I

Relations and Functions

Short Answer Type Questions

Q. 1 Let $A=\{a, b, c\}$ and the relation R be defined on A as follows

$$
R=\{(a, a),(b, c),(a, b)\}
$$

Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.
Sol. Given relation, $R=\{(a, a),(b, c),(a, b)\}$.
To make R is reflexive we must add (b, b) and (c, c) to R. Also, to make R is transitive we must add (a, c) to R.
So, minimum number of ordered pair is to be added are $(b, b),(c, c),(a, c)$.
Q. 2 Let D be the domain of the real valued function f defined by $f(x)=\sqrt{25-x^{2}}$. Then, write D.
Sol. Given function is, $f(x)=\sqrt{25-x^{2}}$
For real valued of $f(x)$

$$
\begin{aligned}
25-x^{2} & \geq 0 \\
x^{2} & \leq 25 \\
-5 & \leq x \leq+5 \\
D & =[-5,5]
\end{aligned}
$$

Q. 3 If $f, g: R \rightarrow R$ be defined by $f(x)=2 x+1$ and $g(x)=x^{2}-2, \forall x \in R$, respectively. Then, find gof.
$\stackrel{\text { OThinking Process }}{ }$
If $f, g: R \rightarrow R$ be two functions, then $g \circ f(x)=g\{f(x)\} \forall x \in R$.
Sol. Given that, $f(x)=2 x+1$ and $g(x)=x^{2}-2, \forall x \in R$

$$
\begin{aligned}
\therefore \quad g \circ f & =g\{f(x)\} \\
& =g(2 x+1)=(2 x+1)^{2}-2 \\
& =4 x^{2}+4 x+1-2 \\
& =4 x^{2}+4 x-1
\end{aligned}
$$

Q. 4 Let $f: R \rightarrow R$ be the function defined by $f(x)=2 x-3, \forall x \in R$. Write f^{-1}.
Sol. Given that,

$$
\begin{aligned}
f(x) & =2 x-3, \forall x \in R \\
y & =2 x-3 \\
2 x & =y+3 \\
x & =\frac{y+3}{2} \\
f^{-1}(x) & =\frac{x+3}{2}
\end{aligned}
$$

Now, let
Q. 5 If $A=\{a, b, c, d\}$ and the function $f=\{(a, b),(b, d),(c, a),(d, c)\}$, write f^{-1}.
Sol. Given that, and

$$
\begin{aligned}
A & =\{a, b, c, d\} \\
f & =\{(a, b),(b, d),(c, a),(d, c)\} \\
f^{-1} & =\{(b, a),(d, b),(a, c),(c, d)\}
\end{aligned}
$$

Q. 6 If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, write $f\{f(x)\}$.

- Thinking Process

To solve this problem use the formula i.e., $(a+b+c)^{2}=\left(a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\right)$
Sol. Given that,

$$
f(x)=x^{2}-3 x+2
$$

$$
\begin{aligned}
\therefore \quad f\{f(x)\} & =f\left(x^{2}-3 x+2\right) \\
& =\left(x^{2}-3 x+2\right)^{2}-3\left(x^{2}-3 x+2\right)+2 \\
& =x^{4}+9 x^{2}+4-6 x^{3}-12 x+4 x^{2}-3 x^{2}+9 x-6+2 \\
& =x^{4}+10 x^{2}-6 x^{3}-3 x \\
f\{f(x)\} & =x^{4}-6 x^{3}+10 x^{2}-3 x
\end{aligned}
$$

Q. 7 Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function? If g is described by $g(x)=\alpha x+\beta$, then what value should be assigned to α and β ?
Sol. Given that, $g=\{(1,1),(2,3),(3,5),(4,7)\}$.
Here, each element of domain has unique image. So, g is a function.
Now given that,

$$
\begin{align*}
g(x) & =\alpha x+\beta \\
g(1) & =\alpha+\beta \\
\alpha+\beta & =1 \tag{i}\\
g(2) & =2 \alpha+\beta \\
2 \alpha+\beta & =3 \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii),

$$
\Rightarrow \quad 2-2 \beta+\beta=3
$$

$$
\begin{aligned}
& \Rightarrow \\
& \\
&
\end{aligned}
$$

$$
\Rightarrow \quad 2-\beta=3
$$

$$
\text { If } \quad \beta=-1 \text {, then } \alpha=2
$$

$$
\alpha=2, \beta=-1
$$

Q. 8 Are the following set of ordered pairs functions? If so examine whether the mapping is injective or surjective.
(i) $\{(x, y): x$ is a person, y is the mother of $x\}$.
(ii) $\{(a, b): a$ is a person, b is an ancestor of $a\}$.

Sol. (i) Given set of ordered pair is $\{(x, y): x$ is a person, y is the mother of $x\}$.
It represent a function. Here, the image of distinct elements of x under f are not distinct, so it is not a injective but it is a surjective.
(ii) Set of ordered pairs $=\{(a, b): a$ is a person, b is an ancestor of $a\}$

Here, each element of domain does not have a unique image. So, it does not represent function.
Q. 9 If the mappings f and g are given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, write fog.
Sol. Given that,

$$
\begin{aligned}
f & =\{(1,2),(3,5),(4,1)\} \\
g & =\{(2,3),(5,1),(1,3)\} \\
f \circ g(2) & =f\{g(2)\}=f(3)=5 \\
f \circ g(5) & =f\{g(5)\}=f(1)=2 \\
f \circ g(1) & =f\{g(1)\}=f(3)=5 \\
f \circ g & =\{(2,5),(5,2),(1,5)\}
\end{aligned}
$$

Q. 10 Let C be the set of complex numbers. Prove that the mapping $f: C \rightarrow R$ given by $f(z)=|z|, \forall z \in C$, is neither one-one nor onto.
Sol. The mapping
$f: C \rightarrow R$
Given,

But

$$
\begin{aligned}
f(z) & =|z|, \forall z \in C \\
f(1) & =|1|=1 \\
f(-1) & =|-1|=1 \\
f(1) & =f(-1) \\
1 & \neq-1
\end{aligned}
$$

So, $f(z)$ is not one-one. Also, $f(z)$ is not onto as there is no pre-image for any negative element of R under the mapping $f(z)$.
Q. 11 Let the function $f: R \rightarrow R$ be defined by $f(x)=\cos x, \forall x \in R$. Show that f is neither one-one nor onto.
Sol. Given function, $f(x)=\cos x, \forall x \in R$
Now,
$f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0$
$\Rightarrow \quad f\left(\frac{-\pi}{2}\right)=\cos \frac{\pi}{2}=0$
$\Rightarrow \quad f\left(\frac{\pi}{2}\right)=f\left(\frac{-\pi}{2}\right)$
But

$$
\frac{\pi}{2} \neq \frac{-\pi}{2}
$$

So, $f(x)$ is not one-one.
Now, $f(x)=\cos x, \forall x \in R$ is not onto as there is no pre-image for any real number. Which does not belonging to the intervals $[-1,1]$, the range of $\cos x$.
Q. 12 Let $X=\{1,2,3\}$ and $Y=\{4,5\}$. Find whether the following subsets of $X \times Y$ are functions from X to Y or not.
(i) $f=\{(1,4),(1,5),(2,4),(3,5)\}$
(ii) $g=\{(1,4),(2,4),(3,4)\}$
(iii) $h=\{(1,4),(2,5),(3,5)\}$
(iv) $k=\{(1,4),(2,5)\}$

Sol. Given that,

$$
\begin{aligned}
X & =\{1,2,3\} \text { and } Y=\{4,5\} \\
X \times Y & =\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}
\end{aligned}
$$

(i) $f=\{(1,4),(1,5),(2,4),(3,5)\}$
f is not a function because f has not unique image.
(ii) $g=\{(1,4),(2,4),(3,4)\}$

Since, g is a function as each element of the domain has unique image.
(iii) $h=\{(1,4),(2,5),(3,5)\}$

It is clear that h is a function.
(iv) $k=\{(1,4),(2,5)\}$
k is not a function as 3 has not any image under the mapping.
Q. 13 If functions $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy $g \circ f=I_{A}$, then show that f is one-one and g is onto.
Sol. Given that,

```
            \(f: A \rightarrow B\) and \(g: B \rightarrow\) A satisfy gof \(=I_{A}\)
\(\because \quad\) gof \(=I_{A}\)
\(\Rightarrow \quad \operatorname{gof}\left\{f\left(x_{1}\right)\right\}=\operatorname{gof}\left\{f\left(x_{2}\right)\right\}\)
\(\Rightarrow \quad g\left(x_{1}\right)=g\left(x_{2}\right) \quad\left[\because g o f=I_{A}\right]\)
\(\therefore \quad x_{1}=x_{2}\)
```

Hence, f is one-one and g is onto.
Q. 14 Let $f: R \rightarrow R$ be the function defined by $f(x)=\frac{1}{2-\cos x}, \forall x \in R$. Then, find the range of f.

- Thinking Process

Range of $f=\{y \in Y: y=f(x)$:for some in $x\}$ and use range of $\cos x$ is $[-1,1]$
Sol. Given function,

$$
f(x)=\frac{1}{2-\cos x}, \forall x \in R
$$

Let

$$
y=\frac{1}{2-\cos x}
$$

$\Rightarrow \quad 2 y-y \cos x=1$
$\Rightarrow \quad y \cos x=2 y-1$
$\Rightarrow \quad \cos x=\frac{2 y-1}{y}=2-\frac{1}{y} \Rightarrow \cos x=2-\frac{1}{y}$
$\Rightarrow \quad-1 \leq \cos x \leq 1 \quad \Rightarrow-1 \leq 2-\frac{1}{y} \leq 1$
$\Rightarrow \quad-3 \leq-\frac{1}{y} \leq-1 \quad \Rightarrow 1 \leq \frac{1}{y} \leq 3$
$\Rightarrow \quad \frac{1}{3} \leq \frac{1}{y} \leq 1$
So, y range is $\left[\frac{1}{3}, 1\right]$.
Q. 15 Let n be a fixed positive integer. Define a relation R in Z as follows $\forall a$, $b \in Z, a R b$ if and only if $a-b$ is divisible by n. Show that R is an equivalence relation.
Sol. Given that, $\forall a, b \in Z, a R b$ if and only if $a-b$ is divisible by n. Now,

I. Reflexive

$a R a \Rightarrow(a-a)$ is divisible by n, which is true for any integer a as ' O ' is divisible by n. Hence, R is reflexive.
II. Symmetric

$$
a R b
$$

$\Rightarrow \quad a-b$ is divisible by n.
$\Rightarrow \quad-b+a$ is divisible by n.
$\Rightarrow \quad-(b-a)$ is divisible by n.
$\Rightarrow \quad(b-a)$ is divisible by n.
$\Rightarrow \quad b R a$
Hence, R is symmetric.
III. Transitive

Let $a R b$ and $b R c$
$\Rightarrow \quad(a-b)$ is divisible by n and $(b-c)$ is divisible by n
$\Rightarrow \quad(a-b)+(b-c)$ is divisibly by n
$\Rightarrow \quad(a-c)$ is divisible by n
\Rightarrow
aRc
Hence, R is transitive.
So, R is an equivalence relation.

Long Answer Type Questions

Q. 16 If $A=\{1,2,3,4\}$, define relations on A which have properties of being
(i) reflexive, transitive but not symmetric.
(ii) symmetric but neither reflexive nor transitive.
(iii) reflexive, symmetric and transitive.

Sol. Given that,

$$
A=\{1,2,3,4\}
$$

(i) Let $\quad R_{1}=\{(1,1),(1,2),(2,3),(2,2),(1,3),(3,3)\}$
R_{1} is reflexive, since, $(1,1)(2,2)(3,3)$ lie in R_{1}.
Now, $\quad(1,2) \in R_{1},(2,3) \in R_{1} \Rightarrow(1,3) \in R_{1}$
Hence, R_{1} is also transitive but $(1,2) \in R_{1} \Rightarrow(2,1) \notin R_{1}$.
So, it is not symmetric.
(ii) Let

$$
R_{2}=\{(1,2),(2,1)\}
$$

Now, $(1,2) \in R_{2},(2,1) \in R_{2}$
So, it is symmetric.
(iii) Let

$$
R_{3}=\{(1,2),(2,1),(1,1),(2,2),(3,3),(1,3),(3,1),(2,3)\}
$$

Hence, R_{3} is reflexive, symmetric and transitive.
Q. 17 Let R be relation defined on the set of natural number N as follows, $R=\{(x, y): x \in N, y \in N, 2 x+y=41\}$. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.
Sol. Given that,

$$
\begin{aligned}
& R=\{(x, y): x \in N, y \in N, 2 x+y=41\} . \\
& \text { Domain }=\{1,2,3, \ldots, 20\} \\
& \text { Range }=\{1,3,5,7, \ldots, 39\} \\
& R=\{(1,39),(2,37),(3,35), \ldots,(19,3),(20,1)\} \\
& \text { ve as }(2,2) \notin R \\
& 2 \times 2+2 \neq 41
\end{aligned}
$$

R is not reflexive as $(2,2) \notin R$
So, R is not symmetric.
As $(1,39) \in R$ but $(39,1) \notin R$
So, R is not transitive.
As $(11,19) \in R,(19,3) \in R$
But $\quad(11,3) \notin R$
Hence, R is neither reflexive, nor symmetric and nor transitive.
Q. 18 Given, $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of the following
(i) an injective mapping from A to B.
(ii) a mapping from A to B which is not injective.
(iii) a mapping from B to A.

Sol. Given that,
(i) Let
i.e., $\quad f=\{(2,5),(3,-6),(4,7)\}$, which is an injective mapping.
(ii) Let $g: A \rightarrow B$ denote a mapping such that $g=\{(2,2),(3,5),(4,5)\}$, which is not an injective mapping.
(iii) Let $h: B \rightarrow A$ denote a mapping such that $h=\{(2,2),(5,3),(6,4),(7,4)\}$, which is a mapping from B to A.

Q. 19 Give an example of a map

(i) which is one-one but not onto.
(ii) which is not one-one but onto.
(iii) which is neither one-one nor onto.

Sol. (i) Let $f: N \rightarrow N$, be a mapping defined by $f(x)=2 x$ which is one-one.

> For
\Rightarrow

$$
\begin{aligned}
f\left(x_{1}\right) & =f\left(x_{2}\right) \\
2 x_{1} & =2 x_{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

Further f is not onto, as for $1 \in N$, there does not exist any x in N such that $f(x)=2 x+1$.
(ii) Let $f: N \rightarrow N$, given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x>2$ is onto but not one-one. f is not one-one as $f(1)=f(2)=1$. But f is onto.
(iii) The mapping $f: R \rightarrow R$ defined as $f(x)=x^{2}$, is neither one-one nor onto.
Q. 20 Let $A=R-\{3\}, B=R-\{1\}$. If $f: A \rightarrow B$ be defined by $f(x)=\frac{x-2}{x-3}$, $\forall x \in A$. Then, show that f is bijective.

- Thinking Process

A function $f: x \rightarrow y$ is said to be bijective, if f is both one-one and onto.
Sol. Given that,

$$
A=R-\{3\}, B=R-\{1\} .
$$

$f: A \rightarrow B$ is defined by $f(x)=\frac{x-2}{x-3}, \forall x \in A$

For injectivity

Let

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3}
$$

$\Rightarrow \quad\left(x_{1}-2\right)\left(x_{2}-3\right)=\left(x_{2}-2\right)\left(x_{1}-3\right)$
$\Rightarrow \quad x_{1} x_{2}-3 x_{1}-2 x_{2}+6=x_{1} x_{2}-3 x_{2}-2 x_{1}+6$
$\Rightarrow \quad-3 x_{1}-2 x_{2}=-3 x_{2}-2 x_{1}$
$\Rightarrow \quad-x_{1}=-x_{2} \Rightarrow x_{1}=x_{2}$
So, $f(x)$ is an injective function.

For surjectivity

Let

$$
y=\frac{x-2}{x-3} \Rightarrow x-2=x y-3 y
$$

$\Rightarrow \quad x(1-y)=2-3 y \Rightarrow x=\frac{2-3 y}{1-y}$
$\Rightarrow \quad x=\frac{3 y-2}{y-1} \in A, \forall y \in B \quad$ [codomain]
So, $f(x)$ is surjective function.
Hence, $f(x)$ is a bijective function.
Q. 21 Let $A=[-1,1]$, then, discuss whether the following functions defined on A are one-one onto or bijective.
(i) $f(x)=\frac{x}{2}$
(ii) $g(x)=|x|$
(iii) $h(x)=x|x|$
(iv) $k(x)=x^{2}$

Sol. Given that,

$$
A=[-1,1]
$$

(i) $f(x)=\frac{x}{2}$

Let

$$
f\left(x_{1}\right)=f\left(x_{2}\right)
$$

$\Rightarrow \quad \frac{x_{1}}{2}=\frac{x_{2}}{2} \Rightarrow x_{1}=x_{2}$
So, $f(x)$ is one-one.
Now, let $y=\frac{x}{2}$
$\Rightarrow \quad x=2 y \notin A, \forall y \in A$
As for $\quad y=1 \in A, x=2 \notin A$
So, $f(x)$ is not onto.
Also, $f(x)$ is not bijective as it is not onto.
(ii) $g(x)=|x|$

Let

$$
g\left(x_{1}\right)=g\left(x_{2}\right)
$$

$$
\Rightarrow \quad\left|x_{1}\right|=\left|x_{2}\right| \Rightarrow x_{1}= \pm x_{2}
$$

So, $g(x)$ is not one-one.
Now, $\quad y=|x| \Rightarrow x= \pm y \notin A, \forall y \in A$
So, $g(x)$ is not onto, also, $g(x)$ is not bijective.
(iii) $h(x)=x|x|$

Let

$$
\begin{aligned}
h\left(x_{1}\right) & =h\left(x_{2}\right) \\
x_{1}\left|x_{1}\right| & =x_{2}\left|x_{2}\right| \quad \Rightarrow \quad x_{1}=x_{2}
\end{aligned}
$$

\Rightarrow
So, $h(x)$ is one-one.
Now, let

$$
y=x|x|
$$

$$
y=x^{2} \in A, \forall x \in A
$$

So, $h(x)$ is onto also, $h(x)$ is a bijective.
(iv) $k(x)=x^{2}$

Let

$$
k\left(x_{1}\right)=k\left(x_{2}\right)
$$

$$
\Rightarrow \quad x_{1}^{2}=x_{2}^{2} \Rightarrow x_{1}= \pm x_{2}
$$

Thus, $k(x)$ is not one-one.
Now, let

$$
y=x^{2}
$$

\Rightarrow

$$
x=\sqrt{y} \notin A, \forall y \in A
$$

As for $y=-1, x=\sqrt{-1} \notin A$
Hence, $k(x)$ is neither one-one nor onto.

Q. 22 Each of the following defines a relation of N

(i) x is greater than $y, x, y \in N$.
(ii) $x+y=10, x, y \in N$.
(iii) $x y$ is square of an integer $x, y \in N$.
(iv) $x+4 y=10, x, y \in N$

Determine which of the above relations are reflexive, symmetric and transitive.
Sol. (i) x is greater than $y, x, y \in N$
$(x, x) \in R$
For $x R x \quad x>x$ is not true for any $x \in N$.
Therefore, R is not reflexive.
Let

$$
\begin{gathered}
(x, y) \in R \Rightarrow x R y \\
x>y
\end{gathered}
$$

but $y>x$ is not true for any $x, y \in N$
Thus, R is not symmetric.
Let
$x R y$ and $y R z$
$x>y$ and $y>z \Rightarrow x>z$
$\Rightarrow \quad x R z$
So, R is transitive.
(ii) $x+y=10, x, y \in N$

$$
\begin{aligned}
& R=\{(x, y) ; x+y=10, x, y \in N\} \\
& R=\{(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1)\}(1,1) \notin R
\end{aligned}
$$

So, R is not reflexive.

$$
(x, y) \in R \quad \Rightarrow \quad(y, x) \in R
$$

Therefore, R is symmetric.

$$
(1,9) \in R,(9,1) \in R \quad \Rightarrow \quad(1,1) \notin R
$$

Hence, R is not transitive.
(iii) Given $x y$, is square of an integer $x, y \in N$.
$\Rightarrow \quad R=\{(x, y): x y$ is a square of an integer $x, y \in N\}$

$$
(x, x) \in R, \forall x \in N
$$

As x^{2} is square of an integer for any $x \in N$.
Hence, R is reflexive.
If $\quad(x, y) \in R \quad \Rightarrow \quad(y, x) \in R$
Therefore, R is symmetric.
If $\quad(x, y) \in R,(y, z) \in R$
So, $x y$ is square of an integer and $y z$ is square of an integer.
Let $\quad x y=m^{2}$ and $y z=n^{2}$ for some $m, n \in Z$

$$
\begin{aligned}
& x=\frac{m^{2}}{y} \text { and } z=\frac{x^{2}}{y} \\
& x z=\frac{m^{2} n^{2}}{y^{2}}, \text { which is square of an integer. }
\end{aligned}
$$

So, R is transitive.
(iv)

$$
\begin{aligned}
& x+4 y=10, x, y \in N \\
& R=\{(x, y): x+4 y=10, x, y \in N\} \\
& R=\{(2,2),(6,1)\} \\
&(1,1),(3,3), \ldots, \notin R
\end{aligned}
$$

Thus, R is not reflexive.

$$
(6,1) \in R \text { but }(1,6) \notin R
$$

Hence, R is not symmetric.

$$
\begin{aligned}
(x, y) \in R & \Rightarrow x+4 y=10 \text { but }(y, z) \in R \\
y+4 z=10 & \Rightarrow(x, z) \in R
\end{aligned}
$$

So, R is transitive.
Q. 23 Let $A=\{1,2,3, \ldots, 9\}$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for $(a, b),(c, d)$ in $A \times A$. Prove that R is an equivalence relation and also obtain the equivalent class $[(2,5)]$.
Sol. Given that, $A=\{1,2,3, \ldots, 9\}$ and $(a, b) R(c, d)$ if $a+d=b+c$ for $(a, b) \in A \times A$ and $(c, d) \in A \times A$.
Let $(a, b) R(a, b)$
$\Rightarrow \quad a+b=b+a, \forall a, b \in A$
which is true for any $a, b \in A$.
Hence, R is reflexive.
Let $(a, b) R(c, d)$
$a+d=b+c$
$c+b=d+a \Rightarrow(c, d) R(a, b)$
So, R is symmetric.

Let

$$
\begin{aligned}
(a, b) R(c, d) \text { and } & (c, d) R(e, f) \\
a+d & =b+c \text { and } c+f=d+e \\
a+d & =b+c \text { and } d+e=c+f \\
(a+d)-(d+e) & =(b+c)-(c+f) \\
(a-e) & =b-f \\
a+f & =b+e
\end{aligned}
$$

$$
(a, b) R(e, f)
$$

So, R is transitive.
Hence, R is an equivalence relation.
Now, equivalence class containing $[(2,5)]$ is $\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$.
Q. 24 Using the definition, prove that the function $f: A \rightarrow B$ is invertible if and only if f is both one-one and onto.
Sol. A function $f: X \rightarrow Y$ is defined to be invertible, if there exist a function $g=Y \rightarrow X$ such that gof $=I_{X}$ and $f \circ g=I_{Y}$. The function is called the inverse of f and is denoted by f^{-1}.
A function $f=X \rightarrow Y$ is invertible iff f is a bijective function.
Q. 25 Functions $f, g: R \rightarrow R$ are defined, respectively, by $f(x)=x^{2}+3 x+1$, $g(x)=2 x-3$, find
(i) $f \circ g$
(ii) $g \circ f$
(iii) $f \circ f$
(iv) $g \circ g$

Sol. Given that, $f(x)=x^{2}+3 x+1, g(x)=2 x-3$
(i)

$$
\begin{aligned}
f \circ g & =f\{g(x)\}=f(2 x-3) \\
& =(2 x-3)^{2}+3(2 x-3)+1 \\
& =4 x^{2}+9-12 x+6 x-9+1=4 x^{2}-6 x+1
\end{aligned}
$$

(ii)

$$
g \circ f=g\{f(x)\}=g\left(x^{2}+3 x+1\right)
$$

$$
=2\left(x^{2}+3 x+1\right)-3
$$

$$
=2 x^{2}+6 x+2-3=2 x^{2}+6 x-1
$$

(iii)

$$
f \circ f=f\{f(x)\}=f\left(x^{2}+3 x+1\right)
$$

$$
=\left(x^{2}+3 x+1\right)^{2}+3\left(x^{2}+3 x+1\right)+1
$$

$$
=x^{4}+9 x^{2}+1+6 x^{3}+6 x+2 x^{2}+3 x^{2}+9 x+3+1
$$

$$
=x^{4}+6 x^{3}+14 x^{2}+15 x+5
$$

(iv)

$$
\begin{aligned}
g \circ g & =g\{g(x)\}=g(2 x-3) \\
& =2(2 x-3)-3 \\
& =4 x-6-3=4 x-9
\end{aligned}
$$

Q. 26 Let $*$ be the binary operation defined on Q. Find which of the following binary operations are commutative
(i) $a * b=a-b, \forall a, b \in Q$
(ii) $a * b=a^{2}+b^{2}, \forall a, b \in Q$
(iii) $a * b=a+a b, \forall a, b \in Q$
(iv) $a * b=(a-b)^{2}, \forall a, b \in Q$

Sol. Given that $*$ be the binary operation defined on Q.
(i) $a * b=a-b, \forall a, b \in Q$ and $b * a=b-a$

So, $\quad a * b \neq b * a \quad[\because b-a \neq a-b]$
Hence, * is not commutative.
(ii)

$$
\begin{aligned}
& a * b=a^{2}+b^{2} \\
& b * a=b^{2}+a^{2}
\end{aligned}
$$

So, $*$ is commutative.
[since, ' + ' is on rational is commutative]
(iii)

$$
\begin{aligned}
& a * b=a+a b \\
& b * a=b+a b
\end{aligned}
$$

Clearly, $\quad a+a b \neq b+a b$
So, $*$ is not commutative.
(iv)

$$
\begin{aligned}
a * b & =(a-b)^{2}, \forall a, b \in Q \\
b * a & =(b-a)^{2} \\
\because \quad(a-b)^{2} & =(b-a)^{2}
\end{aligned}
$$

Hence, $*$ is commutative.
Q. 27 If $*$ be binary operation defined on R by $a * b=1+a b, \forall a, b \in R$. Then, the operation $*$ is
(i) commutative but not associative.
(ii) associative but not commutative.
(iii) neither commutative nor associative.
(iv) both commutative and associative.

Sol. (i) Given that, $a * b=1+a b, \forall a, b \in R$

$$
a * b=a b+1=b * a
$$

So, $*$ is a commutative binary operation.
Also,

$$
\begin{align*}
a *(b * c) & =a *(1+b c)=1+a(1+b c) \\
a *(b * c) & =1+a+a b c \tag{i}\\
(a * b) * c & =(1+a b) * c \\
& =1+(1+a b) c=1+c+a b c \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii),

$$
a *(b * c) \neq(a * b) * c
$$

So, * is not associative
Hence, $*$ is commutative but not associative.

Objective Type Questions

Q. 28 Let T be the set of all triangles in the Euclidean plane and let a relation R on T be defined as $a R b$, if a is congruent to $b, \forall a, b \in T$. Then, R is
(a) reflexive but not transitive
(b) transitive but not symmetric
(c) equivalence
(d) None of these

Sol. (c) Consider that $a R b$, if a is congruent to $b, \forall a, b \in T$.
Then, $\quad a R a \Rightarrow a \cong a$,
which is true for all $a \in T$
So, R is reflexive,

Let
$a R b \Rightarrow a \cong b$
$\Rightarrow \quad b \cong a \Rightarrow b \cong a$
\Rightarrow
bRa
So, R is symmetric.
Let $a R b$ and $b R c$
$\Rightarrow \quad a \cong b$ and $b \cong c$
$\Rightarrow \quad a \cong c \Rightarrow a R c$
So, R is transitive.
Hence, R is equivalence relation.
Q. 29 Consider the non-empty set consisting of children in a family and a relation R defined as $a R b$, if a is brother of b. Then, R is
(a) symmetric but not transitive
(b) transitive but not symmetric
(c) neither symmetric nor transitive
(d) both symmetric and transitive

Sol. (b) Given, $\quad a R b \Rightarrow a$ is brother of b
$\therefore \quad a R a \Rightarrow a$ is brother of a, which is not true.
So, R is not reflexive.
$a R b \Rightarrow a$ is brother of b.
This does not mean b is also a brother of a and b can be a sister of a.
Hence, R is not symmetric.
$a R b \Rightarrow a$ is brother of b
and $\quad b R c \Rightarrow b$ is a brother of c.
So, a is brother of c.
Hence, R is transitive.
Q. 30 The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are
(a) 1
(b) 2
(c) 3
(d) 5

Sol. (d) Given that, $A=\{1,2,3\}$
Now, number of equivalence relations as follows

$$
\begin{aligned}
& R_{1}=\{(1,1),(2,2),(3,3)\} \\
& R_{2}=\{(1,1),(2,2),(3,3),(1,2),(2,1)\} \\
& R_{3}=\{(1,1),(2,2),(3,3),(1,3),(3,1)\} \\
& R_{4}=\{(1,1),(2,2),(3,3),(2,3),(3,2)\} \\
& R_{5}=\left\{(1,2,3) \Leftrightarrow A \times A=A^{2}\right\}
\end{aligned}
$$

\therefore Maximum number of equivalence relation on the set $A=\{1,2,3\}=5$
Q. 31 If a relation R on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$, then R is
(a) reflexive
(b) transitive
(c) symmetric
(d) None of these

Sol. (b) R on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$
It is clear that R is transitive.

Q. 32 Let us define a relation R in R as $a R b$ if $a \geq b$. Then, R is

(a) an equivalence relation
(b) reflexive, transitive but not symmetric
(c) symmetric, transitive but not reflexive
(d) neither transitive nor reflexive but symmetric

Sol. (b) Given that,
$a R b$ if $a \geq b$
$\Rightarrow \quad a R a \Rightarrow a \geq a$ which is true.
Let $a R b, a \geq b$, then $b \geq a$ which is not true R is not symmetric.
But $a R b$ and $b R c$
\Rightarrow
$a \geq b$ and $b \geq c$
$\Rightarrow \quad a \geq c$

Hence, R is transitive.
Q. 33 If $A=\{1,2,3\}$ and consider the relation

$$
R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}
$$

Then, R is
(a) reflexive but not symmetric
(b) reflexive but not transitive
(c) symmetric and transitive
(d) neither symmetric nor transitive

Sol. (a) Given that, $\quad A=\{1,2,3\}$
and $\quad R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$
$\because \quad(1,1),(2,2),(3,3) \in R$
Hence, R is reflexive.
$(1,2) \in R$ but $(2,1) \notin R$
Hence, R is not symmetric.

$$
(1,2) \in R \text { and }(2,3) \in R
$$

$\Rightarrow \quad(1,3) \in R$
Hence, R is transitive.
Q. 34 The identity element for the binary operation * defined on $Q-\{0\}$ as $a * b=\frac{a b}{2}, \forall a, b \in Q-\{0\}$ is
(a) 1
(b) 0
(c) 2
(d) None of these

- Thinking Process

For given binary operation $*: A \times A \rightarrow A$, an element $e \in A$, if it exists, is called identity for the operation $*$, if $a * e=a=e * a, \forall a \in A$.
Sol. (c) Given that, $a * b=\frac{a b}{2}, \forall a, b \in Q-\{0\}$.
Lete be the identity element for *.

$$
\begin{array}{ll}
\therefore & a * e=\frac{a e}{2} \\
\Rightarrow & a=\frac{a e}{2} \Rightarrow e=2
\end{array}
$$

Q. 35 If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
(a) 720
(b) 120
(c) 0
(d) None of these

Sol. (c) We know that, if A and B are two non-empty finite set containing m and n elements respectively, then the number of one-one and onto mapping from A to B is

$$
\begin{aligned}
n!\text { if } m & =n \\
0, \text { if } m & \neq n \\
m & =5 \text { and } n=6 \\
m & \neq n
\end{aligned}
$$

Given that,

Number of mapping $=0$
Q. 36 If $A=\{1,2,3, \ldots, n\}$ and $B=\{a, b\}$. Then, the number of surjections from A into B is
(a) ${ }^{n} P_{2}$
(b) $2^{n}-2$
(c) $2^{n}-1$
(d) None of these

Sol. (d) Given that, $A=\{1,2,3, \ldots, n\}$ and $B=\{a, b\}$.
We know that, if A and B are two non-empty finite sets containing m and n elements respectively, then the number of surjection from A into B is

$$
\begin{array}{r}
{ }^{n} C_{m} \times m!\text {, if } n \geq m \\
0, \text { if } n<m
\end{array}
$$

Here, $m=2$
$\therefore \quad$ Number of surjection from A into B is ${ }^{n} C_{2} \times 2!=\frac{n!}{2!(n-2)!} \times 2!$

$$
=\frac{n(n-1)(n-2)!}{2 \times 1(n-2)} \times 2!=n^{2}-n
$$

Q. 37 If $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{x}, \forall x \in R$. Then, f is
(a) one-one
(b) onto
(c) bijective
(d) f is not defined

- Thinking Process

In the given function at $x=0, f(x)=\infty$. So, the function is not define.
Sol. (d) Given that,

$$
\begin{aligned}
f(x) & =\frac{1}{x}, \forall x \in R \\
x & =0,
\end{aligned}
$$

For
$f(x)$ is not defined.
Hence, $f(x)$ is a not define function.
Q. 38 If $f: R \rightarrow R$ be defined by $f(x)=3 x^{2}-5$ and $g: R \rightarrow R$ by $g(x)=\frac{x}{x^{2}+1}$. Then, $g \circ f$ is
(a) $\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}$
(b) $\frac{3 x^{2}-5}{9 x^{4}-6 x^{2}+26}$
(c) $\frac{3 x^{2}}{x^{4}+2 x^{2}-4}$
(d) $\frac{3 x^{2}}{9 x^{4}+30 x^{2}-2}$

Sol. (a) Given that, $f(x)=3 x^{2}-5$ and $g(x)=\frac{x}{x^{2}+1}$

$$
\begin{aligned}
\text { gof } & =g\{f(x)\}=g\left(3 x^{2}-5\right) \\
& =\frac{3 x^{2}-5}{\left(3 x^{2}-5\right)^{2}+1}=\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+25+1} \\
& =\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}
\end{aligned}
$$

Q. 39 Which of the following functions from Z into Z are bijections?

(a) $f(x)=x^{3}$
(b) $f(x)=x+2$
(c) $f(x)=2 x+1$
(d) $f(x)=x^{2}+1$

Sol. (b) Here,

$$
f(x)=x+2 \quad \Rightarrow \quad f\left(x_{1}\right)=f\left(x_{2}\right)
$$

$$
x_{1}+2=x_{2}+2 \Rightarrow x_{1}=x_{2}
$$

Let

$$
\begin{aligned}
& y=x+2 \\
& x=y-2 \in Z, \forall y \in x
\end{aligned}
$$

Hence, $f(x)$ is one-one and onto.
Q. 40 If $f: R \rightarrow R$ be the functions defined by $f(x)=x^{3}+5$, then $f^{-1}(x)$ is
(a) $(x+5)^{\frac{1}{3}}$
(b) $(x-5)^{\frac{1}{3}}$
(c) $(5-x)^{\frac{1}{3}}$
(d) $5-x$

Sol. (b) Given that,

$$
\begin{aligned}
f(x) & =x^{3}+5 \\
y & =x^{3}+5 \Rightarrow x^{3}=y-5 \\
x & =(y-5)^{\frac{1}{3}} \Rightarrow f(x)^{-1}=(x-5)^{\frac{1}{3}}
\end{aligned}
$$

$$
\text { Let } \quad y=x^{3}+5 \Rightarrow x^{3}=y-5
$$

Q. 41 If $f: A \rightarrow B$ and $g: B \rightarrow C$ be the bijective functions, then $(g \circ f)^{-1}$ is
(a) $f^{-1} \mathrm{og}^{-1}$
(b) $f \circ g$
(c) $g^{-1} o f^{-1}$
(d) gof

Sol. (a) Given that, $f: A \rightarrow B$ and $g: B \rightarrow C$ be the bijective functions.

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

Q. 42 If $f: R-\left\{\frac{3}{5}\right\} \rightarrow R$ be defined by $f(x)=\frac{3 x+2}{5 x-3}$, then
(a) $f^{-1}(x)=f(x)$
(b) $f^{-1}(x)=-f(x)$
(c) $(f \circ f) x=-x$
(d) $f^{-1}(x)=\frac{1}{19} f(x)$

Sol. (a) Given that,

$$
f(x)=\frac{3 x+2}{5 x-3}
$$

Let

$$
y=\frac{3 x+2}{5 x-3}
$$

$$
3 x+2=5 x y-3 y \Rightarrow x(3-5 y)=-3 y-2
$$

$$
x=\frac{3 y+2}{5 y-3} \Rightarrow f^{-1}(x)=\frac{3 x+2}{5 x-3}
$$

$\therefore \quad f^{-1}(x)=f(x)$
Q. 43 If $f:[0,1] \rightarrow[0,1]$ be defined by $f(x)=\left\{\begin{array}{cc}x, & \text { if } x \text { is rational } \\ 1-x, & \text { if } x \text { is irrational }\end{array}\right.$ then $(f \circ f) x$ is
(a) constant
(b) $1+x$
(c) x
(d) None of these

Sol. (c) Given that, $f:[0,1] \rightarrow[0,1]$ be defined by

$$
\begin{array}{ll}
& f(x)=\left\{\begin{array}{cc}
x, & \text { if } x \text { is rational } \\
1-x, & \text { if } x \text { is irrational }
\end{array}\right. \\
\therefore & (f \circ f) x=f(f(x))=x
\end{array}
$$

Q. 44 If $f:[2, \infty) \rightarrow R$ be the function defined by $f(x)=x^{2}-4 x+5$, then the range of f is
(a) R
(b) $[1, \infty)$
(c) $[4, \infty)$
(d) $[5, \infty)$

$\stackrel{\text { OT }}{ }$ Thinking Process

Range of $f=\{y \in Y: y=f(x)$ for some in $X\}$
Sol. (b) Given that,

$$
f(x)=x^{2}-4 x+5
$$

Let

$$
y=x^{2}-4 x+5
$$

$$
\text { Let } \quad y=x-4 x+0
$$

\Rightarrow

$$
\Rightarrow \quad y=x^{2}-4 x+4+1=(x-2)^{2}+1
$$

$$
\Rightarrow \quad(x-2)^{2}=y-1 \Rightarrow x-2=\sqrt{y-1}
$$

$\Rightarrow \quad x=2+\sqrt{y-1}$
$\therefore \quad y-1 \geq 0, y \geq 1$
Range $=[1, \infty)$
Q. 45 If $f: N \rightarrow R$ be the function defined by $f(x)=\frac{2 x-1}{2}$ and $g: Q \rightarrow R$ be another function defined by $g(x)=x+2$. Then, $(g \circ f) \frac{3}{2}$ is
(a) 1
(b) 1
(c) $\frac{7}{2}$
(d) None of these

Sol. (d) Given that, $f(x)=\frac{2 x-1}{2}$ and $g(x)=x+2$

$$
\begin{aligned}
(g \circ f) \frac{3}{2} & =g\left[f\left(\frac{3}{2}\right)\right]=g\left(\frac{2 \times \frac{3}{2}-1}{2}\right) \\
& =g(1)=1+2=3
\end{aligned}
$$

Q. 46 If $f: R \rightarrow R$ be defined by $f(x)=\left\{\begin{array}{l}2 x: x>3 \\ x^{2}: 1<x \leq 3 \\ 3 x: x \leq 1\end{array}\right.$

Then, $f(-1)+f(2)+f(4)$ is
(a) 9
(b) 14
(c) 5
(d) None of these

Sol. (a) Given that,

$$
f(x)=\left\{\begin{array}{l}
2 x: x>3 \\
x^{2}: 1<x \leq 3 \\
3 x: x \leq 1
\end{array}\right.
$$

$$
\begin{aligned}
f(-1)+f(2)+f(4) & =3(-1)+(2)^{2}+2 \times 4 \\
& =-3+4+8=9
\end{aligned}
$$

Q. 47 If $f: R \rightarrow R$ be given by $f(x)=\tan x$, then $f^{-1}(1)$ is
(a) $\frac{\pi}{4}$
(b) $\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$
(c) Does not exist
(d) None of these

Sol. (a) Given that,

$$
\begin{aligned}
f(x) & =\tan x \\
y & =\tan x \quad \Rightarrow \quad x=\tan ^{-1} y
\end{aligned}
$$

$\Rightarrow \quad f^{-1}(x)=\tan ^{-1} x \Rightarrow f^{-1}(1)=\tan ^{-1} 1$
$\Rightarrow \quad=\tan ^{-1} \tan \frac{\pi}{4}=\frac{\pi}{4} \quad\left[\because \tan \frac{\pi}{4}=1\right]$

Fillers

Q. 48 Let the relation R be defined in N by $a R b$, if $2 a+3 b=30$. Then, $R=\ldots$. .

Sol. Given that,

$$
\begin{aligned}
2 a+3 b & =30 \\
3 b & =30-2 a \\
b & =\frac{30-2 a}{3} \\
a & =3, b=8 \\
a & =6, b=6 \\
a & =9, b=4 \\
a & =12, b=2 \\
R & =\{(3,8),(6,6),(9,4),(12,2)\}
\end{aligned}
$$

Q. 49 If the relation R be defined on the set $A=\{1,2,3,4,5\}$ by $R=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right\}$. Then, R is given by
Sol. Given, $\quad A=\{1,2,3,4,5\}$,

$$
\begin{aligned}
& R=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right\} \\
& R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(4,3),(3,4),(4,4),(5,5)\}
\end{aligned}
$$

Q. 50 If $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, then

$$
g \circ f=
$$

\qquad and $f \circ g=$
Sol. Given that,

$$
f=\{(1,2),(3,5),(4,1)\} \text { and } g=\{(2,3),(5,1),(1,3)\}
$$

$$
\begin{aligned}
g \circ f(1) & =g\{f(1)\}=g(2)=3 \\
g \circ f(3) & =g\{f(3)\}=g(5)=1 \\
\operatorname{gof}(4) & =g\{f(4)\}=g(1)=3 \\
g \circ f & =\{(1,3),(3,1),(4,3)\} \\
\operatorname{fog}(2) & =f\{g(2)\}=f(3)=5 \\
\text { Now, } \quad & f \circ g(5)=f\{g(5)\}=f(1)=2 \\
& f \circ g(1)=f\{g(1)\}=f(3)=5 \\
& f \circ g=\{(2,5),(5,2),(1,5)\}
\end{aligned}
$$

Q. 51 If $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{\sqrt{1+x^{2}}}$, then $(f \circ f \circ f)(x)=$

Sol. Given that,

$$
\begin{aligned}
f(x) & =\frac{x}{\sqrt{1+x^{2}}} \\
(f \circ f o f)(x) & =f[f f f(x)\}] \\
& =f\left[f\left(\frac{x}{\left.\sqrt{1+x^{2}}\right)}\right]=f\left(\frac{\frac{x}{\sqrt{1+x^{2}}}}{\sqrt{1+\frac{x^{2}}{1+x^{2}}}}\right)\right. \\
& =f\left[\frac{x \sqrt{1+x^{2}}}{\sqrt{1+x^{2}\left(\sqrt{2 x^{2}}+1\right)}}\right]=f\left(\frac{x}{\sqrt{1+2 x^{2}}}\right) \\
& =\frac{x}{\sqrt{1+2 x^{2}}} \\
\sqrt{1+\frac{x^{2}}{1+2 x^{2}}} & \frac{x \sqrt{1+2 x^{2}}}{\sqrt{1+2 x^{2}} \sqrt{1+3 x^{2}}} \\
& =\frac{x}{\sqrt{1+3 x^{2}}}=\frac{x}{\sqrt{3 x^{2}+1}}
\end{aligned}
$$

Q. 52 If $f(x)=\left[4-(x-7)^{3}\right]$, then $f^{-1}(x)=$

Sol. Given that,
Let

$$
\begin{aligned}
f(x) & =\left\{4-(x-7)^{3}\right\} \\
y & =\left[4-(x-7)^{3}\right]
\end{aligned}
$$

$$
(x-7)^{3}=4-y
$$

$$
(x-7)=(4-y)^{1 / 3}
$$

$$
\Rightarrow \quad x=7+(4-y)^{1 / 3}
$$

$$
f^{-1}(x)=7+(4-x)^{1 / 3}
$$

True/False

Q. 53 Let $R=\{(3,1),(1,3),(3,3)\}$ be a relation defined on the set $A=\{1,2,3\}$. Then, R is symmetric, transitive but not reflexive.
Sol. False
Given that, $R=\{(3,1),(1,3),(3,3)\}$ be defined on the set $A=\{1,2,3\}$
$(1,1) \notin R$
So, R is not reflexive. $\quad(3,1) \in R,(1,3) \in R$
Hence, R is symmetric.
Since,
$(3,1) \in R,(1,3) \in R$
But $(1,1) \notin R$
Hence, R is not transitive.
Q. 54 If $f: R \rightarrow R$ be the function defined by $f(x)=\sin (3 x+2) \forall x \in R$. Then, f is invertible.
Sol. False
Given that, $f(x)=\sin (3 x+2), \forall x \in R$ is not one-one function for all $x \in R$.
So, f is not invertible.
Q. 55 Every relation which is symmetric and transitive is also reflexive.

Sol. False

Let R be a relation defined by

$$
R=\{(1,2),(2,1),(1,1),(2,2)\} \text { on the set } A=\{1,2,3\}
$$

It is clear that $(3,3) \notin R$. So, it is not reflexive.
Q. 56 An integer m is said to be related to another integer n, if m is a integral multiple of n. This relation in Z is reflexive, symmetric and transitive.
Sol. False
The given relation is reflexive and transitive but not symmetric.
Q. 57 If $A=\{0,1\}$ and N be the set of natural numbers. Then, the mapping $f: N \rightarrow A$ defined by $f(2 n-1)=0, f(2 n)=1, \forall n \in N$, is onto.
Sol. True
Given, $\quad A=\{0,1\}$

$$
f(2 n-1)=0, f(2 n)=1, \forall n \in N
$$

So, the mapping $f: N \rightarrow A$ is onto.
Q. 58 The relation R on the set $A=\{1,2,3\}$ defined as $R=\{(1,1),(1,2),(2$, $1),(3,3)\}$ is reflexive, symmetric and transitive.
Sol. False
Given that,

$$
\begin{aligned}
R & =\{(1,1),(1,2),(2,1),(3,3)\} \\
(2,2) & \notin R
\end{aligned}
$$

So, R is not reflexive.
Q. 59 The composition of function is commutative.

Sol. False

Let

$$
\begin{aligned}
f(x) & =x^{2} \\
g(x) & =x+1 \\
f \circ g(x) & =f\{g(x)\}=f(x+1) \\
& =(x+1)^{2}=x^{2}+2 x+1 \\
g \circ f(x) & =g\{f(x)\}=g\left(x^{2}\right)=x^{2}+1
\end{aligned}
$$

and
$\therefore \quad f \circ g(x) \neq \operatorname{gof}(x)$
Q. 60 The composition of function is associative.

Sol. True
Let
and

$$
f(x)=x, g(x)=x+1
$$

$h(x)=2 x-1$
Then,

$$
\begin{aligned}
f \circ\{g \circ h(x)\} & =f[g\{h(x)\}] \\
& =f\{g(2 x-1)\} \\
& =f(2 x-1+1) \\
& =f(2 x)=2 x \\
(f \circ g) \circ h(x) & =(f \circ g)\{h(x)\} \\
& =(f \circ g)(2 x-1) \\
& =f\{g(2 x-1)\} \\
& =f(2 x-1+1) \\
& =f(2 x)=2 x
\end{aligned}
$$

$$
\therefore \quad(f \circ g) \circ h(x)=(f \circ g)\{h(x)\}
$$

Q. 61 Every function is invertible.

Sol. False

Only bijective functions are invertible.
Q. 62 a binary operation on a set has always the identity element.

Sol. False

' + ' is a binary operation on the set N but it has no identity element.

