}=5200+(10-1) \times 320
$$

$$
\Rightarrow \quad a_{10}=5200+9 \times 320
$$

$$
\therefore \quad a_{10}=5200+2880
$$

$$
\therefore \quad a_{10}=8080
$$

(ii) Total earning during the first year.

In a year there are 12 month i.e., $n=12$,

$$
\begin{aligned}
S_{12} & =\frac{12}{2}[2 \times 5200+(12-1) 320] \\
& =6[10400+11 \times 320] \\
& =6[10400+3520]=6 \times 13920=83520
\end{aligned}
$$

Q. 4 If the p th and q th terms of a GP are q and p respectively, then show that its $(p+q)$ th term is $\left(\frac{q^{p}}{p^{q}}\right)^{\frac{1}{p-q}}$.
Sol. Let the first term and common ratio of GP be a and r, respectively.
According to the question, $\quad p$ th term $=q$

$$
\begin{array}{lrl}
\Rightarrow & a \cdot r^{p-1} & =q \\
\text { and } & q \text { th term } & =p \\
\Rightarrow & a r^{q-1} & =p
\end{array}
$$

On dividing Eq. (i) by Eq. (ii), we get

$$
\begin{aligned}
\frac{a r^{p-1}}{a r^{q-1}} & =\frac{q}{p} \\
\Rightarrow \quad r^{p-1-q+1} & =\frac{q}{p} \\
\Rightarrow \quad r^{p-q} & =\frac{q}{p} \Rightarrow r=\left(\frac{q}{p}\right)^{\frac{1}{p-q}}
\end{aligned}
$$

On substituting the value of r in Eq. (i), we get

$$
a\left(\frac{q}{p}\right)^{\frac{p-1}{p-q}}=q \Rightarrow a=\frac{q}{\left(\frac{q}{p}\right)^{\frac{p-1}{p-q}}}=q \cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}
$$

$\therefore \quad(p+q)$ th term, $T_{p+q}=a \cdot r^{p+q-1}=q \cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} \cdot(r)^{p+q-1}$

$$
\begin{aligned}
& =q \cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}\left[\left(\frac{q}{p}\right)^{\frac{1}{p-q}}\right]^{p+q-1}=q \cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}\left(\frac{q}{p}\right)^{\frac{p+q-1}{p-q}} \\
& =q \cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}\left(\frac{p}{q}\right)^{\frac{-(p+q-1)}{p-q}}=q \cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}-\frac{(p+q-1)}{p-q}} \\
& =q \cdot\left(\frac{p}{q}\right)^{\frac{p-1-p-q+1}{p-q}}=q \cdot\left(\frac{p}{q}\right)^{\frac{-q}{p-q}} \\
& a=q \cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}
\end{aligned}
$$

Now, $\quad(p+q)$ th term i.e., $a_{p+q}=a r^{p+q-1}$

$$
\left.\begin{array}{l}
=q \cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} \cdot\left(\frac{q}{p}\right)^{\frac{p+q-1}{p-q}} \\
=q \cdot \frac{q}{p^{\frac{p+q-1-p+1}{p-q}}}=q \cdot\left(\frac{q^{\frac{q}{p-q}}}{\frac{q}{p-q}}\right.
\end{array}\right)
$$

Q. 5 A carpenter was hired to build 192 window frames. The first day he made five frames and each day, thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
Sol. Here, $a=5$ and $d=2$
Let he finished the job in n days.
Then,

$$
\begin{aligned}
& S_{n}=192 \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
$$

$$
\Rightarrow \quad 192=\frac{n}{2}[2 \times 5+(n-1) 2]
$$

$$
\Rightarrow \quad 192=\frac{n}{2}[10+2 n-2]
$$

$$
\begin{array}{lrl}
\Rightarrow & 192 & =\frac{n}{2}[8+2 n] \\
\Rightarrow & 192 & =4 n+n^{2} \\
\Rightarrow & n^{2}+4 n-192 & =0 \\
\Rightarrow & (n-12)(n+16) & =0 \\
\Rightarrow & n & =12,-16 \\
\therefore & n & =12
\end{array}
$$

Q. 6 The sum of interior angles of a triangle is 180°. Show that the sum of the interior angles of polygons with $3,4,5,6, \ldots$ sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
Sol. We know that, sum of interior angles of a polygon of side $n=(2 n-4) \times 90^{\circ}=(n-2) \times 180^{\circ}$ Sum of interior angles of a polygon with sides 3 is 180 .
Sum of interior angles of polygon with side $4=(4-2) \times 180^{\circ}=360^{\circ}$
Similarly, sum of interior angles of polygon with side $5,6,7 \ldots$ are $540^{\circ}, 720^{\circ}, 900^{\circ}, \ldots$
The series will be $180^{\circ}, 360^{\circ} 540^{\circ}, 720^{\circ}, 900^{\circ}, \ldots$
Here, $\quad a=180^{\circ}$
and $\quad d=360^{\circ}-180^{\circ}=180^{\circ}$
Since, common difference is same between two consecutive terms of the series.
So, it form an AP.
We have to find the sum of interior angles of a 21 sides polygon.
It means, we have to find the 19th term of the above series.

$$
\begin{aligned}
\therefore \quad a_{19} & =a+(19-1) d \\
& =180+18 \times 180=3420
\end{aligned}
$$

Q. 7 A side of an equilateral triangle is 20 cm long. A second equilateral triangle is inscribed in it by joining the mid-points of the sides of the first triangle. The process is continued as shown in the accompanying diagram. Find the perimeter of the sixth inscribed equilateral triangle.
Sol. Side of equilateral $\triangle A B C=20 \mathrm{~cm}$. By joining the mid-points of this triangle, we get another equilateral triangle of side equal to half of the length of side of $\triangle A B C$.
Continuing in this way, we get a set of equilateral triangles with side equal to half of the side of the previous triangle.

$$
\begin{aligned}
\therefore \quad \text { Perimeter of first triangle } & =20 \times 3=60 \mathrm{~cm} \\
\text { Perimeter of second triangle } & =10 \times 3=30 \mathrm{~cm} \\
\text { Perimeter of third triangle } & =5 \times 3=15 \mathrm{~cm}
\end{aligned}
$$

Now, the series will be $60,30,15, \ldots$

$$
\begin{array}{ll}
\text { Here, } & a=60 \\
\therefore & r=\frac{30}{60}=\frac{1}{2}
\end{array}
$$

$$
\left[\because \frac{\text { second term }}{\text { first term }}=r\right]
$$

We have, to find perimeter of sixth inscribed triangle. It is the sixth term of the series.

$$
\begin{array}{rlrl}
\therefore & a_{6} & =a r^{6-1} & {\left[\because a_{n}=a r^{n-1}\right]} \\
& =60 \times\left(\frac{1}{2}\right)^{5}=\frac{60}{32}=\frac{15}{8} \mathrm{~cm} &
\end{array}
$$

162

Q. 8 In a potato race 20 potatoes are placed in a line at intervals of 4 m with the first potato 24 m from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
Sol. According to the given information, we have following diagram.

Distance travelled to bring first potato $=24+24=2 \times 24=48 \mathrm{~m}$
Distance travelled to bring second potato $=2(24+4)=2 \times 28=56 \mathrm{~m}$
Distance travelled to bring third potato $=2(24+4+4)=2 \times 32=64 \mathrm{~m}$
Then, the series of distances are 48, 56, 64,...
Here,

$$
\begin{aligned}
& a=48, \\
& d=56-48=8 \\
& n=20
\end{aligned}
$$

To find the total distance that he run in bringing back all potatoes, we have to find the sum of 20 terms of the above series.

$$
\begin{aligned}
\therefore \quad S_{20} & =\frac{20}{2}[2 \times 48+19 \times 8] \\
& =10[96+152] \\
& =10 \times 248=2480 \mathrm{~m}
\end{aligned}
$$

Q. 9 In a cricket tournament 16 school teams participated. A sum of ₹ 8000 is to be awarded among themselves as prize money. If the last placed team is awarded ₹ 275 in prize money and the award increases by the same amount for successive finishing places, how much amount will the first place team receive?
Sol. Let the first place team got ₹ a.
Since, award money increases by the same amount for successive finishing places.
Therefore series is an AP.
Let the constant amount be d.
[we take common difference (-ve) because series is decreasing]

On subtracting Eq. (i) from Eq. (ii), we get

$$
\begin{array}{rlrl}
& & (2 a-15 d)-(a-15 d) & =1000-275 \\
\Rightarrow & 2 a-15 d-a+15 d & =725 \\
\therefore & a & =725 \\
& \text { Hence, first place team receive ₹ } 725 .
\end{array}
$$

$$
\begin{align*}
& \text { Here, } \\
& l=275, n=16 \text { and } S_{16}=8000 \\
& \therefore \quad l=a+(n-) d \\
& \Rightarrow \quad l=a+(16-1)(-d) \\
& \Rightarrow \quad 275=a-15 d \tag{i}\\
& \text { and } \quad S_{16}=\frac{16}{2}[2 a+(n-1) \cdot(-d)] \\
& \Rightarrow \quad 8000=8[2 a+(16-1)(-d)] \\
& \Rightarrow \quad 8000=8[2 a-15 d] \\
& \Rightarrow \quad 1000=2 a-15 d \tag{i}
\end{align*}
$$

Q. 10 If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in AP, where $a_{i}>0$ for all i, show that

$$
\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}
$$

Sol. Since, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in AP.
$\Rightarrow \quad a_{2}-a_{1}=a_{3}-a_{2}=\ldots=a_{n}-a_{n-1}=d \quad$ [common difference]
If $a_{2}-a_{1}=d$, then $\left(\sqrt{a_{2}}\right)^{2}-\left(\sqrt{a_{1}}\right)^{2}=d$
$\Rightarrow \quad\left(\sqrt{a_{2}}-\sqrt{a_{1}}\right)\left(\sqrt{a_{2}}+\sqrt{a_{1}}\right)=d$
$\Rightarrow \quad \frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}=\frac{\sqrt{a_{2}}-\sqrt{a_{1}}}{d}$
Similarly,

$$
\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}=\frac{\sqrt{a_{3}}-\sqrt{a_{2}}}{d}
$$

$$
\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{\sqrt{a_{n}}-\sqrt{a_{n-1}}}{d}
$$

On adding these terms, we get

$$
\begin{align*}
& \frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}} \\
= & \frac{1}{d}\left[\sqrt{a_{2}}-\sqrt{a_{1}}+\sqrt{a_{3}}-\sqrt{a_{2}}+\ldots+\sqrt{a_{n}}-\sqrt{a_{n-1}}\right] \quad \text { [using above relations] } \\
= & \frac{1}{d}\left[\sqrt{a_{n}}-\sqrt{a_{1}}\right] \tag{i}
\end{align*}
$$

Again,

$$
a_{n}=a_{1}+(n-1) d
$$

$\left[\because T_{n}=a+(n-1) d\right]$
\Rightarrow
$a_{n}-a_{1}=(n-1) d$
$\Rightarrow \quad\left(\sqrt{a_{n}}\right)^{2}-\left(\sqrt{a_{1}}\right)^{2}=(n-1) d$
$\Rightarrow \quad\left(\sqrt{a_{n}}-\sqrt{a_{1}}\right)\left(\sqrt{a_{n}}+\sqrt{a_{1}}\right)=(n-1) d \Rightarrow \sqrt{a_{n}}-\sqrt{a_{1}}=\frac{(n-1) d}{\sqrt{a_{n}}+\sqrt{a_{1}}}$
On putting this value in Eq. (i), we get

$$
\begin{gathered}
\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}} \\
=\frac{(n-1) d}{d\left(\sqrt{a_{n}}+\sqrt{\left.a_{1}\right)}\right.}=\frac{n-1}{\sqrt{a_{n}}+\sqrt{a_{1}}}
\end{gathered}
$$

Hence proved.
Q. 11 Find the sum of the series

$$
\left(3^{3}-2^{3}\right)+\left(5^{3}-4^{3}\right)+\left(7^{3}-6^{3}\right)+\ldots \text { to (i) } n \text { terms. (ii) } 10 \text { terms. }
$$

Sol. Given series, $\left(3^{3}-2^{3}\right)+\left(5^{3}-4^{3}\right)+\left(7^{3}-6^{3}\right)+$

$$
\begin{equation*}
=\left(3^{3}+5^{3}+7^{3}+\ldots\right)-\left(2^{3}+4^{3}+6^{3}+\ldots\right) \tag{i}
\end{equation*}
$$

Let T_{n} be the nth term of the series (i),

$$
\text { then } \quad \begin{aligned}
T_{n} & =\left(n \text { nh term of } 3^{3}, 5^{3}, 7^{3}, \ldots\right)-\left(n \text {th term of } 2^{3}, 4^{3}, 6^{3}, \ldots\right)=(2 n+1)^{3}-(2 n)^{3} \\
& =(2 n+1-2 n)\left[(2 n+1)^{2}+(2 n+1) 2 n+(2 n)^{2}\right] \quad\left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right] \\
& =\left[4 n^{2}+1+4 n+4 n^{2}+2 n+4 n^{2}\right]=\left[12 n^{2}+6 n\right]+1
\end{aligned}
$$

(i) Let S_{n} denote the sum of n term of series (i).

Then,

$$
\begin{aligned}
S_{n} & =\Sigma T_{n}=\Sigma\left(12 n^{2}+6 n\right) \\
& =12 \Sigma n^{2}+6 \Sigma n+\Sigma n \\
& =12 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{6 n(n+1)}{2}+n \\
& =2 n(n+1)(2 n+1)+3 n(n+1)+n \\
& =2 n(n+1)(2 n+1)+3 n(n+1)+n \\
& =\left(2 n^{2}+2 n\right)(2 n+1)+3 n^{2}+3 n+n \\
& =4 n^{3}+2 n^{2}+4 n^{2}+2 n+3 n^{2}+3 n+n \\
& =4 n^{3}+9 n^{2}+6 n
\end{aligned}
$$

(ii) Sum of 10 terms,

$$
\begin{aligned}
S_{10} & =4 \times(10)^{3}+9 \times(10)^{2}+6 \times 10 \\
& =4 \times 1000+9 \times 100+60 \\
& =4000+900+60=4960
\end{aligned}
$$

Q. 12 Find the t th term of an AP sum of whose first n terms is $2 n+3 n^{2}$.

Sol. Given that, sum of n terms of an AP,

$$
\begin{aligned}
S_{n} & =2 n+3 n^{2} \\
T_{n} & =S_{n}-S_{n-1} \\
& =\left(2 n+3 n^{2}\right)-\left[2(n-1)+3(n-1)^{2}\right] \\
& =\left(2 n+3 n^{2}\right)-\left[2 n-2+3\left(n^{2}+1-2 n\right)\right] \\
& =\left(2 n+3 n^{2}\right)-\left(2 n-2+3 n^{2}+3-6 n\right) \\
& =2 n+3 n^{2}-2 n+2-3 n^{2}-3+6 n \\
& =6 n-1 \\
\therefore \quad \text { ith term } T_{r} & =6 r-1
\end{aligned}
$$

Long Answer Type Questions

Q. 13 If A is the arithmetic mean and G_{1}, G_{2} be two geometric mean between any two numbers, then prove that $2 A=\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}$.
Sol. Let the numbers be a and b.
Then,

$$
\begin{align*}
A & =\frac{a+b}{2} \\
2 A & =a+b \tag{i}
\end{align*}
$$

\Rightarrow
and G_{1}, G_{2} be geometric mean between a and b, then a, G_{1}, G_{2}, b are in GP.
Let r be the common ratio.
Then,

$$
b=a r^{4-1}
$$

$$
\left[\because a_{n}=a r^{n-1}\right]
$$

$$
\begin{array}{ll}
\Rightarrow & b=a r^{3} \Rightarrow \frac{b}{a}=r^{3} \\
\therefore & r=\left(\frac{b}{a}\right)^{1 / 3}
\end{array}
$$

Now,

$$
\begin{array}{rlr}
G_{1} & =a r=a\left(\frac{b}{a}\right)^{1 / 3} & {\left[\because r=\left(\frac{b}{a}\right)^{1 / 3}\right]} \\
G_{2} & =a r^{2}=a\left(\frac{b}{a}\right)^{2 / 3} \\
\text { RHS } & =\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}=\frac{\left[a\left(\frac{b}{a}\right)^{1 / 3}\right]^{2}}{a\left(\frac{b}{a}\right)^{2 / 3}}+\frac{\left[a\left(\frac{b}{a}\right)^{2 / 3}\right]^{2}}{a\left(\frac{b}{a}\right)^{1 / 3}} \\
& =\frac{a^{2}\left(\frac{b}{a}\right)^{2 / 3}}{a\left(\frac{b}{a}\right)^{2 / 3}}+\frac{a^{2}\left(\frac{b}{a}\right)^{4 / 3}}{a\left(\frac{b}{a}\right)^{1 / 3}} \\
& =a+a\left(\frac{b}{a}\right)=a+b=2 A \\
& =\text { LHS }
\end{array}
$$

Q. 14 If $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}$ are in AP whose common difference is d, show that $\sec \theta_{1} \sec \theta_{2}+\sec \theta_{2} \sec \theta_{3}+\ldots+\sec \theta_{n-1} \sec \theta_{n}=\frac{\tan \theta_{n}-\tan \theta_{1}}{\sin d}$.

Sol. Since, $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}$ are in AP.

$$
\begin{equation*}
\Rightarrow \quad \theta_{2}-\theta_{1}=\theta_{3}-\theta_{2}=\cdots=\theta_{n}-\theta_{n-1}=d \tag{i}
\end{equation*}
$$

Now, we have to prove

$$
\sec q_{1} \sec q_{2}+\sec q_{2} \sec q_{3}+\cdots+\sec q_{n-1} \sec \theta_{n}=\frac{\tan \theta_{n}-\tan \theta_{1}}{\sin d}
$$

or it can be written as
sind $\left[\sec \theta_{1} \sec \theta_{2}+\sec \theta_{2} \sec \theta_{3}+\cdots+\sec \theta_{n-1} \sec \theta_{n}\right]=\tan \theta_{n}-\tan \theta_{1}$
Now, taking only first term of LHS

$$
\begin{align*}
\sin d \sec \theta_{1} \sec \theta_{2} & =\frac{\sin d}{\cos \theta_{1} \cos \theta_{2}}=\frac{\sin \left(\theta_{2}-\theta_{1}\right)}{\cos \theta_{1} \cos \theta_{2}} \tag{i}\\
& =\frac{\sin \theta_{2} \cos \theta_{1}-\cos \theta_{2} \sin \theta_{1}}{\cos \theta_{1} \cos \theta_{2}} \\
& =\frac{\sin \theta_{2} \cos \theta_{1}}{\cos \theta_{1} \cos \theta_{2}}-\frac{\cos \theta_{2} \sin \theta_{1}}{\cos \theta_{1} \cos \theta_{2}}=\tan \theta_{2}-\tan \theta_{1}
\end{align*}
$$

Similarly, we can solve other terms which will be $\tan \theta_{3}-\tan \theta_{2}, \tan \theta_{4}-\tan \theta_{3}, \cdots$

$$
\begin{aligned}
& \therefore \quad \quad \mathrm{LHS}=\tan \theta_{2}-\tan \theta_{1}+\tan \theta_{3}-\tan \theta_{2}+\cdots+\tan \theta_{n}-\tan \theta_{n-1} \\
& =-\tan \theta_{1}+\tan \theta_{n}=\tan \theta_{n}-\tan \theta_{1} \\
& =\text { RHS }
\end{aligned}
$$

Q. 15 If the sum of p terms of an AP is q and the sum of q terms is p, then show that the sum of $p+q$ terms is $-(p+q)$. Also, find the sum of first $p-q$ terms (where, $p>q$).
Sol. Let first term and common difference of the AP be a and d, respectively.

$$
\begin{align*}
& \text { Then, } \\
& S_{p}=q \\
& \frac{p}{2}[2 a+(p-1) d]=q \\
& 2 a+(p-1) d=\frac{2 q}{p} \tag{i}
\end{align*}
$$

and

$$
S_{q}=p
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{q}{2}[2 a+(q-1) d]=p \\
\Rightarrow & 2 a+(q-1) d=\frac{2 p}{q} \tag{ii}
\end{array}
$$

On subtracting Eq. (ii) from Eq. (i), we get

$$
\begin{array}{rlrl}
& & 2 a+(p-1) d-2 a-(q-1) d & =\frac{2 q}{p}-\frac{2 p}{q} \\
\Rightarrow & {[(p-1)-(q-1)] d} & =\frac{2 q^{2}-2 p^{2}}{p q} \\
\Rightarrow & {[p-1-q+1] d=\frac{2\left(q^{2}-p^{2}\right)}{p q}} \\
\Rightarrow & (p-q) d=\frac{2\left(q^{2}-p^{2}\right)}{p q} \\
\therefore & d=\frac{-2(p+q)}{p q} \tag{iii}
\end{array}
$$

On substituting the value of d in Eq. (i), we get

$$
\begin{align*}
& 2 a+(p-1)\left(\frac{-2(p+q)}{p q}\right)=\frac{2 q}{p} \\
& \Rightarrow \quad 2 a=\frac{2 q}{p}+\frac{2(p+q)(p-1)}{p q} \\
& \Rightarrow \quad a=\left[\frac{q}{p}+\frac{(p+q)(p-1)}{p q}\right] \tag{iv}\\
& \text { Now, } \quad S_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) d] \\
& =\frac{p+q}{2}\left[\frac{2 q}{p}+\frac{2(p+q)(p-1)}{p q}-\frac{(p+q-1) 2(p+q)}{p q}\right] \\
& =(p+q)\left[\frac{q}{p}+\frac{(p+q)(p-1)-(p+q-1)(p+q)}{p q}\right] \\
& =(p+q)\left[\frac{q}{p}+\frac{(p+q)(p-1-p-q+1)}{p q}\right] \\
& =p+q\left[\frac{q}{p}-\frac{p+q}{p}\right]=(p+q)\left[\frac{q-p-q}{p}\right] \\
& S_{p+q}=-(p+q) \\
& S_{p-q}=\frac{p-q}{2}[2 a+(p-q-1) d]
\end{align*}
$$

$$
\begin{aligned}
& =\frac{p-q}{2}\left[\frac{2 q}{p}+\frac{2(p+q)(p-1)}{p q}-\frac{(p-q-1) 2(p+q)}{p q}\right] \\
& =(p-q)\left[\frac{q}{p}+\frac{p+q(p-1-p+q+1)}{p q}\right] \\
& =(p-q)\left[\frac{q}{p}+\frac{(p+q) q}{p q}\right] \\
& =(p-q)\left[\frac{q}{p}+\frac{p+q}{p}\right]=(p-q) \frac{(p+2 q)}{p}
\end{aligned}
$$

Q. 16 If p th, q th and r th terms of an AP and GP are both and c respectively, then show that $a^{b-c} \cdot b^{c-a} \cdot c^{a-b}=1$.

Sol. Let A, d are the first term and common difference of AP and x, R are the first term and common ratio of GP, respectively.
According to the given condition,

$$
\begin{align*}
A+(p-1) d & =a \tag{i}\\
A+(q-1) d & =b \tag{ii}\\
A+(r-1) d & =c \tag{iii}\\
a & =x R^{p-1} \tag{iv}\\
b & =x R^{q-1} \tag{v}\\
c & =x R^{r-1} \tag{vi}
\end{align*}
$$

On subtracting Eq. (ii) from Eq. (i), we get

$$
\begin{equation*}
d(p-1-q+1)=a-b \tag{vii}
\end{equation*}
$$

$\Rightarrow \quad a-b=d(p-q)$
On subtracting Eq. (iii) from Eq. (ii), we get

$$
d(q-1-r+1)=b-c
$$

$$
\begin{equation*}
\Rightarrow \quad b-c=d(q-r) \tag{viii}
\end{equation*}
$$

On subtracting Eq. (i) from Eq. (iii), we get

$$
\begin{array}{rlrl}
& & d(r-1-p+1) & =c-a \\
\Rightarrow \quad c-a & =d(r-p) \tag{ix}
\end{array}
$$

Now, we have to prove $a^{b-c} b^{c-a} c^{a-b}=1$

$$
\text { Taking LHS }=a^{b-c} b^{c-a} c^{a-b}
$$

Using Eqs. (iv), (v), (vi) and (vii), (viii), (ix),

$$
\begin{aligned}
\text { LHS } & =\left(x R^{p-1}\right)^{d(q-r)}\left(x R^{q-1}\right)^{d(r-p)}\left(x R^{r-1}\right)^{d(p-q)} \\
& =x^{d(q-r)+d(r-p)+d(p-q)} R^{(p-1) d(q-r)+(q-1) d(r-p)+(r-1) d(p-q)} \\
& =x^{d(q-r+r-p+p-q)}
\end{aligned}
$$

$R^{d(p q-p r-q+r+q r-p q-r+p+r p-r q-p+q)}=x^{0} R^{0}=1$
= RHS

Objective Type Questions

Q. 17 If the sum of n terms of an AP is given by $S_{n}=3 n+2 n^{2}$, then the common difference of the AP is
(a) 3
(b) 2
(c) 6
(d) 4

Sol. (d) Given, $S_{n}=3 n+2 n^{2}$
First term of the AP,
$\therefore \quad T_{1}=3 \times 1+2(1)^{2}=3+2=5$
and $\quad T_{2}=S_{2}-S_{1}$

$$
\begin{aligned}
& =\left[3 \times 2+2 \times(2)^{2}\right]-\left[3 \times 1+2 \times(1)^{2}\right] \\
& =14-5=9
\end{aligned}
$$

\therefore Common difference $(d)=T_{2}-T_{1}=9-5=4$
Q. 18 If the third term of GP is 4 , then the product of its first 5 terms is
(a) 4^{3}
(b) 4^{4}
(c) 4^{5}
(d) None of these

Sol. (c) It is given that, $T_{3}=4$
Let a and r the first term and common ratio, respectively.
Then,

$$
\begin{equation*}
a r^{2}=4 \tag{i}
\end{equation*}
$$

Product of first 5 terms $=a \cdot a r \cdot a r^{2} \cdot a r^{3} \cdot a r^{4}$

$$
=a^{5} r^{10}=\left(a r^{2}\right)^{5}=(4)^{5}
$$

[using Eq. (i)]
Q. 19 If 9 times the 9 th term of an AP is equal to 13 times the 13 th term, then the 22 nd term of the $A P$ is
(a) 0
(b) 22
(c) 198
(d) 220

Sol. (a) Let the first term be a and common difference bed.

$$
\begin{array}{rlrl}
\text { According to the question, } & 9 \cdot T_{9} & =13 \cdot T_{13} \\
\Rightarrow & 9(a+8 d) & =13(a+12 d) \\
\Rightarrow & 9 a+72 d & =13 a+156 d \\
\Rightarrow & (9 a-13 a) & =156 d-72 d \\
\Rightarrow & -4 a & =84 d \\
\Rightarrow & a+ & =-21 d \\
\Rightarrow & a+21 d & =0 \tag{i}\\
\therefore & & \text { 22nd term i.e., } T_{22} & =[a+21 d] \\
& & T_{22} & =0
\end{array}
$$

[using Eq. (i)]
Q. 20 If $x, 2 y$ and $3 z$ are in AP where the distinct numbers x, y and z are in GP, then the common ratio of the GP is
(a) 3
(b) $\frac{1}{3}$
(c) 2
(d) $\frac{1}{2}$

Sol. (b) Given, $x, 2 y$ and $3 z$ are in AP.
Then, $\quad 2 y=\frac{x+3 z}{2}$

$$
\begin{array}{lc}
\Rightarrow & y=\frac{x+3 z}{4} \\
\Rightarrow & 4 y=x+3 z \tag{i}
\end{array}
$$

and x, y, z are in GP.
$\begin{array}{ll}\text { Then, } & \frac{y}{x}=\frac{z}{y}=\lambda \\ \Rightarrow & y=x \lambda \text { and } z=\lambda y=\lambda^{2} x\end{array}$
On substituting these values in Eq. (i), we get

$$
\begin{array}{rlrl}
& & 4(x \lambda) & =x+3\left(\lambda^{2} x\right) \\
\Rightarrow & 4 \lambda x & =x+3 \lambda^{2} x \\
\Rightarrow & 4 \lambda & =1+3 \lambda^{2} \\
\Rightarrow & 3 \lambda^{2}-4 \lambda+1 & =0 \\
\Rightarrow & (3 \lambda-1)(\lambda-1) & =0 \\
\therefore & \lambda & =\frac{1}{3}, \lambda=1
\end{array}
$$

Q. 21 If in an AP, $S_{n}=q n^{2}$ and $S_{m}=q m^{2}$, where S_{r} denotes the sum of r terms of the AP, then S_{q} equals to
(a) $\frac{q^{3}}{2}$
(b) $m n q$
(c) q^{3}
(d) $(m+n) q^{2}$

Sol. (c) Given, $S_{n}=q n^{2}$ and $S_{m}=q m^{2}$
$\therefore \quad S_{1}=q, S_{2}=4 q, S_{3}=9 q$ and $S_{4}=16 q$
Now,
$T_{1}=q$
$\therefore \quad T_{2}=S_{2}-S_{1}=4 q-q=3 q$

$$
T_{3}=S_{3}-S_{2}=9 q-4 q=5 q
$$

$$
T_{4}=S_{4}-S_{3}=16 q-9 q=7 q
$$

So, the series is $q, 3 q, 5 q, 7 q, \ldots$
Here

$$
a=q \text { and } d=3 q-q=2 q
$$

$$
\begin{aligned}
\therefore \quad S_{q} & =\frac{q}{2}[2 \times q+(q-1) 2 q] \\
& =\frac{q}{2} \times\left[2 q+2 q^{2}-2 q\right]=\frac{q}{2} \times 2 q^{2}=q^{3}
\end{aligned}
$$

Q. 22 Let S_{n} denote the sum of the first n terms of an $A P$, if $S_{2 n}=3 S_{n}$, then $S_{3 n}: S_{n}$ is equal to
(a) 4
(b) 6
(c) 8
(d) 10

Sol. (b) Let first term be a and common difference be d.

$$
\begin{align*}
& \text { Then, } \\
& \therefore \quad S_{n}=\frac{n}{2}[2 a+(n-1) d] \tag{i}\\
& \\
& \tag{ii}
\end{align*}
$$

According to the question, $S_{2 n}=3 S_{n}$

$$
\begin{array}{rlrl}
\Rightarrow & & n[2 a+(2 n-1) d] & =3 \frac{n}{2}[2 a+(n-1) d] \\
\Rightarrow & & 4 a+(4 n-2) d & =6 a+(3 n-3) d \\
\Rightarrow & -2 a+(4 n-2-3 n+3) d & =0 \\
\Rightarrow & -2 a+(n+1) d & =0 \\
\Rightarrow & d & =\frac{2 a}{n+1} \tag{iv}\\
& & & \\
\text { Now, } \quad & & \frac{S_{3 n}}{S_{n}} & =\frac{\frac{3 n}{2}[2 a+(3 n-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{6 a+(9 n-3) \frac{2 a}{n+1}}{2 a+(n-1) \frac{2 a}{n+1}} \\
& =\frac{6 a n+6 a+18 a n-6 a}{2 a n+2 a+2 a n-2 a} \\
& =\frac{24 a n}{4 a n}=\frac{S_{3 n}}{S_{n}}=6
\end{array}
$$

Q. 23 The minimum value of $4^{x}+4^{1-x}, x \in R$ is
(a) 2
(b) 4
(c) 1
(d) 0

Sol. (b) We know that,

$$
\mathrm{AM} \geq \mathrm{GM}
$$

$\Rightarrow \quad \frac{4^{x}+4^{1-x}}{2} \geq \sqrt{4^{x} \cdot 4^{1-x}}$
$\Rightarrow \quad 4^{x}+4^{1-x} \geq 2 \sqrt{4}$
$\Rightarrow \quad 4^{x}+4^{1-x} \geq 2.2$
$\Rightarrow \quad 4^{x}+4^{1-x} \geq 4$
Q. 24 Let S_{n} denote the sum of the cubes of the first n natural numbers and s_{n} denote the sum of the first n natural numbers, then $\sum_{r=1}^{n} \frac{S_{r}}{S_{4}}$ equals to
(a) $\frac{n(n+1)(n+2)}{6}$
(b) $\frac{n(n+1)}{2}$
(c) $\frac{n^{2}+3 n+2}{2}$
(d) None of these

Sol. (a)

$$
\sum_{r=1}^{n} \frac{S_{r}}{S_{r}}=\frac{S_{1}}{S_{1}}+\frac{S_{2}}{S_{2}}+\frac{S_{3}}{S_{3}}+\ldots+\frac{S_{n}}{S_{n}}
$$

Let T_{n} be the nth term of the above series.

$$
\begin{aligned}
\therefore \quad T_{n} & =\frac{S_{n}}{S_{n}}=\frac{\left[\frac{n(n+1)}{2}\right]^{2}}{\frac{n(n+1)}{2}} \\
& =\frac{n(n+1)}{2}=\frac{1}{2}\left[n^{2}+n\right]
\end{aligned}
$$

\therefore Sum of the above series $=\Sigma T_{n}=\frac{1}{2}\left[\Sigma n^{2}+\Sigma n\right]$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right]=\frac{1}{2} \cdot \frac{n(n+1)}{2}\left[\frac{(2 n+1)}{3}+1\right] \\
& =\frac{1}{4} n(n+1)\left[\frac{2 n+1+3}{3}\right]=\frac{1}{4 \times 3} n(n+1)(2 n+4) \\
& =\frac{1}{12} n(n+1)(2 n+4)=\frac{1}{6} n(n+1)(n+2)
\end{aligned}
$$

Q. 25 If t_{n} denotes the nth term of the series $2+3+6+11+18+\ldots$, then t_{50} is
(a) $49^{2}-1$
(b) 49^{2}
(c) $50^{2}+1$
(d) $49^{2}+2$

Sol. (d) Let S_{n} be sum of the series $2+3+6+11+18+\ldots+t_{50}$.
$\therefore \quad S_{n}=2+3+6+11+18+\ldots+t_{50}$
and $\quad S_{n}=0+2+3+6+11+18+\ldots+t_{49}+t_{50}$
On subtracting Eq. (ii) from Eq. (i), we get

$$
\begin{align*}
& 0=2+1+3+5+7+\cdots+t_{50} \tag{ii}\\
& \Rightarrow \quad t_{50}=2+1+3+5+7+\cdots \text { upto } 49 \text { terms } \\
& \therefore \quad t_{50}=2+[1+3+5+7+\ldots \text { upto } 49 \text { terms }] \\
& =2+\frac{49}{2}[2 \times 1+48 \times 2] \\
& =2+\frac{49}{2} \times[2+96] \\
& =2+[49+49 \times 48] \\
& =2+49 \times 49=2+(49)^{2}
\end{align*}
$$

Q. 26 The lengths of three unequal edges of a rectangular solid block are in GP. If the volume of the block is $216 \mathrm{~cm}^{3}$ and the total surface area is $252 \mathrm{~cm}^{2}$, then the length of the longest edge is
(a) 12 cm
(b) 6 cm
(c) 18 cm
(d) 3 cm

Sol. (a) Let the length, breadth and height of rectangular solid block is $\frac{a}{r}$, a and ar, respectively.

$$
\begin{array}{lrl}
\therefore & \text { Volume }=\frac{a}{r} \times a \times a r=216 \mathrm{~cm}^{3} \\
\Rightarrow & a^{3}=216 \Rightarrow a^{3}=6^{3} \\
\therefore & a=6 \\
\Rightarrow & \text { Surface area }=2\left(\frac{a^{2}}{r}+a^{2} r+a^{2}\right)=252 \\
\Rightarrow & 2 a^{2}\left(\frac{1}{r}+r+1\right)=252 \\
\Rightarrow & 2 \times 36\left(\frac{1+r^{2}+r}{r}\right)=252 \\
& \frac{1+r^{2}+r}{r}=\frac{252}{2 \times 36}
\end{array}
$$

Fillers

Q. 27 If a, b and c are in GP, then the value of $\frac{a-b}{b-c}$ is equal to

Sol. Given that, a, b and c are in GP.
Then,

$$
\frac{b}{a}=\frac{c}{b}=r
$$

[constant]
$\Rightarrow \quad b=a r \Rightarrow c=b r$
$\therefore \quad \frac{a-b}{b-c}=\frac{a-a r}{a r-b r}=\frac{a(1-r)}{r(a-b)}=\frac{a(1-r)}{r(a-a r)}$

$$
=\frac{a(1-r)}{a r(1-r)}=\frac{1}{r}
$$

$\therefore \quad \frac{a-b}{b-c}=\frac{1}{r}=\frac{a}{b}$ or $\frac{b}{c}$
Q. 28 The sum of terms equidistant from the beginning and end in an AP is equal to \qquad . .

Sol. Let AP be $a, a+d, a+2 d \cdots a+(n-1) d$

$$
\therefore
$$

$$
\begin{align*}
a_{1}+a_{n} & =a+a+(n-1) d \\
& =2 a+(n-1) d \tag{i}
\end{align*}
$$

Now,

$$
\begin{align*}
a_{2}+a_{n-1} & =(a+d)+[a+(n-2) d] \\
& =2 a+(n-1) d \\
a_{2}+a_{n-1} & =a_{1}+a_{n} \tag{i}\\
a_{3}+a_{n-2} & =(a+2 d)+[a+(n-3) d] \\
& =2 a+(n-1) d \\
& =a_{1}+a_{n} \tag{i}
\end{align*}
$$

Follow this pattern, we see that the sum of terms equidistant from the beginning and end in an AP is equal to [first term + last term].

$$
\begin{aligned}
& \Rightarrow \quad 1+r^{2}+r=\frac{126}{36} r \Rightarrow 1+r^{2}+r=\frac{21}{6} r \\
& \Rightarrow \quad 6+6 r^{2}+6 r=21 r \Rightarrow 6 r^{2}-15 r+6=0 \\
& \Rightarrow \quad 2 r^{2}-5 r+2=0 \Rightarrow(2 r-1)(r-2)=0 \\
& \therefore \quad r=\frac{1}{2}, 2 \\
& \text { For } r=\frac{1}{2}: \quad \text { Length }=\frac{a}{r}=\frac{6 \times 2}{1}=12 \\
& \text { Breadth }=a=6 \\
& \text { Height }=a r=6 \times \frac{1}{2}=3 \\
& \text { For } r=2: \quad \text { Length }=\frac{a}{r}=\frac{6}{2}=3 \\
& \text { Breadth }=a=6 \\
& \text { Height }=a r=6 \times 2=12
\end{aligned}
$$

Q. 29 The third term of a GP is 4 , the product of the first five terms is. \qquad
Sol. It is given that, $T_{3}=4$
Let a and r the first term and common ration, respectively.
Then, $\quad a r^{2}=4$
Product of first 5 terms $=a r \cdot a r \cdot a r^{2} \cdot a r^{3} \cdot a r^{4}$

$$
\begin{equation*}
=a^{5} r^{10}=\left(a r^{2}\right)^{5}=(4)^{5} \tag{i}
\end{equation*}
$$

True/False

Q. 30 Two sequences cannot be in both AP and GP together.

Sol. False

Consider an AP a, $a+d, a+2 d, \ldots$
Now,

$$
\frac{a_{2}}{a_{1}}=\frac{a+d}{a} \neq \frac{a+2 d}{a+d}
$$

Thus, AP is not a GP.
Q. 31 Every progression is a sequence but the converse, i.e., every sequence is also a progression need not necessarily be true.
Sol. True
Consider the progression $a, a+d, a+2 d, \ldots$
and sequence of prime number $2,3,5,7,11, \ldots$
Clearly, progression is a sequence but sequence is not progression because it does not follow a specific pattern.
Q. 32 Any term of an AP (except first) is equal to half the sum of terms which are equidistant from it.
Sol. True
Consider an AP a, a $+d, a+2 d, \ldots$
Now,

$$
\begin{aligned}
a_{2}+a_{4} & =a+d+a+3 d \\
& =2 a+4 d=2 a_{3}
\end{aligned}
$$

$\Rightarrow \quad a_{3}=\frac{a_{2}+a_{4}}{2}$
Again,

$$
\begin{aligned}
\frac{a_{3}+a_{5}}{2} & =\frac{a+2 d+a+4 d}{2}=\frac{2 a+6 d}{2} \\
& =a+3 d=a_{4}
\end{aligned}
$$

Hence, the statement is true.
Q. 33 The sum or difference of two GP, is again a GP.

Sol. False
Let two GP are $a, a r_{1}, a r_{1}^{2}, a r_{2}^{3}, \ldots$ and $b, b r_{2}, b r_{2}^{2}, b r_{2}^{3}, \ldots$
Now, sum of two GP $a+b,\left(a r_{1}+b r_{2}\right),\left(a r_{1}^{2}+b r_{2}^{2}\right), \ldots$
Now,

$$
\frac{T_{2}}{T_{1}}=\frac{a r_{1}+b r_{2}}{a+b} \text { and } \frac{T_{3}}{T_{2}}=\frac{a r_{1}^{2}+b r_{2}^{2}}{a r_{1}+b r_{2}}
$$

$$
\therefore \quad \frac{T_{2}}{T_{1}} \neq \frac{T_{3}}{T_{2}}
$$

Again, difference of two GP is $a-b, a r_{1}-b r_{2}, a r_{1}^{2}-b r_{2}^{2}, \ldots$
Now,

$$
\frac{T_{2}}{T_{1}}=\frac{a r_{1}-b r_{2}}{a-b} \text { and } \frac{T_{3}}{T_{2}}=\frac{a r_{1}^{2}-b r_{2}^{2}}{a r_{1}-b r_{2}}
$$

$\therefore \quad \frac{T_{2}}{T_{1}} \neq \frac{T_{3}}{T_{2}}$
So, the sum or difference of two GP is not a GP.
Hence, the statement is false.
Q. 34 If the sum of n terms of a sequence is quadratic expression, then it always represents an AP.
Sol. False
Let

$$
\begin{aligned}
S_{n} & =a n^{2}+b n+c \\
S_{1} & =a+b+c \\
a_{1} & =a+b+c \\
S_{2} & =4 a+2 b+c \\
a_{2} & =S_{2}-S_{1} \\
& =4 a+4 b+c-(a+b+c)=3 a+b \\
S_{3} & =9 a+3 b+c
\end{aligned}
$$

$\therefore \quad a_{2}=S_{2}-S_{1}$
$\therefore \quad a_{3}=S_{3}-S_{2}=5 a+b$
Now,

$$
a_{2}-a_{1}=(3 a+b)-(a+b+c)=2 a-c
$$

$$
a_{3}-a_{2}=(5 a+b)-(3 a+b)=2 a
$$

Now,

$$
a_{2}-a_{1} \neq a_{3}-a_{2}
$$

Hence, the statement is false.

Matching The Columns

Q. 35 Match the following.

	Column I		Column II
(i)	$4,1, \frac{1}{4}, \frac{1}{16}$	(a)	AP
(ii) $2,3,5,7$	(b)	Sequence	
(iii)	$13,8,3,-2,-7$	(c)	GP

Sol. (i) $4,1, \frac{1}{4}, \frac{1}{16}$

$$
\Rightarrow \quad \frac{T_{2}}{T_{1}}=\frac{1}{4} \Rightarrow \frac{T_{3}}{T_{2}}=\frac{1}{4} \Rightarrow \frac{T_{4}}{T_{3}}=\frac{1 / 16}{1 / 4}=\frac{1}{4}
$$

Hence, it is a GP.
(ii) $2,3,5,7$

$$
\begin{array}{ll}
\because & T_{2}-T_{1}=3-2=1 \\
& T_{3}-T_{2}=5-3=2 \\
& T_{2}-T_{1} \neq T_{3}-T_{2}
\end{array}
$$

Hence, it is not an AP.

Again,

$$
\frac{T_{2}}{T_{1}}=3 / 2 \Rightarrow \frac{T_{3}}{T_{2}}=5 / 3
$$

\because

$$
\frac{T_{2}}{T_{1}} \neq \frac{T_{3}}{T_{2}}
$$

It is not a GP.
Hence, it is a sequence.
(iii) $13,8,3,-2,-7$

$$
\begin{aligned}
T_{2}-T_{1} & =8-13=-5 \\
T_{3}-T_{2} & =3-8=-5 \\
T_{2}-T_{1} & =T_{3}-T_{2}
\end{aligned}
$$

\because
Hence, it is an AP.
Q. 36 Match the following.

	Column I
(i) $1^{2}+2^{2}+3^{2}+\cdots+n^{2}$	(a)
(ii) $1^{3}+2^{3}+3^{3}+\cdots+n^{3}$	(b) $\left.\left.\frac{n(n+1)]^{2}}{2}\right]^{n}+1\right)$
(iii) $2+4+6+\cdots+2 n$	(c) $\frac{n(n+1)(2 n+1)}{6}$
(iv) $1+2+3+\cdots+n$	(d) $\frac{n(n+1)}{2}$

Sol. (i) $1^{2}+2^{2}+3^{2}+\cdots+n^{2}$
Consider the identity, $(k+1)^{3}-k^{3}=3 k^{2}+3 k+1$
On putting $k=1,2,3, \ldots,(n-1), n$ successively, we get

$$
\begin{aligned}
2^{3}-1^{3}= & 3 \cdot 1^{2}+3 \cdot 1+1 \\
3^{3}-2^{3}= & 3 \cdot 2^{2}+3 \cdot 2+1 \\
4^{3}-3^{3}= & 3 \cdot 3^{2}+3 \cdot 3+1 \\
\ldots \ldots & \cdots \cdots \cdot \\
\cdots \cdots \cdot & \cdots \cdots \cdot \\
n^{3}-(n-1)^{3} & =3 \cdot(n-1)^{2}+3 \cdot(n-1)+1 \\
(n+1)^{3}-n^{3} & =3 \cdot n^{2}+3 \cdot n+1
\end{aligned}
$$

Adding columnwise, we get

$$
\begin{array}{lrl}
& n^{3}+3 n^{2}+3 n & =3\left(\sum_{r=1}^{n} r^{2}\right)+3 \frac{n(n+1)}{2}+n \\
\Rightarrow & \quad 3\left(\sum_{r=1}^{n} r^{2}\right) & =n^{3}+3 n^{2}+3 n-\frac{3 n(n+1)}{2}+n \\
\Rightarrow & \quad\left(\sum_{r=1}^{n} r^{2}\right) & =\frac{2 n^{3}+3 n^{2}+n}{2}=\frac{n(n+1)(2 n+1)}{2} \\
\Rightarrow & \sum_{r=1}^{n} r^{2} & =\frac{n(n+1)(2 n+1)}{6} \\
\text { Hence, } \sum_{r=1}^{n} r^{2}=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{array}
$$

(ii) $)^{3}+2^{3}+3^{3}+\cdots+n^{3}$

Consider the identity $(k+1)^{4}-k^{4}=4 k^{3}+6 k^{2}+4 k+1$
On putting $k=1,2,3, \cdots(n-1), n$ successively, we get

$$
\begin{aligned}
& 2^{4}-1^{4}=4 \cdot 1^{3}+6 \cdot 1^{2}+4 \cdot 1+1 \\
& 3^{4}-2^{4}=4 \cdot 2^{3}+6 \cdot 2^{2}+4 \cdot 2+1 \\
& 4^{4}-3^{4}=4 \cdot 3^{3}+6 \cdot 3^{2}+4 \cdot 3+1
\end{aligned}
$$

$$
\begin{aligned}
& n^{4}-(n-1)^{4}=4(n-1)^{3}+6(n-1)^{2}+4(n-1)+1 \\
& (n+1)^{4}-n^{4}=4 \cdot n^{3}+6 \cdot n^{2}+4 \cdot n+1
\end{aligned}
$$

Adding columnwise, we get

$$
\begin{aligned}
& (n+1)^{4}-1^{4}=4 \cdot\left(1^{3}+2^{3}+\cdots+n^{3}\right)+6\left(1^{2}+2^{2}+3^{3}+\cdots+n^{2}\right) \\
& +4(1+2+3+\cdots+n)+(1+1+\cdots+1) n \text { terms } \\
& \Rightarrow \quad n^{4}+4 n^{3}+6 n^{2}+4 n=4\left(\sum_{r=1}^{n} r^{3}\right)+6\left(\sum_{r=1}^{n} r^{2}\right)+4\left(\sum_{r=1}^{n} r\right)+n \\
& \Rightarrow \quad n^{4}+4 n^{3}+6 n^{2}+4 n=4\left(\sum_{r=1}^{n} r^{3}\right)+6\left[\frac{n(n+1)(2 n+1)}{6}\right]+4\left[\frac{n(n+1)}{2}\right]+n \\
& \Rightarrow \quad \sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4} \\
& \Rightarrow \quad \sum_{r=1}^{n} r^{3}=\left[\frac{n(n+1)}{2}\right]^{2}=\left(\sum_{r=1}^{n} r\right)^{2} \\
& \text { Hence, } \\
& \sum_{r=1}^{n} r^{3}=1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}=\left(\sum_{r=1}^{n} r\right)^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
2+4+6+\cdots+2 n & =2[1+2+3+\cdots+n] \\
& =2 \times \frac{n(n+1)}{2}=n(n+1)
\end{aligned}
$$

(iv) Let

$$
S_{n}=1+2+3+\cdots+n
$$

Clearly, it is an arithmetic series with first term, $a=1$,
common difference,
and
last term = n

$$
S_{n}=\frac{n}{2}(1+n)=\frac{n(n+1)}{2}
$$

Hence, $\quad 1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

