4

Principle of Mathematical Induction

Short Answer Type Questions

Q. 1 Give an example of a statement $P(n)$ which is true for all $n \geq 4$ but $P(1)$, $P(2)$ and $P(3)$ are not true. Justify your answer.
Sol. Let the statement $P(n): 3 n<n$!

For $n=1,3 \times 1<1!$		[false]
For $n=2,3 \times 2<2!$	$\Rightarrow 6<2$	[false]
For $n=3,3 \times 3<3!$	$\Rightarrow 9<6$	[false]
For $n=4,3 \times 4<4!$	$\Rightarrow 12<24$	[true]
For $n=5,3 \times 5<5!$	$\Rightarrow 15<5 \times 4 \times 3 \times 2 \times 1 \Rightarrow 15<120$	[true]

Q. 2 Give an example of a statement $P(n)$ which is true for all n. Justify your answer.
Sol. Consider the statement

$$
\begin{array}{lrl}
& P(n): 1^{2}+2^{2}+3^{2}+\ldots+n^{2} & =\frac{n(n+1)(2 n+1)}{6} \\
\text { For } n=1, & 1 & =\frac{1(1+1)(2 \times 1+1)}{6} \\
\Rightarrow & 1 & =\frac{2(3)}{6} \\
\Rightarrow & 1 & =1 \\
\text { For } n=2, & 1+2^{2} & =\frac{2(2+1)(4+1)}{6} \\
\Rightarrow & 5 & =\frac{30}{6} \Rightarrow 5=5 \\
\text { For } n=3, & 1+2^{2}+3^{2}=\frac{3(3+1)(7)}{6} \\
\Rightarrow & 1+4+9 & =\frac{3 \times 4 \times 7}{6} \\
\Rightarrow & 14 & =14
\end{array}
$$

Hence, the given statement is true for all n.

Prove each of the statements in the following questions from by the Principle of Mathematical Induction.

Q. $34^{n}-1$ is divisible by 3 , for each natural number n.

- Thinking Process

In step I put $n=1$, the obtained result should be a divisible by 3. In step II put $n=k$ and take $P(k)$ equal to multiple of 3 with non-zero constant say q. In step III put $n=k+1$, in the statement and solve till it becomes a multiple of 3 .
Sol. Let $P(n): 4^{n}-1$ is divisible by 3 for each natural number n.
Step I Now, we observe that $P(1)$ is true.

$$
P(1)=4^{1}-1=3
$$

It is clear that 3 is divisible by 3 .
Hence, $P(1)$ is true.
Step II Assume that, $P(n)$ is true for $\quad n=k$
$P(k): 4^{k}-1$ is divisible by 3

$$
x 4^{k}-1=3 q
$$

Step III Now, to prove that $P(k+1)$ is true.

$$
\begin{aligned}
P(k+1) & : 4^{k+1}-1 \\
& =4^{k} \cdot 4-1 \\
& =4^{k} \cdot 3+4^{k}-1 \\
& =3 \cdot 4^{k}+3 q \\
& =3\left(4^{k}+q\right)
\end{aligned}
$$

$$
=3 \cdot 4^{k}+3 q \quad\left[\because 4^{k}-1=3 q\right]
$$

Thus, $P(k+1)$ is true whenever $P(k)$ is true.
Hence, by the principle of mathematical induction $P(n)$ is true for all natural number n.

Q. $42^{3 n}-1$ is divisible by 7 , for all natural numbers n.

Sol. Let $P(n): 2^{3 n}-1$ is divisible by 7
Step I We observe that $P(1)$ is true.

$$
P(1): 2^{3 \times 1}-1=2^{3}-1=8-1=7
$$

It is clear that $P(1)$ is true.
Step II Now, assume that $P(n)$ is true for $n=k$, $P(k): 2^{3 k}-1$ is divisible by 7 .

$$
\Rightarrow \quad 2^{3 k}-1=7 q
$$

Step III Now, to prove $P(k+1)$ is true.

$$
\begin{align*}
P(k+1) & : 2^{3(k+1)}-1 \\
& =2^{3 k} \cdot 2^{3}-1 \\
& =2^{3 k}(7+1)-1 \\
& =7 \cdot 2^{3 k}+2^{3 k}-1 \\
& =7 \cdot 2^{3 k}+7 q \tag{fromstepII}\\
& =7\left(2^{3 k}+q\right)
\end{align*}
$$

$$
=7 \cdot 2^{3 k}+7 q \quad[\text { from step II] }
$$

Hence, $P(k+1)$: is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for all natural number n.
Q. $5 n^{3}-7 n+3$ is divisible by 3 , for all natural numbers n.

Sol. Let $P(n): n^{3}-7 n+3$ is divisible by 3 , for all natural number n.
Step I We observe that $P(1)$ is true.

$$
\begin{aligned}
P(1) & =(1)^{3}-7(1)+3 \\
& =1-7+3 \\
& =-3, \text { which is divisible by } 3 .
\end{aligned}
$$

Hence, $P(1)$ is true.
Step II Now, assume that $P(n)$ is true for $n=k$.
$\therefore \quad P(k)=k^{3}-7 k+3=3 q$
Step III To prove $P(k+1)$ is true

$$
\begin{aligned}
P(k+1) & :(k+1)^{3}-7(k+1)+3 \\
& =k^{3}+1+3 k(k+1)-7 k-7+3 \\
& =k^{3}-7 k+3+3 k(k+1)-6 \\
& =3 q+3[k(k+1)-2]
\end{aligned}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true.
[from step II]
So, by the principle of mathematical induction $P(n)$: is true for all natural number n.

Q. $63^{2 n}-1$ is divisible by 8 , for all natural numbers n.

Sol. Let $P(n): 3^{2 n}-1$ is divisible by 8 , for all natural numbers.
Step I We observe that $P(1)$ is true.

$$
P(1): 3^{2(1)}-1=3^{2}-1
$$

$=9-1=8$, which is divisible by 8 .
Step II Now, assume that $P(n)$ is true for $n=k$.

$$
P(k): 3^{2 k}-1=8 q
$$

Step III Now, to prove $P(k+1)$ is true.

$$
\begin{aligned}
P(k+1) & : 3^{2(k+1)}-1 \\
& =3^{2 k} \cdot 3^{2}-1 \\
& =3^{2 k} \cdot(8+1)-1 \\
& =8 \cdot 3^{2 k}+3^{2 k}-1 \\
& =8 \cdot 3^{2 k}+8 q \\
& =8\left(3^{2 k}+q\right)
\end{aligned}
$$

[from step II]
Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for all natural numbers n.

Q. 7 For any natural numbers $n, 7^{n}-2^{n}$ is divisible by 5 .

Sol. Consider the given statement is
$P(n): 7^{n}-2^{n}$ is divisible by 5 , for any natural number n.
Step I We observe that $P(1)$ is true.
$P(1)=7^{1}-2^{1}=5$, which is divisible by 5.
Step II Now, assume that $P(n)$ is true for $n=k$.

$$
P(k)=7^{k}-2^{k}=5 q
$$

Step III Now, to prove $P(k+1)$ is true,

$$
\begin{gathered}
P(k+1): 7^{k+1}-2^{k+1} \\
=7^{k} \cdot 7-2^{k} \cdot 2
\end{gathered}
$$

$$
\begin{aligned}
& =7^{k} \cdot(5+2)-2^{k} \cdot 2 \\
& =7^{k} \cdot 5+2 \cdot 7^{k}-2^{k} \cdot 2 \\
& =5 \cdot 7^{k}+2\left(7^{k}-2^{k}\right) \\
& =5 \cdot 7^{k}+2(5 q) \\
& =5\left(7^{k}+2 q\right), \text { which is divisible by } 5 . \quad \text { [from step II] }
\end{aligned}
$$

So, $P(k+1)$ is true whenever $P(k)$ is true.
Hence, by the principle of mathematical induction $P(n)$ is true for any natural number n.
Q. 8 For any natural numbers $n, x^{n}-y^{n}$ is divisible by $x-y$, where x and y are any integers with $x \neq y$.
Sol. Let $P(n): x^{n}-y^{n}$ is divisible by $x-y$, where x and y are any integers with $x \neq y$.
Step I We observe that $P(1)$ is true.

$$
P(1): x^{1}-y^{1}=x-y
$$

Step II Now, assume that $P(n)$ is true for $n=k$.

$$
\begin{gathered}
P(k): x^{k}-y^{k} \text { is divisible by }(x-y) \\
x^{k}-y^{k}=q(x-y)
\end{gathered}
$$

Step III Now, to prove $P(k+1)$ is true.

$$
\begin{aligned}
P(k+1) & : x^{k+1}-y^{k+1} \\
& =x^{k} \cdot x-y^{k} \cdot y \\
& =x^{k} \cdot x-x^{k} \cdot y+x^{k} \cdot y-y^{k} \cdot y \\
& =x^{k}(x-y)+y\left(x^{k}-y^{k}\right) \\
& =x^{k}(x-y)+y q(x-y) \\
& =(x-y)\left[x^{k}+y q\right], \text { which is divisible by }(x-y) . \quad \text { [from step II] }
\end{aligned}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true. So, by the principle of mathematical induction $P(n)$ is true for any natural number n.
Q. $9 n^{3}-n$ is divisible by 6 , for each natural number $n \geq 2$.

- Thinking Process

In step I put $n=2$, the obtained result should be divisible by 6. Then, follow the same
process as in question no. 4.
Sol. Let $P(n): n^{3}-n$ is divisible by 6 , for each natural number $n \geq 2$.
Step I We observe that $P(2)$ is true. $P(2):(2)^{3}-2$
$\Rightarrow \quad 8-2=6$, which is divisible by 6 .
Step II Now, assume that $P(n)$ is true for $n=k$.

$$
\begin{array}{ll}
& P(k): k^{3}-k \text { is divisible by } 6 . \\
\therefore & k^{3}-k=6 q
\end{array}
$$

Step III To prove $P(k+1)$ is true

$$
\begin{align*}
P(k & +1):(k+1)^{3}-(k+1) \\
& =k^{3}+1+3 k(k+1)-(k+1) \\
& =k^{3}+1+3 k^{2}+3 k-k-1 \\
& =k^{3}-k+3 k^{2}+3 k \\
& =6 q+3 k(k+1) \tag{fromstepII}
\end{align*}
$$

We know that, $3 k(k+1)$ is divisible by 6 for each natural number $n=k$.
So, $P(k+1)$ is true. Hence, by the principle of mathematical induction $P(n)$ is true.
Q. $10 n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number n.

Sol. Let $P(n): n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number n.
Step I We observe that $P(1)$ is true.

$$
P(1): 1\left(1^{2}+5\right)=6 \text {, which is divisible by } 6 \text {. }
$$

Step II Now, assume that $P(n)$ is true for $n=k$.

$$
P(k): k\left(k^{2}+5\right) \text { is divisible by } 6 .
$$

$$
k\left(k^{2}+5\right)=6 q
$$

Step III Now, to prove $P(k+1)$ is true, we have

$$
\begin{aligned}
P(k+1) & :(k+1)\left[(k+1)^{2}+5\right] \\
& =(k+1)\left[k^{2}+2 k+1+5\right] \\
& =(k+1)\left[k^{2}+2 k+6\right] \\
& =k^{3}+2 k^{2}+6 k+k^{2}+2 k+6 \\
& =k^{3}+3 k^{2}+8 k+6 \\
& =k^{3}+5 k+3 k^{2}+3 k+6 \\
& =k\left(k^{2}+5\right)+3\left(k^{2}+k+2\right) \\
& =(6 q)+3\left(k^{2}+k+2\right)
\end{aligned}
$$

We know that, $k^{2}+k+2$ is divisible by 2 , where, k is even or odd.
Since, $P(k+1): 6 q+3\left(k^{2}+k+2\right)$ is divisible by 6 . So, $P(k+1)$ is true whenever $P(k)$ is true.
Hence, by the principle of mathematical induction $P(n)$ is true.

Q. $11 n^{2}<2^{n}$, for all natural numbers $n \geq 5$.

Sol. Consider the given statement
$P(n): n^{2}<2^{n}$ for all natural numbers $n \geq 5$.
Step I We observe that $P(5)$ is true

$$
\begin{array}{r}
P(5): 5^{2}<2^{5} \\
=25<32
\end{array}
$$

Hence, $P(5)$ is true.
Step II Now, assume that $P(n)$ is true for $n=k$.

$$
P(k)=k^{2}<2^{k} \text { is true. }
$$

Step III Now, to prove $P(k+1)$ is true, we have to show that

$$
P(k+1):(k+1)^{2}<2^{k+1}
$$

Now,

$$
\begin{align*}
k^{2}<2^{k} & =k^{2}+2 k+1<2^{k}+2 k+1 \\
& =(k+1)^{2}<2^{k}+2 k+1 \tag{i}\\
& =2^{k}+2 k+1<2^{k}+2^{k} \\
& =2^{k}+2 k+1<2 \cdot 2^{k} \\
& =2^{k}+2 k+1<2^{k+1} \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii), we get $(k+1)^{2}<2^{k+1}$
So, $P(k+1)$ is true, whenever $P(k)$ is true. Hence, by the principle of mathematical induction $P(n)$ is true for all natural numbers $n \geq 5$.

Q. $122 n<(n+2)$! for all natural numbers n.

Sol. Consider the statement
$P(n): 2 n<(n+2)!$ for all natural number n.
Step I We observe that, $P(1)$ is true. $P(1): 2(1)<(1+2)$!
$\Rightarrow \quad 2<3!\Rightarrow 2<3 \times 2 \times 1 \Rightarrow 2<6$
Hence, $P(1)$ is true.
Step II Now, assume that $P(n)$ is true for $n=k$,
$P(k): 2 k<(k+2)$! is true.
Step III To prove $P(k+1)$ is true, we have to show that

$$
P(k+1): 2(k+1)<(k+1+2)!
$$

Now,

$$
\begin{align*}
2 k & <(k+2)! \\
2 k+2 & <(k+2)!+2 \\
2(k+1) & <(k+2)!+2 \tag{i}\\
(k+2)!+2 & <(k+3)! \tag{ii}
\end{align*}
$$

Also,

$$
2(k+1)<(k+1+2)!
$$

So, $P(k+1)$ is true, whenever $P(k)$ is true.
Hence, by principle of mathematical induction $P(n)$ is true.
Q. $13 \sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$, for all natural numbers $n \geq 2$.

Sol. Consider the statement
$P(n): \sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$, for all natural numbers $n \geq 2$.
Step I We observe that $P(2)$ is true.

$$
P(2): \sqrt{2}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}, \text { which is true. }
$$

Step II Now, assume that $P(n)$ is true for $n=k$.

$$
P(k): \sqrt{k}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k}} \text { is true. }
$$

Step III To prove $P(k+1)$ is true, we have to show that

$$
P(k+1): \sqrt{k+1}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k+1}} \text { is true. }
$$

Given that,

$$
\sqrt{k}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k}}
$$

$\Rightarrow \quad \sqrt{k}+\frac{1}{\sqrt{k+1}}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}$
$\Rightarrow \quad \frac{(\sqrt{k})(\sqrt{k+1})+1}{\sqrt{k+1}}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}$
If

$$
\begin{equation*}
\sqrt{k+1}<\frac{\sqrt{k} \sqrt{k+1}+1}{\sqrt{k+1}} \tag{i}
\end{equation*}
$$

$\Rightarrow \quad k+1<\sqrt{k} \sqrt{k+1}+1$
$\Rightarrow \quad k<\sqrt{k(k+1)} \Rightarrow \sqrt{k}<\sqrt{k}+1$
From Eqs. (i) and (ii),

$$
\sqrt{k+1}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k+1}}
$$

So, $P(k+1)$ is true, whenever $P(k)$ is true. Hence, $P(n)$ is true.
Q. $142+4+6+\ldots+2 n=n^{2}+n$, for all natural numbers n.

Sol. Let $P(n): 2+4+6+\ldots+2 n=n^{2}+n$
For all natural numbers n.
Step I We observe that $P(1)$ is true.

$$
\begin{aligned}
P(1): 2 & =1^{2}+1 \\
2 & =2 \text { which is true. }
\end{aligned}
$$

Step II Now, assume that $P(n)$ is true for $n=k$.
$\therefore \quad P(k): 2+4+6+\ldots+2 k=k^{2}+k$
Step III To prove that $P(k+1)$ is true.

$$
\begin{aligned}
P(k+1) & : 2+4+6+8+\ldots+2 k+2(k+1) \\
& =k^{2}+k+2(k+1) \\
& =k^{2}+k+2 k+2 \\
& =k^{2}+2 k+1+k+1 \\
& =(k+1)^{2}+k+1
\end{aligned}
$$

So, $P(k+1)$ is true, whenever $P(k)$ is true.
Hence, $P(n)$ is true.
Q. $151+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all natural numbers n.

Sol. Consider the given statement
$P(n): 1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$, for all natural numbers n
Step I We observe that $P(0)$ is true.

$$
\begin{aligned}
P(1): 1 & =2^{0} 1-1 \\
1 & =2^{1-1} \\
1 & =2-1
\end{aligned}
$$

$$
1=1 \text {, which is true. }
$$

Step II Now, assume that $P(n)$ is true for $n=k$.
So, $P(k): 1+2+2^{2}+\ldots+2^{k}=2^{k+1}-1$ is true.
Step III Now, to prove $P(k+1)$ is true.

$$
\begin{aligned}
P(k+1): & 1+2+2^{2}+\ldots+2^{k}+2^{k+1} \\
& =2^{k+1}-1+2^{k+1} \\
& =2 \cdot 2^{k+1}-1 \\
& =2^{k+2}-1 \\
& =2^{(k+1)+1}-1
\end{aligned}
$$

So, $P(k+1)$ is true, whenever $P(k)$ is true.
Hence, $P(n)$ is true.
Q. $161+5+9+\ldots+(4 n-3)=n(2 n-1)$, for all natural numbers n.

Sol. Let $P(n): 1+5+9+\ldots+(4 n-3)=n(2 n-1)$, for all natural numbers n.
Step I We observe that $P(1)$ is true.

$$
P(1): 1=1(2 \times 1-1), 1=2-1 \text { and } 1=1 \text {, which is true. }
$$

Step II Now, assume that $P(n)$ is true for $n=k$.
So, $P(k): 1+5+9+\ldots+(4 k-3)=k(2 k-1)$ is true.

Step III Now, to prove $P(k+1)$ is true.

$$
\begin{aligned}
P(k+1) & : 1+5+9+\ldots+(4 k-3)+4(k+1)-3 \\
& =k(2 k-1)+4(k+1)-3 \\
& =2 k^{2}-k+4 k+4-3 \\
& =2 k^{2}+3 k+1 \\
& =2 k^{2}+2 k+k+1 \\
& =2 k(k+1)+1(k+1) \\
& =(k+1)(2 k+1) \\
& =(k+1)[2 k+1+1-1] \\
& =(k+1)[2(k+1)-1]
\end{aligned}
$$

So, $P(k+1)$ is true, whenever $p(k)$ is true, hence $P(n)$ is true.

Long Answer Type Questions

Use the Principle of Mathematical Induction in the following questions.
Q. 17 A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by letting $a_{1}=3$ and $a_{k}=7 a_{k-1}$, for all natural numbers $k \geq 2$. Show that $a_{n}=3 \cdot 7^{n-1}$ for all natural numbers.
Sol. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by letting $a_{1}=3$ and $a_{k}=7 a_{k-1}$, for all natural numbers $k \geq 2$.
Let $\quad P(n): a_{n}=3 \cdot 7^{n-1}$ for all natural numbers.
Step I We observe $P(2)$ is true.
For $n=2$,

$$
a_{2}=3 \cdot 7^{2-1}=3 \cdot 7^{1}=21 \text { is true. }
$$

As

$$
\begin{aligned}
& a_{1}=3, a_{k}=7 a_{k-1} \\
& a_{2}=7 \cdot a_{2-1}=7 \cdot a_{1}
\end{aligned}
$$

\Rightarrow
$\Rightarrow \quad a_{2}=7 \times 3=21$

$$
\left[\because a_{1}=3\right]
$$

Step II Now, assume that $P(n)$ is true for $n=k$.

$$
P(k): a_{k}=3 \cdot 7^{k-1}
$$

Step III Now, to prove $P(k+1)$ is true, we have to show that

$$
\begin{aligned}
P(k+1): a_{k+1} & =3 \cdot 7^{k+1-1} \\
a_{k+1} & =7 \cdot a_{k+1-1}=7 \cdot a_{k} \\
& =7 \cdot 3 \cdot 7^{k-1}=3 \cdot 7^{k-1+1}
\end{aligned}
$$

So, $P(k+1)$ is true, whenever $p(k)$ is true. Hence, $P(n)$ is true.
Q. 18 A sequence $b_{0}, b_{1}, b_{2}, \ldots$ is defined by letting $b_{0}=5$ and $b_{k}=4+b_{k-1}$, for all natural numbers k. Show that $b_{n}=5+4 n$, for all natural number n using mathematical induction.
Sol. Consider the given statement,
$P(n): b_{n}=5+4 n$, for all natural numbers given that $b_{0}=5$ and $b_{k}=4+b_{k-1}$
Step I $P(1)$ is true.

$$
P(1): b_{1}=5+4 \times 1=9
$$

As

$$
b_{0}=5, b_{1}=4+b_{0}=4+5=9
$$

Hence, $P(1)$ is true.
Step II Now, assume that $P(n)$ is true for $n=k$.

$$
P(k): b_{k}=5+4 k
$$

Step III Now, to prove $P(k+1)$ is true, we have to show that

$$
\begin{aligned}
\therefore \quad P(k+1): b_{k+1} & =5+4(k+1) \\
b_{k+1} & =4+b_{k+1-1} \\
& =4+b_{k} \\
& =4+5+4 k=5+4(k+1)
\end{aligned}
$$

So, by the mathematical induction $P(k+1)$ is true whenever $P(k)$ is true, hence $P(n)$ is true.
Q. 19 A sequence $d_{1}, d_{2}, d_{3}, \ldots$ is defined by letting $d_{1}=2$ and $d_{k}=\frac{d_{k-1}}{k}$, for all natural numbers, $k \geq 2$. Show that $d_{n}=\frac{2}{n!}$, for all $n \in N$.
Sol. Let $P(n): d_{n}=\frac{2}{n!}, \forall n \in N$, to prove $P(2)$ is true.
Step I

$$
P(2): d_{2}=\frac{2}{2!}=\frac{2}{2 \times 1}=1
$$

As, given

$$
d_{1}=2
$$

$\Rightarrow \quad d_{k}=\frac{d_{k-1}}{k}$
$\Rightarrow \quad d_{2}=\frac{d_{1}}{2}=\frac{2}{2}=1$
Hence, $P(2)$ is true.
Step II Now, assume that $P(k)$ is true.

$$
P(k): d_{k}=\frac{2}{k!}
$$

Step III Now, to prove that $P(k+1)$ is true, we have to show that $P(k+1): d_{k+1}=\frac{2}{(k+1)!}$

$$
\begin{aligned}
d_{k+1} & =\frac{d_{k+1-1}}{k}=\frac{d_{k}}{k} \\
& =\frac{2}{k!k}=\frac{2}{(k+1)!}
\end{aligned}
$$

So, $P(k+1)$ is true. Hence, $P(n)$ is true.
Q. 20 Prove that for all $n \in N$

$$
\begin{aligned}
\cos \alpha+ & \cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(n-1) \beta] \\
& =\frac{\cos \left[\alpha+\left(\frac{n-1}{2}\right) \beta\right] \sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}}
\end{aligned}
$$

- Thinking Process

To prove this, use the formula $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$ and

$$
\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \cdot \sin \left(\frac{A-B}{2}\right)
$$

Sol. Let $P(n): \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(n-1) \beta]$

$$
=\frac{\cos \left[\alpha+\left(\frac{n-1}{2}\right) \beta\right] \sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}}
$$

Step I We observe that $P(1)$

$$
\begin{aligned}
P(1): \cos \alpha & =\frac{\cos \left[\alpha+\left(\frac{1-1}{2}\right)\right] \beta \sin \frac{\beta}{2}}{\sin \frac{\beta}{2}}=\frac{\cos (\alpha+0) \sin \frac{\beta}{2}}{\sin \frac{\beta}{2}} \\
\cos \alpha & =\cos \alpha
\end{aligned}
$$

Hence, $P(1)$ is true.
Step II Now, assume that $P(n)$ is true for $n=k$.

$$
\begin{aligned}
& P(k): \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(k-1) \beta] \\
&=\frac{\cos \left[\alpha+\left(\frac{k-1}{2}\right)\right] \beta \sin \frac{k \beta}{2}}{\sin \frac{\beta}{2}}
\end{aligned}
$$

Step III Now, to prove $P(k+1)$ is true, we have to show that

$$
\begin{aligned}
& P(k+1): \cos \alpha+\cos (\alpha+\beta)+ \cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(k-1) \beta] \\
&+\cos [\alpha+(k+1-1) \beta]=\frac{\cos \left(\alpha+\frac{k \beta}{2}\right) \sin (k+1) \frac{\beta}{2}}{\sin \frac{\beta}{2}}
\end{aligned}
$$

$$
\mathrm{LHS}=\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(k-1) \beta]+\cos (\alpha+k \beta)
$$

$$
=\frac{\cos \left[\alpha+\left(\frac{k-1}{2}\right) \beta\right] \sin \frac{k \beta}{2}}{\sin \frac{\beta}{2}}+\cos (\alpha+k \beta)
$$

$$
=\frac{\cos \left[\alpha+\left(\frac{k-1}{2}\right) \beta\right] \sin \frac{k \beta}{2}+\cos (\alpha+k \beta) \sin \frac{\beta}{2}}{\sin \frac{\beta}{2}}
$$

$$
=\frac{\sin \left(\alpha+\frac{k \beta}{2}-\frac{\beta}{2}+\frac{k \beta}{2}\right)-\sin \left(\alpha+\frac{k \beta}{2}-\frac{\beta}{2}-\frac{k \beta}{2}\right)+\sin \left(\alpha+k \beta+\frac{\beta}{2}\right)-\sin \left(\alpha+k \beta-\frac{\beta}{2}\right)}{2 \sin \frac{\beta}{2}}
$$

$$
=\frac{\sin \left(\alpha+k \beta+\frac{\beta}{2}\right)-\sin \left(\alpha-\frac{\beta}{2}\right)}{2 \sin \frac{\beta}{2}}
$$

$$
=\frac{2 \cos \frac{1}{2}\left(\alpha+\frac{\beta}{2}+k \beta+\alpha-\frac{\beta}{2}\right) \sin \frac{1}{2}\left(\alpha+\frac{\beta}{2}+k \beta-\alpha+\frac{\beta}{2}\right)}{2 \sin \frac{\beta}{2}}
$$

$$
=\frac{\cos \left(\frac{2 \alpha+k \beta}{2}\right) \sin \left(\frac{k \beta+\beta}{2}\right)}{\sin \frac{\beta}{2}}=\frac{\cos \left(\alpha+\frac{k \beta}{2}\right) \sin (k+1) \frac{\beta}{2}}{\sin \frac{\beta}{2}}=\mathrm{RHS}
$$

So, $P(k+1)$ is true. Hence, $P(n)$ is true.
Q. 21 Prove that $\cos \theta \cos 2 \theta \cos 2^{2} \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}, \forall n \in N$.

Sol. Let $P(n): \cos \theta \cos 2 \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$
Step I For $n=1, P(1): \cos \theta=\frac{\sin ^{1} \theta}{2^{1} \sin \theta}$

$$
=\frac{\sin 2 \theta}{2 \sin \theta}=\frac{2 \sin \theta \cos \theta}{2 \sin \theta}=\cos \theta
$$

which is true.
Step II Assume that $P(n)$ is true, for $n=k$.

$$
P(k): \cos \theta \cdot \cos 2 \theta \cdot \cos 2^{2} \theta \ldots \cos 2^{k-1} \theta=\frac{\sin 2^{k} \theta}{2^{k} \sin \theta} \text { is true. }
$$

Step III To prove $P(k+1)$ is true.

$$
\begin{aligned}
P(k+1): \cos \theta \cdot & \cos 2 \theta \cdot \cos 2^{2} \theta \ldots \cos 2^{k-1} \theta \cdot \cos 2^{k} \theta \\
& =\frac{\sin 2^{k} \theta}{2^{k} \sin \theta} \cdot \cos 2^{k} \theta \\
& =\frac{2 \sin 2^{k} \theta \cdot \cos 2^{k} \theta}{2 \cdot 2^{k} \sin \theta} \\
& =\frac{\sin 2 \cdot 2^{k} \theta}{2^{k+1} \sin \theta}=\frac{\sin 2^{(k+1)} \theta}{2^{k+1} \sin \theta}
\end{aligned}
$$

which is true.
So, $P(k+1)$ is true. Hence, $P(n)$ is true.
Q. 22 Prove that, $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta=\frac{\frac{\sin n \theta}{2} \sin \frac{(n+1)}{2} \theta}{\sin \frac{\theta}{2}}$,,
for all $n \in N$.

- Thinking Process

To use the formula of $2 \sin A \sin B=\cos (A-B)-\cos (A+B)$ and $\cos A-\cos B=2 \sin \frac{A+B}{2} \cdot \sin \frac{B-A}{2}$ also $\cos (-\theta)=\cos \theta$.
Sol. Consider the given statement

$$
P(n): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta
$$

$$
=\frac{\sin \frac{n \theta}{2} \sin \frac{(n+1) \theta}{2}}{\sin \frac{\theta}{2}} \text {, for all } n \in N
$$

Step I We observe that $P(1)$ is

$$
\begin{aligned}
P(1): \sin \theta & =\frac{\sin \frac{\theta}{2} \cdot \sin \frac{(1+1)}{2} \theta}{\sin \frac{\theta}{2}}=\frac{\sin \frac{\theta}{2} \cdot \sin \theta}{\sin \frac{\theta}{2}} \\
\sin \theta & =\sin \theta
\end{aligned}
$$

Hence, $P(1)$ is true.

Step II Assume that $P(n)$ is true, for $n=k$.

$$
P(k): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin k \theta
$$

$$
=\frac{\sin \frac{k \theta}{2} \sin \left(\frac{k+1}{2}\right) \theta}{\sin \frac{\theta}{2}} \text { is true. }
$$

Step III Now, to prove $P(k+1)$ is true.

$$
\begin{array}{r}
P(k+1): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin k \theta+\sin (k+1) \theta \\
=\frac{\sin \frac{(k+1) \theta}{2} \sin \left(\frac{k+1+1}{2}\right) \theta}{\sin \frac{\theta}{2}}
\end{array}
$$

$$
\mathrm{LHS}=\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin k \theta+\sin (k+1) \theta
$$

$$
=\frac{\sin \frac{k \theta}{2} \sin \left(\frac{k+1}{2}\right) \theta}{\sin \frac{\theta}{2}}+\sin (k+1) \theta=\frac{\sin \frac{k \theta}{2} \sin \left(\frac{k+1}{2}\right) \theta+\sin (k+1) \theta \cdot \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}
$$

$$
=\frac{\cos \left[\frac{k \theta}{2}-\left(\frac{k+1}{2}\right) \theta\right]-\cos \left[\frac{k \theta}{2}+\left(\frac{k+1}{2}\right) \theta\right]+\cos \left[(k+1) \theta-\frac{\theta}{2}\right]-\cos \left[(k+1) \theta+\frac{\theta}{2}\right]}{2 \sin \frac{\theta}{2}}
$$

$$
=\frac{\cos \frac{\theta}{2}-\cos \left(k \theta+\frac{\theta}{2}\right)+\cos \left(k \theta+\frac{\theta}{2}\right)-\cos \left(k \theta+\frac{3 \theta}{2}\right)}{2 \sin \frac{\theta}{2}}
$$

$$
=\frac{\cos \frac{\theta}{2}-\cos \left(k \theta+\frac{3 \theta}{2}\right)}{2 \sin \frac{\theta}{2}}=\frac{2 \sin \frac{1}{2}\left(\frac{\theta}{2}+k \theta+\frac{3 \theta}{2}\right) \cdot \sin \frac{1}{2}\left(k \theta+\frac{3 \theta}{2}-\frac{\theta}{2}\right)}{2 \sin \frac{\theta}{2}}
$$

$$
=\frac{\sin \left(\frac{k \theta+2 \theta}{2}\right) \cdot \sin \left(\frac{k \theta+\theta}{2}\right)}{\sin \frac{\theta}{2}}=\frac{\sin (k+1) \frac{\theta}{2} \cdot \sin (k+1+1) \frac{\theta}{2}}{\sin \frac{\theta}{2}}
$$

So, $P(k+1)$ is true, whenever $P(k)$ is true. Hence, $P(n)$ is true.
Q. 23 Show that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number, for all $n \in N$.

- Thinking Process

Here, use the formula $(a+b)^{5}=a^{5}+5 a b^{4}+10 a^{2} b^{3}+10 a^{3} b^{2}+5 a^{4} b+b^{5}$
and

$$
(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)
$$

Sol. Consider the given statement
$P(n): \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number, for all $n \in N$.
Step I We observe that $P(1)$ is true.
$P(1): \frac{(1)^{5}}{5}+\frac{1^{3}}{3}+\frac{7(1)}{15}=\frac{3+5+7}{15}=\frac{15}{15}=1$, which is a natural number. Hence, $P(1)$ is true.
Step II Assume that $P(n)$ is true, for $n=k$.
$P(k): \frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}$ is natural number.

Step III Now, to prove $P(k+1)$ is true.

$$
\begin{aligned}
& \frac{(k+1)^{5}}{5}+\frac{(k+1)^{3}}{3}+\frac{7(k+1)}{15} \\
& =\frac{k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1}{5}+\frac{k^{3}+1+3 k(k+1)}{3}+\frac{7 k+7}{15} \\
& =\frac{k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1}{5}+\frac{k^{3}+1+3 k^{2}+3 k}{3}+\frac{7 k+7}{15} \\
& =\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}+\frac{5 k^{4}+10 k^{3}+10 k^{2}+5 k+1}{5}+\frac{3 k^{2}+3 k+1}{3}+\frac{7 k+7}{15} \\
& =\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}+k^{4}+2 k^{3}+2 k^{2}+k+k^{2}+k+\frac{1}{5}+\frac{1}{3}+\frac{7}{15} \\
& =\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}+k^{4}+2 k^{3}+3 k^{2}+2 k+1, \text { which is a natural number }
\end{aligned}
$$

So, $P(k+1)$ is true, whenever $P(k)$ is true. Hence, $P(n)$ is true.
Q. 24 Prove that $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$.

Sol. Consider the given statement
$P(n): \frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$.
Step I We observe that, $P(2)$ is true,

$$
\begin{aligned}
P(2): \frac{1}{2+1}+\frac{1}{2+2} & >\frac{13}{24} \\
\frac{1}{3}+\frac{1}{4} & >\frac{13}{24} \\
\frac{4+3}{12} & >\frac{13}{24} \\
\frac{7}{12} & >\frac{13}{24}, \text { which is true. }
\end{aligned}
$$

Hence, $P(2)$ is true.
Step II Now, we assume that $P(n)$ is true,
For $n=k$,

$$
P(k): \frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}>\frac{13}{24} .
$$

Step III Now, to prove $P(k+1)$ is true, we have to show that

$$
\begin{aligned}
& P(k+1): \frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}+\frac{1}{2(k+1)}>\frac{13}{24} \\
& \text { Given, } \begin{array}{r}
\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}>\frac{13}{24} \\
\frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{2 k}+\frac{1}{2(k+1)}>\frac{13}{24}+\frac{1}{2(k+1)} \\
\frac{13}{24}+\frac{1}{2(k+1)}>\frac{13}{24}
\end{array} \\
& \because \quad \frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}+\frac{1}{2(k+1)}>\frac{13}{24}
\end{aligned}
$$

So, $P(k+1)$ is true, whenever $P(k)$ is true. Hence, $P(n)$ is true.
Q. 25 Prove that number of subsets of a set containing n distinct elements is 2^{n}, for all $n \in N$.
Sol. Let $P(n)$: Number of subset of a set containing n distinct elements is 2^{n}, for all $n \in N$.
Step I We observe that $P(1)$ is true, for $n=1$.
Number of subsets of a set contain 1 element is $2^{1}=2$, which is true.
Step II Assume that $P(n)$ is true for $n=k$.
$P(k)$: Number of subsets of a set containing k distinct elements is 2^{k}, which is true.
Step III To prove $P(k+1)$ is true, we have to show that
$P(k+1)$: Number of subsets of a set containing $(k+1)$ distinct elements is 2^{k+1}.
We know that, with the addition of one element in the set, the number of subsets become double.
\therefore Number of subsets of a set containing $(k+1)$ distinct elements $=2 \times 2^{k}=2^{k+1}$.
So, $P(k+1)$ is true. Hence, $P(n)$ is true.

Objective Type Questions

Q. 26 If $10^{n}+3 \cdot 4^{n+2}+k$ is divisible by 9 , for all $n \in N$, then the least positive integral value of k is
(a) 5
(b) 3
(c) 7
(d) 1

Sol. (a) Let $P(n): 10^{n}+3 \cdot 4^{n+2}+k$ is divisible by 9 , for all $n \in N$.
For $n=1$, the given statement is also true $10^{1}+3 \cdot 4^{1+2}+k$ is divisible by 9 .

$$
\begin{aligned}
\because \quad & =10+3 \cdot 64+k=10+192+k \\
& =202+k
\end{aligned}
$$

If $(202+k)$ is divisible by 9 , then the least value of k must be 5 .
$\because \quad 202+5=207$ is divisible by 9
$\Rightarrow \quad \frac{207}{9}=23$
Hence, the least value of k is 5 .
Q. 27 For all $n \in N, 3 \cdot 5^{2 n+1}+2^{3 n+1}$ is divisible by
(a) 19
(b) 17
(c) 23
(d) 25

Sol. (b, c)
Given that, $3 \cdot 5^{2 n+1}+2^{3 n+1}$
For $n=1$,

$$
\begin{aligned}
& 3 \cdot 5^{2(1)+1}+2^{3(1)+1} \\
& =3 \cdot 5^{3}+2^{4} \\
& =3 \times 125+16=375+16=391
\end{aligned}
$$

Now,

$$
391=17 \times 23
$$

which is divisible by both 17 and 23 .
Q. 28 If $x^{n}-1$ is divisible by $x-k$, then the least positive integral value of k is
(a) 1
(b) 2
(c) 3
(d) 4

Sol. Let $P(n): x^{n}-1$ is divisible by $(x-k)$.
For $n=1, x^{1}-1$ is divisible by $(x-k)$.
Since, if $x-1$ is divisible by $x-k$. Then, the least possible integral value of k is 1 .

Fillers

Q. 29 If $P(n): 2 n<n!, n \in N$, then $P(n)$ is true for all $n \geq$

Sol. Given that, $P(n): 2 n<n!, n \in N$

For $n=1$,	$2<!$	[false]
For $n=2$,	[false]	
For $n=3$,	$2 \times 2<2!4<2$	
	$2 \times 3<3!$	
For $n=4$,	$6<3 \times 2 \times 1$	
	$(6<6)$	[false]
For $n=5$,	$2 \times 4<4!$	
	$8<4 \times 3 \times 2 \times 1$	[true]
	$2 \times 5<5!$	
	$10<5 \times 4 \times 3 \times 2 \times 1$	[true]

Hence, $P(n)$ is for all $n \geq 4$.

True/False

Q. 30 Let $P(n)$ be a statement and let $P(k) \Rightarrow P(k+1)$, for some natural number k, then $P(n)$ is true for all $n \in N$.
Sol. False
The given statement is false because $P(1)$ is true has not been proved.

