1

Relations and Functions

Short Answer Type Questions

Q. 1 Let $A = \{a, b, c\}$ and the relation R be defined on A as follows $R = \{(a, a), (b, c), (a, b)\}$

Then, write minimum number of ordered pairs to be added in *R* to make *R* reflexive and transitive.

- **Sol.** Given relation, $R = \{(a, a), (b, c), (a, b)\}$. To make *R* is reflexive we must add (*b*, *b*) and (*c*, *c*) to *R*. Also, to make *R* is transitive we must add (*a*, *c*) to *R*. So, minimum number of ordered pair is to be added are (*b*, *b*), (*c*, *c*), (*a*, *c*).
- **Q. 2** Let *D* be the domain of the real valued function *f* defined by $f(x) = \sqrt{25 x^2}$. Then, write *D*.

Sol. Given function is, $f(x) = \sqrt{25 - x^2}$ For real valued of f(x) $25 - x^2 \ge 0$ $x^2 \le 25$ $-5 \le x \le + 5$ D = [-5, 5]

Q. 3 If $f, g : R \to R$ be defined by f(x) = 2x + 1 and $g(x) = x^2 - 2$, $\forall x \in R$, respectively. Then, find *gof*.

• Thinking Process

If f, g: $R \rightarrow R$ be two functions, then gof(x) = g { f(x) } \forall x \in R.

Sol. Given that, f(x) = 2x + 1 and $g(x) = x^2 - 2$, $\forall x \in R$ \therefore $gof = g\{f(x)\}$ $= g(2x + 1) = (2x + 1)^2 - 2$ $= 4x^2 + 4x + 1 - 2$ $= 4x^2 + 4x - 1$

- **Q.** 4 Let $f: R \to R$ be the function defined by f(x) = 2x 3, $\forall x \in R$. Write f^{-1} .
- **Sol.** Given that, Now, let $f(x) = 2x - 3, \forall x \in R$ y = 2x - 32x = y + 3 $x = \frac{y + 3}{2}$ $\therefore \qquad f^{-1}(x) = \frac{x + 3}{2}$
- **Q. 5** If $A = \{a, b, c, d\}$ and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$, write f^{-1} .
- Sol. Given that, and $f = \{(a, b), (c, a), (d, c)\}$ $f^{-1} = \{(b, a), (d, b), (a, c), (c, d)\}$
- **Q.** 6 If $f : R \to R$ is defined by $f(x) = x^2 3x + 2$, write $f\{f(x)\}$.

Thinking Process

To solve this problem use the formula i.e., $(a + b + c)^2 = (a^2 + b^2 + c^2 + 2ab + 2bc + 2ca)$

- Sol. Given that, $f(x) = x^{2} - 3x + 2$ $f\{f(x)\} = f(x^{2} - 3x + 2)$ $= (x^{2} - 3x + 2)^{2} - 3(x^{2} - 3x + 2) + 2$ $= x^{4} + 9x^{2} + 4 - 6x^{3} - 12x + 4x^{2} - 3x^{2} + 9x - 6 + 2$ $= x^{4} + 10x^{2} - 6x^{3} - 3x$ $f\{f(x)\} = x^{4} - 6x^{3} + 10x^{2} - 3x$
- **Q. 7** Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? If g is described by $g(x) = \alpha x + \beta$, then what value should be assigned to α and β ?

= 2

...(i)

...(ii)

Sol. Given that, $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$. Here, each element of domain has unique image. So, g is a function. Now given that, $g(x) = \alpha x + \beta$ $g(1) = \alpha + \beta$ $\alpha + \beta = 1$ $g(2) = 2\alpha + \beta$ $2\alpha + \beta = 3$

From Eqs. (i) and (ii),

	$2(1-\beta)+\beta=3$
\Rightarrow	$2 - 2\beta + \beta = 3$
\Rightarrow	$2-\beta=3$
	$\beta = -1$
lf	eta = -1, then $lpha$
	$\alpha = 2, \ \beta = -1$

- **Q. 8** Are the following set of ordered pairs functions? If so examine whether the mapping is injective or surjective.
 - (i) $\{(x, y) : x \text{ is a person, } y \text{ is the mother of } x\}$.
 - (ii) $\{(a, b) : a \text{ is a person, } b \text{ is an ancestor of } a\}$.
- Sol. (i) Given set of ordered pair is {(x, y) : x is a person, y is the mother of x}.It represent a function. Here, the image of distinct elements of x under f are not distinct, so it is not a injective but it is a surjective.
 - (ii) Set of ordered pairs = {(a, b): a is a person, b is an ancestor of a}
 Here, each element of domain does not have a unique image. So, it does not represent function.
- **Q.** 9 If the mappings f and g are given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $q = \{(2, 3), (5, 1), (1, 3)\}$, write foq.
- Sol.Given that, $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$ Now, $fog(2) = f\{g(2)\} = f(3) = 5$ $fog(5) = f\{g(5)\} = f(1) = 2$ $fog(1) = f\{g(1)\} = f(3) = 5$ $fog = \{(2, 5), (5, 2), (1, 5)\}$
- **Q.** 10 Let *C* be the set of complex numbers. Prove that the mapping $f: C \to R$ given by $f(z) = |z|, \forall z \in C$, is neither one-one nor onto.
- Sol. The mapping Given, $f: C \rightarrow R$ $f(z) = |z|, \forall z \in C$ f(1) = |1| = 1 f(-1) = |-1| = 1 f(1) = f(-1)But $1 \neq -1$

So, f(z) is not one-one. Also, f(z) is not onto as there is no pre-image for any negative element of *R* under the mapping f(z).

Q. 11 Let the function $f : R \to R$ be defined by $f(x) = \cos x$, $\forall x \in R$. Show that f is neither one-one nor onto.

Sol. Given function, $f(x) = \cos x$, $\forall x \in R$ Now, $f\left(\frac{\pi}{2}\right) = \cos \frac{\pi}{2} = 0$ \Rightarrow $f\left(\frac{-\pi}{2}\right) = \cos \frac{\pi}{2} = 0$ \Rightarrow $f\left(\frac{\pi}{2}\right) = f\left(\frac{-\pi}{2}\right)$ But $\frac{\pi}{2} \neq \frac{-\pi}{2}$

So, f(x) is not one-one.

Now, $f(x) = \cos x$, $\forall x \in R$ is not onto as there is no pre-image for any real number. Which does not belonging to the intervals [-1, 1], the range of $\cos x$.

Q. 12 Let $X = \{1, 2, 3\}$ and $Y = \{4, 5\}$. Find whether the following subsets of $X \times Y$ are functions from X to Y or not. (i) $f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$ (ii) $q = \{(1, 4), (2, 4), (3, 4)\}$ (iii) $h = \{(1, 4), (2, 5), (3, 5)\}$ (iv) $k = \{(1, 4), (2, 5)\}$ $X = \{1, 2, 3\}$ and $Y = \{4, 5\}$ Sol. Given that, $X \times Y = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$ (i) $f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$ f is not a function because f has not unique image. (ii) $g = \{(1, 4), (2, 4), (3, 4)\}$ Since, g is a function as each element of the domain has unique image. (iii) $h = \{(1, 4), (2, 5), (3, 5)\}$ It is clear that *h* is a function. (iv) $k = \{(1, 4), (2, 5)\}$ k is not a function as 3 has not any image under the mapping. **Q.** 13 If functions $f: A \to B$ and $g: B \to A$ satisfy $gof = I_A$, then show that f is one-one and g is onto. Sol. Given that, $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy $gof = I_A$ $gof = I_A$ ÷ $gof{f(x_1)} = gof{f(x_2)}$ $g(x_1) = g(x_2)$ \Rightarrow [:: $gof = I_A$] \Rightarrow ÷. $x_1 = x_2$ Hence, f is one-one and g is onto. **Q.** 14 Let $f: R \to R$ be the function defined by $f(x) = \frac{1}{2 - \cos x}, \forall x \in R$. Then, find the range of f. Thinking Process Range of $f = \{y \in Y : y = f(x): \text{ for some in } x\}$ and use range of $\cos x$ is [-1,1] $f(x) = \frac{1}{2 - \cos x}, \forall x \in R$ Sol. Given function, $y = \frac{1}{2 - \cos r}$ Let $2y - y\cos x = 1$ \Rightarrow $y\cos x = 2y - 1$ \Rightarrow $\cos x = \frac{2y-1}{v} = 2 - \frac{1}{v} \implies \cos x = 2 - \frac{1}{y}$ \Rightarrow $-1 \le \cos x \le 1 \qquad \Rightarrow \quad -1 \le 2 - \frac{1}{y} \le 1$ $-3 \le -\frac{1}{y} \le -1 \qquad \Rightarrow \quad 1 \le \frac{1}{y} \le 3$ \Rightarrow \Rightarrow $\frac{1}{3} \leq \frac{1}{v} \leq 1$ \Rightarrow So, y range is $\left[\frac{1}{3}, 1\right]$.

- **Q.** 15 Let *n* be a fixed positive integer. Define a relation *R* in *Z* as follows $\forall a$, $b \in Z$, *aRb* if and only if a b is divisible by *n*. Show that *R* is an equivalence relation.
- **Sol.** Given that, $\forall a, b \in Z$, *aRb* if and only if a b is divisible by *n*. Now,
 - I. Reflexive

 $aRa \Rightarrow (a - a)$ is divisible by *n*, which is true for any integer *a* as 'O' is divisible by *n*. Hence, *R* is reflexive.

II. Symmetric

		aRb
	\Rightarrow	a - b is divisible by n .
	\Rightarrow	-b + a is divisible by <i>n</i> .
	\Rightarrow	-(b-a) is divisible by <i>n</i> .
	\Rightarrow	(b-a) is divisible by <i>n</i> .
	\Rightarrow	bRa
	Hence, R is symmetric.	
III. Transitive		()
	Let aRb and bRc	
	\Rightarrow	(a - b) is divisible by <i>n</i> and $(b - c)$ is divisible by <i>n</i>
	\Rightarrow	(a - b) + (b - c) is divisibly by <i>n</i>
	\Rightarrow	(a - c) is divisible by n
	\Rightarrow	aRc
	Hence, R is transitive.	
	So, R is an equivalence re	lation.

Long Answer Type Questions

Q. 16 If $A = \{1, 2, 3, 4\}$, define relations on A which have properties of being

- (i) reflexive, transitive but not symmetric.
- (ii) symmetric but neither reflexive nor transitive.

```
(iii) reflexive, symmetric and transitive.
```

```
Sol. Given that,
                                         A = \{1, 2, 3, 4\}
        (i) Let
                                        R_1 = \{(1, 1), (1, 2), (2, 3), (2, 2), (1, 3), (3, 3)\}
            R_1 is reflexive, since, (1, 1) (2, 2) (3, 3) lie in R_1.
            Now,
                                      (1, 2) \in R_1, (2, 3) \in R_1 \implies (1, 3) \in R_1
            Hence, R_1 is also transitive but (1, 2) \in R_1 \Rightarrow (2, 1) \notin R_1.
            So, it is not symmetric.
       (ii) Let
                                       R_2 = \{(1, 2), (2, 1)\}
                                      (1, 2) \in R_2, (2, 1) \in R_2
            Now,
            So, it is symmetric.
      (iii) Let
                                        R_3 = \{(1, 2), (2, 1), (1, 1), (2, 2), (3, 3), (1, 3), (3, 1), (2, 3)\}
            Hence, R_3 is reflexive, symmetric and transitive.
```

Q. 17 Let *R* be relation defined on the set of natural number *N* as follows, $R = \{(x, y) : x \in N, y \in N, 2x + y = 41\}$. Find the domain and range of the relation *R*. Also verify whether *R* is reflexive, symmetric and transitive.

```
Sol. Given that,
                                      R = \{(x, y) : x \in N, y \in N, 2x + y = 41\}.
                              Domain = \{1, 2, 3, ..., 20\}
                                Range = \{1, 3, 5, 7, \dots, 39\}
                                      R = \{(1, 39), (2, 37), (3, 35), \dots, (19, 3), (20, 1)\}
          R is not reflexive as (2, 2) \notin R
                            2 \times 2 + 2 \neq 41
        So, R is not symmetric.
        As
                                 (1, 39) \in R but (39, 1) \notin R
        So. R is not transitive.
        As
                                (11, 19) \in R, (19, 3) \in R
        But
                                 (11, 3) ∉ R
        Hence, R is neither reflexive, nor symmetric and nor transitive.
```

- **Q.** 18 Given, $A = \{2, 3, 4\}$, $B = \{2, 5, 6, 7\}$. Construct an example of each of the following
 - (i) an injective mapping from A to B.
 - (ii) a mapping from A to B which is not injective.
 - (iii) a mapping from *B* to *A*.
- **Sol.** Given that, $A = \{2, 3, 4\}, B = \{2, 5, 6, 7\}$
 - (i) Let

i.e.,

 $f: A \rightarrow B$ denote a mapping

$$f = \{(x, y) : y = x + 3\}$$

 $f = \{(2, 5), (3, -6), (4, 7)\},$ which is an injective mapping.

- (ii) Let $g : A \rightarrow B$ denote a mapping such that $g = \{(2, 2), (3, 5), (4, 5)\}$, which is not an injective mapping.
- (iii) Let $h: B \to A$ denote a mapping such that $h = \{(2, 2), (5, 3), (6, 4), (7, 4)\}$, which is a mapping from *B* to *A*.

Q. 19 Give an example of a map

- (i) which is one-one but not onto.
- (ii) which is not one-one but onto.
- (iii) which is neither one-one nor onto.

Sol. (i) Let $f: N \to N$, be a mapping defined by f(x) = 2xwhich is one-one. For $f(x_1) = f(x_2)$ $\Rightarrow 2x_1 = 2x_2$

$$2x_1 = 2x_2$$
$$x_1 = x_2$$

Further f is not onto, as for $1 \in N$, there does not exist any x in N such that f(x) = 2x + 1.

- (ii) Let $f: N \rightarrow N$, given by f(1) = f(2) = 1 and f(x) = x 1 for every x > 2 is onto but not one-one. *f* is not one-one as f(1) = f(2) = 1. But *f* is onto.
- (iii) The mapping $f : R \to R$ defined as $f(x) = x^2$, is neither one-one nor onto.

Q. 20 Let $A = R - \{3\}$, $B = R - \{1\}$. If $f : A \to B$ be defined by $f(x) = \frac{x-2}{x-3}$, $\forall x \in A$. Then, show that f is bijective. **Thinking Process** A function $f: x \rightarrow y$ is said to be bijective, if f is both one-one and onto. $A = R - \{3\}, B = R - \{1\}.$ Sol. Given that, $f: A \rightarrow B$ is defined by $f(x) = \frac{x-2}{x-3}, \forall x \in A$ For injectivity $f(x_1) = f(x_2) \implies \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$ Let $(x_1 - 2)(x_2 - 3) = (x_2 - 2)(x_1 - 3)$ $x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 2x_1 + 6$ $-3x_1 - 2x_2 = -3x_2 - 2x_1$ $-x_1 = -x_2 \implies x_1 = x_2$ \Rightarrow \Rightarrow ⇒ \rightarrow So, f(x) is an injective function. $y = \frac{x-2}{x-3} \implies x-2 = xy - 3y$ $x(1-y) = 2 - 3y \implies x = \frac{2-3y}{1-y}$ For surjectivity Let \Rightarrow $x = \frac{3y-2}{y-1} \in A, \forall y \in B$ [codomain] \Rightarrow So, f(x) is surjective function. Hence, f(x) is a bijective function.

Q. 21 Let A = [-1, 1], then, discuss whether the following functions defined on *A* are one-one onto or bijective.

(i) $f(x) = \frac{x}{2}$ (ii) q(x) = |x|(iv) $k(x) = x^2$ (iii) h(x) = x |x|Sol. Given that, A = [-1, 1](i) $f(x) = \frac{x}{2}$ $f(x_1) = f(x_2)$ Let $\frac{x_1}{2} = \frac{x_2}{2} \implies x_1 = x_2$ \Rightarrow So, f(x) is one-one. $y = \frac{x}{2}$ Now, let $x = 2y \notin A, \forall y \in A$ \Rightarrow As for $y = 1 \in A, x = 2 \notin A$ So, f(x) is not onto. Also, f(x) is not bijective as it is not onto.

(ii) g(x) = |x|Let $g(x_1) = g(x_2)$ $|x_1| = |x_2| \implies x_1 = \pm x_2$ \Rightarrow So, g(x) is not one-one. $y = |x| \implies x = \pm y \notin A, \forall y \in A$ Now, So, g(x) is not onto, also, g(x) is not bijective. (iii) h(x) = x|x|Let $h(x_1) = h(x_2)$ $x_1|x_1| = x_2|x_2| \implies x_1 = x_2$ \Rightarrow So, h(x) is one-one. Now, let y = x |x| $y = x^2 \in A, \forall x \in A$ \Rightarrow So, h(x) is onto also, h(x) is a bijective. (iv) $k(x) = x^2$ Let $k(x_1) = k(x_2)$ $x_1^2 = x_2^2 \implies x_1 = \pm x_2$ \Rightarrow Thus, k(x) is not one-one. $y = x^2$ Now, let $x = \sqrt{y} \notin A, \forall y \in A$ \Rightarrow As for y = -1, $x = \sqrt{-1} \notin A$ Hence, k(x) is neither one-one nor onto. **Q. 22** Each of the following defines a relation of N (i) x is greater than $y, x, y \in N$.

- (ii) $x + y = 10, x, y \in N$.
- (iii) xy is square of an integer $x, y \in N$.
- (iv) $x + 4y = 10, x, y \in N$

Determine which of the above relations are reflexive, symmetric and transitive.

Sol. (i) x is greater than $y, x, y \in N$

```
(x, x) \in R
For xRx x > x is not true for any x \in N.
Therefore, R is not reflexive.
Let (x, y) \in R \implies xRy
x > y
but y > x is not true for any x, y \in N
Thus, R is not symmetric.
Let xRy and yRz
x > y and y > z \implies x > z
\Rightarrow xRz
```

So, R is transitive.

(ii) $x + y = 10, x, y \in N$ $R = \{(x, y); x + y = 10, x, y \in N\}$ $R = \{(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)\}$ (1, 1) $\notin R$ So, R is not reflexive. $(x, y) \in R \implies (y, x) \in R$ Therefore, *R* is symmetric. $(1, 9) \in R, (9, 1) \in R \implies (1, 1) \notin R$ Hence, R is not transitive. (iii) Given xy, is square of an integer $x, y \in N$. $R = \{(x, y) : xy \text{ is a square of an integer } x, y \in N\}$ \Rightarrow $(x, x) \in R, \forall x \in N$ As x^2 is square of an integer for any $x \in N$. Hence, *R* is reflexive. lf $(x, y) \in R \implies (y, x) \in R$ Therefore, *R* is symmetric. $(x, y) \in R, (y, z) \in R$ lf So, xy is square of an integer and yz is square of an integer. Let $xy = m^2$ and $yz = n^2$ for some $m, n \in Z$ $x = \frac{m^2}{y}$ and $z = \frac{x^2}{y}$ $xz = \frac{m^2 n^2}{v^2}$, which is square of an integer. So, R is transitive. $x + 4y = 10, x, y \in N$ (iv) $R = \{(x, y) : x + 4y = 10, x, y \in N\}$ $R = \{(2, 2), (6, 1)\}$ $(1, 1), (3, 3), \ldots, \notin R$ Thus, R is not reflexive. $(6, 1) \in R$ but $(1, 6) \notin R$ Hence, R is not symmetric. $(x, y) \in R \implies x + 4y = 10$ but $(y, z) \in R$ $y + 4z = 10 \implies (x, z) \in R$ So, R is transitive. **Q.** 23 Let $A = \{1, 2, 3, \dots, 9\}$ and R be the relation in $A \times A$ defined by

(*a*, *b*) R (*c*, *d*) if a + d = b + c for (*a*, *b*), (*c*, *d*) in $A \times A$. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]. **Sol.** Given that, $A = \{1, 2, 3, ..., 9\}$ and (*a*, *b*) R(c, d) if a + d = b + c for (*a*, *b*) $\in A \times A$ and

 $(c, d) \in A \times A.$ Let (a, b) R (a, b) $\Rightarrow \qquad a + b = b + a, \forall a, b \in A$ which is true for any $a, b \in A$.
Hence, R is reflexive.
Let $(a, b) R (c, d) \qquad a + d = b + c$ $c + b = d + a \Rightarrow (c, d) R (a, b)$

So, *R* is symmetric.

$$(a, b) R (c, d) and (c, d) R (e, f)$$

$$a + d = b + c and c + f = d + e$$

$$a + d = b + c and d + e = c + f$$

$$(a + d) - (d + e) = (b + c) - (c + f)$$

$$(a - e) = b - f$$

$$a + f = b + e$$

$$(a, b) R (e, f)$$

So, *R* is transitive.

Hence, *R* is an equivalence relation.

Now, equivalence class containing [(2, 5)] is {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}.

Q. 24 Using the definition, prove that the function $f : A \rightarrow B$ is invertible if and only if f is both one-one and onto.

- **Sol.** A function $f : X \to Y$ is defined to be invertible, if there exist a function $g = Y \to X$ such that $gof = I_X$ and $fog = I_Y$. The function is called the inverse of f and is denoted by f^{-1} . A function $f = X \to Y$ is invertible iff f is a bijective function.
- **Q.** 25 Functions $f, g: R \to R$ are defined, respectively, by $f(x) = x^2 + 3x + 1$, g(x) = 2x - 3 find

g(x) = 2x - 5, intu				
(i) <i>f</i>	- fog	(ii) gof	(iii) fof	(iv) gog
Given that	$f(x) = x^2$	+ 3x + 1, g(x) = 2	2x-3	
(i)	$fog = f\{g($	$\{x\} = f(2x - 3)$		
	$=(2x)^{2}$	$(-3)^2 + 3(2x - 3)^2$	3) + 1	
	$= 4x^{2}$	+ 9 - 12x + 6x	$-9+1=4x^2-6x+$	1
(ii)	$gof = g\{f$	$(x)\} = g(x^2 + 3x)$: + 1)	
	$=2(x^{2})$	$x^2 + 3x + 1) - 3$		
	$=2x^{2}$	+ 6x + 2 - 3 = 3	$2x^2 + 6x - 1$	
(iii)	$fof = f\{f(:$	$x)\} = f(x^2 + 3x +$	- 1)	
	$=(x^{2}$	$+ 3x + 1)^{2} + 3(x)$	$x^2 + 3x + 1) + 1$	
	$=x^4$	$+ 9x^2 + 1 + 6x^3$	$+ 6x + 2x^2 + 3x^2 +$	9x + 3 + 1
	$=x^4$	$+ 6x^3 + 14x^2 +$	15x + 5	
(iv)	$gog = g\{g$	$g(x)\} = g(2x - 3)$		
	= 2(2)	x − 3) − 3		
	=4x	-6-3=4x-9		
	<pre>g(x) = (i) f Given that (i) (ii) (iii) (iii) (iv)</pre>	g(x) = 2x - 5, 111 (i) fog Given that, $f(x) = x^2$. (i) $fog = f\{g(x) = (2x) = (4x)^2\}$ (ii) $gof = g\{f(x) = 2(x^2) = (x^2) = (x^2) = (x^2) = (x^2)$ (iii) $fof = f\{f(x) = (x^2) = (x^$	(i) fog (ii) gof Given that, $f(x) = x^2 + 3x + 1$, $g(x) = 2$ (i) $fog = f\{g(x)\} = f(2x - 3)$ $= (2x - 3)^2 + 3(2x - 3)^2$ $= 4x^2 + 9 - 12x + 6x$ (ii) $gof = g\{f(x)\} = g(x^2 + 3x)^2$ $= 2(x^2 + 3x + 1) - 3$ $= 2x^2 + 6x + 2 - 3 = 3^2$ (iii) $fof = f\{f(x)\} = f(x^2 + 3x + 1)^2 + 3(x)^2$ $= x^4 + 9x^2 + 1 + 6x^3$ $= x^4 + 6x^3 + 14x^2 + 16x^3$ = 2(2x - 3) - 3 = 4x - 6 - 3 = 4x - 9	g(x) = 2x - 5, Intu (i) fog (ii) gof (iii) fof Given that, $f(x) = x^2 + 3x + 1, g(x) = 2x - 3$ (i) $fog = f\{g(x)\} = f(2x - 3)$ $= (2x - 3)^2 + 3(2x - 3) + 1$ $= 4x^2 + 9 - 12x + 6x - 9 + 1 = 4x^2 - 6x + 1$ (ii) $gof = g\{f(x)\} = g(x^2 + 3x + 1)$ $= 2(x^2 + 3x + 1) - 3$ $= 2x^2 + 6x + 2 - 3 = 2x^2 + 6x - 1$ (iii) $fof = f\{f(x)\} = f(x^2 + 3x + 1)$ $= (x^2 + 3x + 1)^2 + 3(x^2 + 3x + 1) + 1$ $= x^4 + 9x^2 + 1 + 6x^3 + 6x + 2x^2 + 3x^2 + 1$ $= x^4 + 6x^3 + 14x^2 + 15x + 5$ (iv) $gog = g\{g(x)\} = g(2x - 3)$ = 2(2x - 3) - 3 = 4x - 6 - 3 = 4x - 9

Q. 26 Let * be the binary operation defined on *Q*. Find which of the following binary operations are commutative

(i)
$$a * b = a - b$$
, $\forall a, b \in Q$
(ii) $a * b = a^2 + b^2$, $\forall a, b \in Q$
(iii) $a * b = a + ab$, $\forall a, b \in Q$
(iv) $a * b = (a - b)^2$, $\forall a, b \in Q$

Sol. Given that * be the binary operation defined on *Q*.

(i)
$$a * b = a - b$$
, $\forall a, b \in Q$ and $b * a = b - a$
So,
Hence. * is not commutative.
$$[\because b - a \neq a - b]$$

Let

 $a * b = a^{2} + b^{2}$ (ii) $b * a = b^2 + a^2$ So, * is commutative. [since, '+' is on rational is commutative] (iii) a * b = a + abb * a = b + abClearly, $a + ab \neq b + ab$ So, * is not commutative. $a * b = (a - b)^2, \forall a, b \in Q$ (iv) $b * a = (b - a)^2$ $(a-b)^2 = (b-a)^2$ •.• Hence. * is commutative. **Q.** 27 If * be binary operation defined on R by a * b = 1 + ab, $\forall a, b \in R$. Then, the operation * is (i) commutative but not associative. (ii) associative but not commutative. (iii) neither commutative nor associative. (iv) both commutative and associative. $a * b = 1 + ab, \forall a, b \in \mathbb{R}$ **Sol.** (i) Given that, a * b = ab + 1 = b * aSo, * is a commutative binary operation. Also, a * (b * c) = a * (1 + bc) = 1 + a(1 + bc)a * (b * c) = 1 + a + abc...(i) (a * b) * c = (1 + ab) * c

(1 + ab)c = 1 + c + abc ...(ii)

a * (b * c) ≠ (a * b) * c

So, * is not associative

From Eqs. (i) and (ii)

Hence, * is commutative but not associative.

Objective Type Questions

So, R is reflexive,

Q. 28 Let *T* be the set of all triangles in the Euclidean plane and let a relation *R* on *T* be defined as *aRb*, if *a* is congruent to *b*, $\forall a, b \in T$. Then, *R* is
(a) reflexive but not transitive
(b) transitive but not symmetric
(c) equivalence
(d) None of these **Sol.** (c) Consider that *aRb*, if *a* is congruent to *b*, $\forall a, b \in T$. Then, $aRa \Rightarrow a \cong a$, which is true for all $a \in T$

...(i)

Let
$$aRb \Rightarrow a \cong b$$

 $\Rightarrow b \cong a \Rightarrow b \cong a$
 $\Rightarrow bRa$
So, *R* is symmetric. ...(ii)
Let *aRb* and *bRc*
 $\Rightarrow a \cong b$ and $b \cong c$
 $\Rightarrow a \cong c \Rightarrow aRc$
So, *R* is transitive. ...(iii)
Hence, *R* is equivalence relation.

Q. 29 Consider the non-empty set consisting of children in a family and a relation *R* defined as *aRb*, if *a* is brother of *b*. Then, *R* is

(a) symmetric but not transitive (b) transitive but not symmetric (c) neither symmetric nor transitive (d) both symmetric and transitive **Sol.** (*b*) Given. $aRb \Rightarrow a$ is brother of b $aRa \Rightarrow a$ is brother of a, which is not true. ÷. So, R is not reflexive. $aRb \Rightarrow a$ is brother of b. This does not mean b is also a brother of a and b can be a sister of a. Hence, *R* is not symmetric. $aRb \Rightarrow a$ is brother of b and $bRc \Rightarrow b$ is a brother of c. So, a is brother of c. Hence, R is transitive. **Q. 30** The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are (b) 2 (d) 5 (c) 3 (a) 1 **Sol.** (*d*) Given that, *A* = {1, 2, 3} Now, number of equivalence relations as follows $R_1 = \{(1, 1), (2, 2), (3, 3)\}$ $R_2 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$ $R_3 = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$ $R_4 = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$ $R_5 = \{ (1, 2, 3) \Leftrightarrow A \times A = A^2 \}$: Maximum number of equivalence relation on the set $A = \{1, 2, 3\} = 5$

Q. 31 If a relation *R* on the set {1, 2, 3} be defined by $R = \{(1, 2)\}$, then *R* is

(a) reflexive (b) transitive (c) symmetric (d) None of these

Sol. (*b*) *R* on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$ It is clear that *R* is transitive.

Q. 32 Let us define a relation *R* in *R* as *aRb* if $a \ge b$. Then, *R* is (a) an equivalence relation (b) reflexive, transitive but not symmetric (c) symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric Given that, aRb if $a \ge b$ **Sol.** (*b*) $aRa \implies a \ge a$ which is true. \Rightarrow Let *aRb*, $a \ge b$, then $b \ge a$ which is not true *R* is not symmetric. But *aRb* and *b R c* \Rightarrow $a \ge b$ and $b \ge c$ \Rightarrow a≥c Hence, R is transitive. **Q. 33** If $A = \{1, 2, 3\}$ and consider the relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ Then, R is (a) reflexive but not symmetric (b) reflexive but not transitive (c) symmetric and transitive (d) neither symmetric nor transitive **Sol.** (*a*) Given that, $A = \{1, 2, 3\}$ $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ and ÷ $(1, 1), (2, 2), (3, 3) \in R$ Hence, *R* is reflexive. $(1,2) \in R$ but $(2,1) \notin R$ Hence, R is not symmetric. $(1, 2) \in R$ and $(2, 3) \in R$ (1, 3) $\in R$ \Rightarrow Hence, R is transitive **Q. 34** The identity element for the binary operation * defined on $Q - \{0\}$ as $a * b = \frac{ab}{2}$, $\forall a, b \in Q - \{0\}$ is (b) 0 (a) 1 (c) 2 (d) None of these Thinking Process For given binary operation * : $A \times A \rightarrow A$, an element $e \in A$, if it exists, is called identity for the operation *, if a * e = a = e * a, $\forall a \in A$. Given that, $a * b = \frac{ab}{2}$, $\forall a, b \in Q - \{0\}$. **Sol.** (*c*) Let e be the identity element for *. $a * e = \frac{ae}{2}$ *.*.. $a = \frac{ae}{2} \implies e = 2$ \Rightarrow

Q. 35 If the set *A* contains 5 elements and the set *B* contains 6 elements, then the number of one-one and onto mappings from *A* to *B* is
(a) 720 (b) 120 (c) 0 (d) None of these
Sol. (c) We know that, if *A* and *B* are two non-empty finite set containing *m* and *n* elements
respectively, then the number of one-one and onto mapping from *A* to *B* is

$$n!$$
 if $m = n$
 0 , if $m \neq n$
Given that, $m = 5$ and $n = 6$
 \therefore $m \neq n$
Number of mapping = 0
Q. 36 If $A = \{1, 2, 3, ..., n\}$ and $B = \{a, b\}$. Then, the number of surjections
from *A* into *B* is
(a) $^{n}P_{2}$ (b) $2^{n} - 2$ (c) $2^{n} - 1$ (d) None of these
Sol. (d) Given that, $A = \{1, 2, 3, ..., n\}$ and $B = \{a, b\}$.
We know that, if *A* and *B* are two non-empty finite sets containing *m* and *n* elements
respectively, then the number of surjection from *A* into *B* is
 $^{n}C_{m} \times m!$ if $n \ge m$
 0 , if $n < m$
Here, $m = 2$
 \therefore Number of surjection from *A* into *B* is $^{n}C_{2} \times 2! = \frac{n!}{2!(n-2!)!} \times 2! = \frac{n^{2} - n}{2!(n-2!)!} \times 2! = n^{2} - n$
Q. 37 If $f: R \to R$ be defined by $f(x) = \frac{1}{x}$, $\forall x \in R$. Then, *f* is
(a) one-one (b) onto (c) bijective (d) *f* is not defined
• Thinking Process
In the given function at $x = 0$ $f(x) = \infty$. So, the function is not defined
• Thinking Process
In the given function.
Q. 38 If $f: R \to R$ be defined by $f(x) = 3x^{2} - 5$ and $g: R \to R$ by
 $g(x) = \frac{x}{x^{2} + 1}$. Then, gof is
(a) $\frac{3x^{2} - 5}{9x^{4} - 30x^{2} + 26}$ (b) $\frac{3x^{2} - 5}{9x^{4} - 6x^{2} + 26}$
(c) $\frac{3x^{2}}{9x^{4} + 30x^{2} - 2}$

Sol. (a) Given that,
$$l(x) = 3x^2 - 5$$
 and $g(x) = \frac{x}{x^2 + 1}$
 $gof = g(f(x)) = g(3x^2 - 5)$
 $= \frac{3x^2 - 5}{(3x^2 - 5)^2 + 1} = \frac{3x^2 - 5}{9x^4 - 30x^2 + 25 + 1}$
 $= \frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$
Q. 39 Which of the following functions from Z into Z are bijections?
(a) $f(x) = x^3$ (b) $f(x) = x + 2$ (c) $f(x) = 2x + 1$ (d) $f(x) = x^2 + 1$
Sol. (b) Here, $f(x) = x + 2 \Rightarrow f(x_1) = f(x_2)$
 $x_1 + 2 = x_2 + 2 \Rightarrow x_1 = x_2$
Let $y = x + 2$
 $x = y - 2 = Z, \forall y \in x$
Hence, $f(x)$ is one-one and onto.
Q. 40 If $f: R \to R$ be the functions defined by $f(x) = x^3 + 5$, then $f^{-1}(x)$ is
(a) $(x + 5)^{\frac{1}{3}}$ (b) $(x - 5)^{\frac{1}{3}}$ (c) $(5 - x)^{\frac{1}{3}}$ (d) $5 - x$
Sol. (b) Given that, $f(x) = x^3 + 5$
Let $y = x^3 + 5$
 $x = (y - 5)^{\frac{1}{3}} \Rightarrow f(x)^{-1} = (x - 5)^{\frac{1}{3}}$
Q. 41 If $f: A \to B$ and $g: B \to C$ be the bijective functions, then $(gof)^{-1}$ is
(a) $f^{-1}og^{-1}$ (b) fog (c) $g^{-1}of^{-1}$ (d) gof
Sol. (a) Given that, $f(x) = x^3 + 5$
Let $y = x^3 + 5$ are $(x - 5)^{\frac{1}{3}}$
Q. 42 If $f: R - \left\{\frac{3}{5}\right\} \to R$ be defined by $f(x) = \frac{3x + 2}{5x - 3}$, then
(a) $f^{-1}(x) = f(x)$ (b) $f^{-1}(x) = -f(x)$ (c) $(fof)x = -x$ (d) $f^{-1}(x) = \frac{1}{19}f(x)$
Sol. (a) Given that, $f(x) = \frac{3x + 2}{5x - 3}$
Let $y = \frac{3x + 2}{5x - 3}$
Let $y = \frac{3x + 2}{5x - 3}$
 $x = (x - 1)^{x} \Rightarrow x^{-1}(x) = \frac{3x + 2}{5x - 3}$.
(c) $f^{-1}(x) = f(x)$

Q. 43 If $f:[0, 1] \rightarrow [0, 1]$ be defined by $f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1-x, & \text{if } x \text{ is irrational} \end{cases}$ then (fof)x is (a) constant (b) 1 + x(c) *x* (d) None of these **Sol.** (c) Given that, $f: [0, 1] \rightarrow [0, 1]$ be defined by $f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases}$ (fof)x = f(f(x)) = x÷. **Q.** 44 If $f:[2,\infty) \to R$ be the function defined by $f(x) = x^2 - 4x + 5$, then the range of f is (c) $[4, \infty)$ (a) R (b) [1, ∞) (d) $[5, \infty)$ **Thinking Process** Range of $f = \{y \in Y : y = f(x) \text{ for some in } X\}$ $f(x) = x^{2} - 4x + 5$ $y = x^{2} - 4x + 5$ $y = x^{2} - 4x + 4 + 1 = (x - 2)^{2} + 1$ $(x - 2)^{2} = y - 1 \implies x - 2 = \sqrt{y - 1}$ $x = 2 + \sqrt{y - 1}$ $y - 1 \ge 0, y \ge 1$ Sol. (b) Given that, Let \Rightarrow ⇒ \Rightarrow Range = $[1, \infty)$ **Q.** 45 If $f: N \to R$ be the function defined by $f(x) = \frac{2x-1}{2}$ and $g: Q \to R$ be another function defined by g(x) = x + 2. Then, $(gof) \frac{3}{2}$ is (c) $\frac{7}{2}$ (a) 1 (b) 1 (d) None of these **Sol.** (*d*) Given that, $f(x) = \frac{2x-1}{2}$ and g(x) = x + 2 $(gof)\frac{3}{2} = g\left[f\left(\frac{3}{2}\right)\right] = g\left(\frac{2\times\frac{3}{2}-1}{2}\right)$ = g(1) = 1 + 2 = 3

Q. 46 If $f : R \to R$ be defined by $f(x) = \begin{cases} 2x : x > 3 \\ x^2 : 1 < x \le 3 \\ 3x : x \le 1 \end{cases}$ Then, f(-1) + f(2) + f(4) is (b) 14 (a) 9 (c) 5 (d) None of these (2x:x > 3) $f(x) = \begin{cases} x^2 : 1 < x \le 3 \end{cases}$ **Sol.** (a) Given that, $3x:x\leq 1$ $f(-1) + f(2) + f(4) = 3(-1) + (2)^{2} + 2 \times 4$ = -3 + 4 + 8 = 9**Q.** 47 If $f : R \to R$ be given by $f(x) = \tan x$, then $f^{-1}(1)$ is (b) $\left\{ n\pi + \frac{\pi}{4} : n \in \mathbb{Z} \right\}$ (a) $\frac{\pi}{4}$ (c) Does not exist (d) None of these **Sol.** (*a*) Given that, $f(x) = \tan x$ $y = \tan x \implies x = \tan^{-1} y$ Let $f^{-1}(x) = \tan^{-1} x \implies f^{-1}(1) = \tan^{-1} 1$ \Rightarrow $= \tan^{-1}\tan\frac{\pi}{4} = \frac{\pi}{4}$ $\left[\because \tan \frac{\pi}{4} = 1 \right]$ \Rightarrow

Fillers

Q. 48 Let the relation *R* be defined in *N* by aRb, if 2a + 3b = 30. Then, $R = \dots$

Sol. Given that,	2a + 3b = 30
	3b = 30 - 2a
	$b = \frac{30 - 2a}{2}$
	$D = \frac{1}{3}$
For	a = 3, b = 8
	a = 6, b = 6
	a = 9, b = 4
	a = 12, b = 2
	$R = \{(3, 8), (6, 6), (9, 4), (12, 2)\}$

Q. 49 If the relation *R* be defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(a, b) : |a^2 - b^2| < 8\}$. Then, *R* is given by

Sol. Given, $A = \{1, 2, 3, 4, 5\},\$ $R = \{(a, b) : |a^2 - b^2| < 8\}$ $R = \{ (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 3), (3, 4), (4, 4), (5, 5) \}$

Q. 50 If $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, then $gof = \dots$ and $fog = \dots$. **Sol.** Given that, $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$ $gof(1) = g\{f(1)\} = g(2) = 3$ $gof(3) = g\{f(3)\} = g(5) = 1$ $gof(4) = g\{f(4)\} = g(1) = 3$ $gof = \{(1, 3), (3, 1), (4, 3)\}$ Now, $fog(2) = f\{g(2)\} = f(3) = 5$ $fog(5) = f\{g(5)\} = f(1) = 2$ $fog(1) = f\{g(1)\} = f(3) = 5$ $fog = \{(2, 5), (5, 2), (1, 5)\}$

Q. 51 If $f : R \to R$ be defined by $f(x) = \frac{x}{\sqrt{1 + x^2}}$, then $(fofof)(x) = \dots$.

Sol. Given that,

$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

(fofof)(x) = f[f{f(x)}]
= f\left[f\left(\frac{x}{\sqrt{1+x^2}}\right)\right] = f\left(\frac{x}{\sqrt{1+x^2}}\right)
= f\left[\frac{x\sqrt{1+x^2}}{\sqrt{1+x^2}(\sqrt{2x^2}+1)}\right] = f\left(\frac{x}{\sqrt{1+2x^2}}\right)
= $\frac{x}{\sqrt{1+2x^2}}$
= $\frac{x}{\sqrt{1+2x^2}}$
= $\frac{x}{\sqrt{1+2x^2}}$
= $\frac{x}{\sqrt{1+3x^2}}$ = $\frac{x}{\sqrt{3x^2+1}}$

Q. 52 If $f(x) = [4 - (x - 7)^3]$, then $f^{-1}(x) = \dots$. Sol. Given that, Let $f(x) = \{4 - (x - 7)^3\}$ $(x - 7)^3 = 4 - y$ $(x - 7)^3 = 4 - y$ $(x - 7) = (4 - y)^{1/3}$ \Rightarrow $x = 7 + (4 - y)^{1/3}$ $f^{-1}(x) = 7 + (4 - x)^{1/3}$

True/False

Q. 53 Let $R = \{(3, 1), (1, 3), (3, 3)\}$ be a relation defined on the set $A = \{1, 2, 3\}$. Then, *R* is symmetric, transitive but not reflexive.

```
Sol. False
```

Given that, $R = \{(3, 1), (1, 3), (3, 3)\}$ be defined on the set $A = \{1, 2, 3\}$

	(1, 1) ∉ <i>R</i>
So, R is not reflexive.	$(3, 1) \in R, (1, 3) \in R$
Hence, <i>R</i> is symmetric.	
Since,	$(3, 1) \in R, (1, 3) \in R$
But	(1, 1) ∉ <i>R</i>
Hence, <i>R</i> is not transitive.	

- **Q.** 54 If $f : R \to R$ be the function defined by $f(x) = \sin(3x + 2) \forall x \in R$. Then, f is invertible.
- Sol. False

Given that, $f(x) = \sin(3x + 2)$, $\forall x \in R$ is not one-one function for all $x \in R$. So, *f* is not invertible.

- **Q. 55** Every relation which is symmetric and transitive is also reflexive.
- Sol. False

Let R be a relation defined by

 $R = \{(1, 2), (2, 1), (1, 1), (2, 2)\}$ on the set $A = \{1, 2, 3\}$ It is clear that (3, 3) $\notin R$. So, it is not reflexive.

Q. 56 An integer *m* is said to be related to another integer *n*, if *m* is a integral multiple of *n*. This relation in *Z* is reflexive, symmetric and transitive.

Sol. False

The given relation is reflexive and transitive but not symmetric.

- **Q.** 57 If $A = \{0, 1\}$ and N be the set of natural numbers. Then, the mapping $f : N \rightarrow A$ defined by f(2n 1) = 0, f(2n) = 1, $\forall n \in N$, is onto.
- Sol. *True* Given.

Given, $A = \{0, 1\}$ $f(2n-1) = 0, f(2n) = 1, \forall n \in N$ So, the mapping $f : N \rightarrow A$ is onto.

- **Q. 58** The relation *R* on the set $A = \{1, 2, 3\}$ defined as $R = \{(1, 1), (1, 2), (2, 1), (3, 3)\}$ is reflexive, symmetric and transitive.
- Sol. False

Given that, $R = \{(1, 1), (1, 2), (2, 1), (3, 3)\}$ $(2, 2) \notin R$

So, R is not reflexive.

Q. 59 The composition of function is commutative.

Sol. False Let $f(x) = x^2$ and g(x) = x + 1 $fog(x) = f \{g(x)\} = f(x + 1)$ $= (x + 1)^2 = x^2 + 2x + 1$ $gof(x) = g\{f(x)\} = g(x^2) = x^2 + 1$ \therefore $fog(x) \neq gof(x)$

Q. 60 The composition of function is associative.

Sol. True

Let	f(x) = x, g(x) = x + 1
and	h(x) = 2x - 1
Then,	$fo{goh(x)} = f[g{h(x)}]$
	$= f \{g(2x - 1)\}$
	= f(2x - 1 + 1)
	= f(2x) = 2x
<i>∴</i>	$(fog) oh(x) = (fog) \{h(x)\}$
	= (fog)(2x-1)
	$=f\{g(2x-1)\}$
	= f(2x - 1 + 1)
	=f(2x)=2x

Q. 61 Every function is invertible.

Sol. False

Only bijective functions are invertible.

Q. 62 A binary operation on a set has always the identity element.

Sol. False

'+' is a binary operation on the set N but it has no identity element.