Chapter 2 Inverse Trigonometric Functions

EXERCISE 2.1

Question 1:

Find the principal value of $\sin ^{-1}\left(-\frac{1}{2}\right)$.

Solution:

Let, $\sin ^{-1}\left(-\frac{1}{2}\right)=y$
Hence,

$$
\begin{aligned}
\sin y & =\left(-\frac{1}{2}\right) \\
& =-\sin \left(\frac{\pi}{6}\right) \\
& =\sin \left(-\frac{\pi}{6}\right)
\end{aligned}
$$

Range of the principal value of $\sin ^{-1}(x)_{\text {is }}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Thus, principal value of $\sin ^{-1}\left(-\frac{1}{2}\right)=\left(-\frac{\pi}{6}\right)$.

Question 2:

Find the principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$.
Solution:

Let,

$$
\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=y
$$

Hence,

$$
\begin{aligned}
\cos y & =\left(\frac{\sqrt{3}}{2}\right) \\
& =\cos \frac{\pi}{6}
\end{aligned}
$$

Range of the principal value of $\cos ^{-1}(x)$ is $(0, \pi)$.
Thus, principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\left(\frac{\pi}{6}\right)$

Question 3:

Find the principal value of $\operatorname{cosec}^{-1}(2)$.

Solution:

Let, $\operatorname{cosec}^{-1}(2)=y$
Hence,

$$
\begin{aligned}
\operatorname{cosec} y & =2 \\
& =\operatorname{cosec}\left(\frac{\pi}{6}\right)
\end{aligned}
$$

Range of the principal value of $\operatorname{cosec}^{-1}(x)=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
Thus, principal value of $\operatorname{cosec}^{-1}(2)=\left(\frac{\pi}{6}\right)$.

Question 4:

Find the principal value of $\tan ^{-1}(-\sqrt{3})$

Solution:

Let, $\tan ^{-1}(-\sqrt{3})=y$
Hence,

$$
\begin{aligned}
\tan y & =-\sqrt{3} \\
& =-\tan \left(\frac{\pi}{3}\right) \\
& =\tan \left(-\frac{\pi}{3}\right)
\end{aligned}
$$

Range of the principal value of $\tan ^{-1}(x)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Thus, principal value of $\tan ^{-1}(-\sqrt{3})=\left(-\frac{\pi}{3}\right)$.

Question 5:

Find the principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)$

Solution:

Let, $\cos ^{-1}\left(-\frac{1}{2}\right)=y$

Hence,

$$
\begin{aligned}
\cos y & =-\frac{1}{2} \\
& =-\cos \left(\frac{\pi}{3}\right) \\
& =\cos \left(\pi-\frac{\pi}{3}\right) \\
& =\cos \left(\frac{2 \pi}{3}\right)
\end{aligned}
$$

Range of the principal value of $\cos ^{-1}(x)=[0, \pi]$
Thus, principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)=\left(\frac{2 \pi}{3}\right)$.

Question 6:

Find the principal value of $\tan ^{-1}(-1)$

Solution:

Let, $\tan ^{-1}(-1)=y$
Hence,

$$
\begin{aligned}
\tan y & =-1 \\
& =-\tan \left(\frac{\pi}{4}\right) \\
& =\tan \left(-\frac{\pi}{4}\right)
\end{aligned}
$$

Range of the principal value of $\tan ^{-1}(x)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Thus, principal value of $\tan ^{-1}(-1)=\left(-\frac{\pi}{4}\right)$.

Question 7:

Find the principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Solution:

Let, $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=y$
Hence,

$$
\begin{aligned}
\sec y & =\frac{2}{\sqrt{3}} \\
& =\sec \left(\frac{\pi}{6}\right)
\end{aligned}
$$

Range of the principal value of $\sec ^{-1}(x)=[0, \pi]-\left\{\frac{\pi}{2}\right\}$
Thus, principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\left(\frac{\pi}{6}\right)$.
Question 8:
Find the principal value of $\cot ^{-1}(\sqrt{3})$

Solution:

Let, $\cot ^{-1}(\sqrt{3})=y$
Hence,

$$
\begin{aligned}
\cot y & =\sqrt{3} \\
& =\cot \left(\frac{\pi}{6}\right)
\end{aligned}
$$

Range of the principal value of $\cot ^{-1}(x)=(0, \pi)$
Thus, principal value of $\cot ^{-1}(\sqrt{3})=\left(\frac{\pi}{6}\right)$.

Question 9:

Find the principal value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$

Solution:

Let, $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=y$
Hence,

$$
\begin{aligned}
\cos y & =-\frac{1}{\sqrt{2}} \\
& =-\cos \left(\frac{\pi}{4}\right) \\
& =\cos \left(-\frac{\pi}{4}\right) \\
& =\cos \left(\pi-\frac{\pi}{4}\right) \\
& =\cos \left(\frac{3 \pi}{4}\right)
\end{aligned}
$$

Range of the principal value of $\cos ^{-1}(x)=[0, \pi]$
Thus, principal value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\left(\frac{3 \pi}{4}\right)$.

Question 10:

Find the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$

Solution:

Let, $\operatorname{cosec}^{-1}(-\sqrt{2})=y$

Hence,

$$
\begin{aligned}
\operatorname{cosec} y & =-\sqrt{2} \\
& =-\operatorname{cosec}\left(\frac{\pi}{4}\right) \\
& =\operatorname{cosec}\left(-\frac{\pi}{4}\right)
\end{aligned}
$$

Range of the principal value of $\operatorname{cosec}^{-1}(x)=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
Thus, principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})=\left(-\frac{\pi}{4}\right)$.

Question 11:

Find the value of $\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$.

Solution:

Let, $\tan ^{-1}(1)=x$
Hence,

$$
\begin{aligned}
\tan x & =1 \\
& =\tan \left(\frac{\pi}{4}\right)
\end{aligned}
$$

Therefore,

$$
\tan ^{-1}(1)=\left(\frac{\pi}{4}\right)
$$

Now, let $\cos ^{-1}\left(-\frac{1}{2}\right)=y$
Hence,

$$
\begin{aligned}
\cos y & =-\frac{1}{2} \\
& =-\cos \left(\frac{\pi}{3}\right) \\
& =\cos \left(\pi-\frac{\pi}{3}\right) \\
& =\cos \left(\frac{2 \pi}{3}\right)
\end{aligned}
$$

Therefore,

$$
\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}
$$

Again, let $\sin ^{-1}\left(-\frac{1}{2}\right)=z$

Hence,

$$
\begin{aligned}
\sin z & =-\frac{1}{2} \\
& =-\sin \left(\frac{\pi}{6}\right) \\
& =\sin \left(-\frac{\pi}{6}\right)
\end{aligned}
$$

Therefore,

$$
\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}
$$

Thus,

$$
\begin{aligned}
\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right) & =\frac{\pi}{4}+\frac{2 \pi}{3}-\frac{\pi}{6} \\
& =\frac{3 \pi+8 \pi-2 \pi}{12} \\
& =\frac{9 \pi}{12} \\
& =\frac{3 \pi}{4}
\end{aligned}
$$

Question 12:
Find the value of $\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$

Solution:

Let, $\tan ^{-1}(1)=x$
Hence,

$$
\begin{aligned}
\cos x & =\frac{1}{2} \\
& =\cos \left(\frac{\pi}{3}\right)
\end{aligned}
$$

Therefore,

$$
\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

Let, $\sin ^{-1}\left(\frac{1}{2}\right)=y$
Hence,

$$
\begin{aligned}
\sin y & =\frac{1}{2} \\
& =\sin \left(\frac{\pi}{6}\right)
\end{aligned}
$$

Therefore,

$$
\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

Thus

$$
\begin{aligned}
\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right) & =\frac{\pi}{3}+2\left(\frac{\pi}{6}\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

Question 13:

Find the value of $\sin ^{-1} x=y$, then
(A) $0 \leq y \leq \pi$
(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(C) $0 \leq y \leq \pi$
(D) $-\frac{\pi}{2}<y<\frac{\pi}{2}$

Solution:

It is given that $\sin ^{-1} x=y$
Range of the principal value of $\sin ^{-1} x=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Thus, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
The answer is B.

Question 14:

Find the value of $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$ is equal to
(A) 0
(B) $-\frac{\pi}{3}$
(C) $\frac{\pi}{3}$
(D) $\frac{2 \pi}{3}$

Solution:

Let $\tan ^{-1}(\sqrt{3})=x$
Hence,

$$
\begin{aligned}
\tan x & =\sqrt{3} \\
& =\tan \left(\frac{\pi}{3}\right)
\end{aligned}
$$

Range of the principal value of $\tan ^{-1} x=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Therefore, $\tan ^{-1}(\sqrt{3})=\left(\frac{\pi}{3}\right)$

Let $\sec ^{-1}(-2)=y$
Hence,

$$
\begin{aligned}
\sec y & =(-2) \\
& =-\sec \left(\frac{\pi}{3}\right) \\
& =\sec \left(-\frac{\pi}{3}\right) \\
& =\sec \left(\pi-\frac{\pi}{3}\right) \\
& =\sec \left(\frac{2 \pi}{3}\right)
\end{aligned}
$$

Range of the principal value of $\sec ^{-1} x=[0, \pi]-\left\{\frac{\pi}{2}\right\}$
Therefore, $\sec ^{-1}(-2)=\frac{2 \pi}{3}$
Thus,

$$
\begin{aligned}
\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2) & =\frac{\pi}{3}-\frac{2 \pi}{3} \\
& =-\frac{\pi}{3}
\end{aligned}
$$

The answer is B.

EXERCISE 2.2

Question 1:

Prove $3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Solution:

Let $x=\operatorname{lin}$
Hence, $\sin ^{-1}(x)=$
Now,

$$
\begin{aligned}
\text { RHS } & =\sin ^{-1}\left(3 x-4 x^{3}\right) \\
& =\sin -4\left(\operatorname{sinsi\theta }-{ }^{3}\right) \\
& =\sin ^{-1}(\sin 3) \\
& =\theta \\
& =3 \sin ^{-1} x \\
& =\text { LHS }
\end{aligned}
$$

Question 2:

Prove $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]$.
Solution:
Let $x=0$ os
Hence, $\operatorname{\theta os}^{-1}(x)=$
Now,

$$
\begin{aligned}
\text { RHS } & =\cos ^{-1}\left(4 x^{3}-3 x\right) \\
& =\theta \cos 3^{1} \phi \operatorname{asccos}^{3}- \\
& =\cos ^{-1}(\cos 3) \\
& =\theta \\
& =3 \cos ^{-1} x \\
& =\text { LHS }
\end{aligned}
$$

Question 3:

Prove $\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$.

Solution:

Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}$ Now,

$$
\begin{aligned}
\text { LHS } & =\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24} \\
& =\tan ^{-1} \frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11} \cdot \frac{7}{24}} \\
& =\tan ^{-1}\left(\frac{\frac{48+77}{264}}{\frac{264-14}{264}}\right) \\
& =\tan ^{-1}\left(\frac{125}{250}\right) \\
& =\tan ^{-1}\left(\frac{1}{2}\right) \\
& =\text { RHS }
\end{aligned}
$$

Question 4:
Prove $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$

Solution:

Since we know that $2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}$ and $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}$ Now,

$$
\begin{aligned}
\text { LHS } & =2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7} \\
& =\tan ^{-1} \frac{2 \times \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}+\tan ^{-1} \frac{1}{7} \\
& =\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3} \cdot \frac{1}{7}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{28+3}{21}}{\frac{21-4}{21}}\right) \\
& =\tan ^{-1}\left(\frac{31}{17}\right) \\
& =R H S
\end{aligned}
$$

Question 5:
Write the function in the simplest form: $\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0$

Solution:

Let $x=\tan \theta \Rightarrow \theta=\tan ^{-1} x$
Hence,

$$
\begin{aligned}
\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x} & =\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right) \\
& =\tan ^{-1}\left(\tan \frac{\theta}{2}\right) \\
& =\frac{\theta}{2} \\
& =\frac{1}{2} \tan ^{-1} x
\end{aligned}
$$

Question 6:

Write the function in the simplest form: $\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x|>1$

Solution:

Let $x=\operatorname{cosec} \theta \Rightarrow \theta=\operatorname{cosec}^{-1} x$
Hence,

$$
\begin{aligned}
\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}} & =\tan ^{-1} \frac{1}{\sqrt{\operatorname{cosec}^{2} \theta-1}} \\
& =\tan ^{-1}\left(\frac{1}{\cot \theta}\right) \\
& =\tan ^{-1}(\tan \theta) \\
& =\theta \\
& =\operatorname{cosec}{ }^{-1} x \\
& =\frac{\pi}{2}-\sec ^{-1} x
\end{aligned}
$$

Question 7:

Write the function in the simplest form: $\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), 0<x<\pi$

Solution:

Since, ${ }^{1-\cos x=2 \sin ^{2} \frac{x}{2}}$ and $1+\cos x=2 \cos ^{2} \frac{x}{2}$
Hence,

$$
\begin{aligned}
\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) & =\tan ^{-1}\left(\sqrt{\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}\right) \\
& =\tan ^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right) \\
& =\tan ^{-1}\left(\tan \frac{x}{2}\right) \\
& =\frac{x}{2}
\end{aligned}
$$

Question 8:

Write the function in the simplest form: $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\pi$

Solution:

$$
\left.\begin{array}{rl}
\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right) & =\tan ^{-1}\left(\frac{\frac{\cos x-\sin x}{\cos x}}{\cos x+\sin x}\right. \\
\cos x
\end{array}\right)
$$

Question 9:

Write the function in the simplest form: $\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x|<a$

Solution:

Let $x=a \sin \theta \Rightarrow \theta=\sin ^{-1}\left(\frac{x}{a}\right)$
Hence,

$$
\begin{aligned}
\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}} & =\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{a \sin \theta}{a \sqrt{1-\sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right) \\
& =\tan ^{-1}(\tan \theta) \\
& =\theta \\
& =\sin ^{-1} \frac{x}{a}
\end{aligned}
$$

Question 10:

Write the function in the simplest form: $\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), a>0 ; \frac{-a}{\sqrt{3}} \leq x \leq \frac{a}{\sqrt{3}}$

Solution:

Let $x=a \tan \theta \Rightarrow \theta=\tan ^{-1}\left(\frac{x}{a}\right)$
Hence,

$$
\begin{aligned}
\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right) & =\tan ^{-1}\left(\frac{3 a^{2} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta}\right) \\
& =\tan ^{-1}\left(\frac{3 a^{3} \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a^{3} \tan ^{2} \theta}\right) \\
& =\tan ^{-1}(\tan 3 \theta) \\
& =3 \theta \\
& =3 \tan ^{-1} \frac{x}{a}
\end{aligned}
$$

Question 11:

Write the function in the simplest form: $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$

Solution:

Let $\sin ^{-1} \frac{1}{2}=x$
Hence,

$$
\begin{aligned}
\sin x & =\frac{1}{2} \\
& =\sin \left(\frac{\pi}{6}\right) \\
x & =\frac{\pi}{6} \\
\sin ^{-1}\left(\frac{1}{2}\right) & =\frac{\pi}{6}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right] & =\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right] \\
& =\tan ^{-1}\left[2 \cos \frac{\pi}{3}\right] \\
& =\tan ^{-1}\left[2 \times \frac{1}{2}\right] \\
& =\tan ^{-1}[1] \\
& =\frac{\pi}{4}
\end{aligned}
$$

Question 12:

Find the value of $\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$

Solution:

Since $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$
Hence,

$$
\begin{aligned}
\cot \left(\tan ^{-1} a+\cot ^{-1} a\right) & =\cot \left(\frac{\pi}{2}\right) \\
& =0
\end{aligned}
$$

Question 13:

Find the value of $\tan \frac{1}{2}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right),|x|<1, y>0$ and $x y<1$.

Solution:

Let $x=\tan \theta \Rightarrow \theta=\tan ^{-1} x$
Hence,

$$
\begin{aligned}
\sin ^{-1} \frac{2 x}{1+x^{2}} & =\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \\
& =\sin ^{-1}(\sin 2 \theta) \\
& =2 \theta \\
& =2 \tan ^{-1} x
\end{aligned}
$$

Now, let $y=\tan \phi \Rightarrow \phi=\tan ^{-1} y$
Hence,

$$
\begin{aligned}
\cos ^{-1} \frac{1-y^{2}}{1+y^{2}} & =\cos ^{-1}\left(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right) \\
& =\cos ^{-1}(\cos 2 \phi) \\
& =2 \phi \\
& =2 \tan ^{-1} y
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\tan \frac{1}{2}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right) & =\tan \frac{1}{2}\left(2 \tan ^{-1} x+2 \tan ^{-1} y\right) \\
& =\tan \left(\tan ^{-1} x+\tan ^{-1} y\right) \\
& =\tan \left[\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right] \\
& =\left(\frac{x+y}{1-x y}\right)
\end{aligned}
$$

Question 14:

If $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$, find the value of x.

Solution:

It is given that $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$

Since we know that $\sin (x+y)=\sin x \cos y+\cos x \sin y$ Therefore,

$$
\begin{align*}
\sin \left(\sin ^{-1} \frac{1}{5}\right) \cos \left(\cos ^{-1} x\right)+\cos \left(\sin ^{-1} \frac{1}{5}\right) \sin \left(\cos ^{-1} x\right) & =1 \\
\left(\frac{1}{5}\right) \times(x)+\cos \left(\sin ^{-1} \frac{1}{5}\right) \sin \left(\cos ^{-1} x\right) & =1 \\
\frac{x}{5}+\cos \left(\sin ^{-1} \frac{1}{5}\right) \sin \left(\cos ^{-1} x\right) & =1 \tag{1}
\end{align*}
$$

Now, let $\sin ^{-1} \frac{1}{5}=y \Rightarrow \sin y=\frac{1}{5}$

Then,

$$
\begin{aligned}
\cos y & =\sqrt{1-\left(\frac{1}{5}\right)^{2}} \\
& =\frac{2 \sqrt{6}}{5} \\
y & =\cos ^{-1}\left(\frac{2 \sqrt{6}}{5}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sin ^{-1} \frac{1}{5}=\cos ^{-1}\left(\frac{2 \sqrt{6}}{5}\right) \tag{2}
\end{equation*}
$$

Now, let $\cos ^{-1} x=z \Rightarrow \cos z=x$
Then,

$$
\begin{aligned}
\sin z & =\sqrt{1-x^{2}} \\
z & =\sin ^{-1} \sqrt{1-x^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\cos ^{-1} x=\sin ^{-1} \sqrt{1-x^{2}} \tag{3}
\end{equation*}
$$

From (1), (2) and (3), we have

$$
\begin{aligned}
& \Rightarrow \frac{x}{5}+\cos \left(\cos ^{-1} \frac{2 \sqrt{6}}{5}\right) \sin \left(\sin ^{-1} \sqrt{1-x^{2}}\right)=1 \\
& \Rightarrow \frac{x}{5}+\frac{2 \sqrt{6}}{5} \sqrt{1-x^{2}}=1 \\
& \Rightarrow x+2 \sqrt{6} \sqrt{1-x^{2}}=5 \\
& \Rightarrow 5-x=2 \sqrt{6} \sqrt{1-x^{2}}
\end{aligned}
$$

On squaring both the sides

$$
\begin{aligned}
25+x^{2}-10 x & =24-24 x^{2} \\
25 x^{2}-10 x+1 & =0 \\
(5 x-1)^{2} & =0 \\
(5 x-1) & =0 \\
x & =\frac{1}{5}
\end{aligned}
$$

Question 15:

If $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$, find the value of x.

Solution:

It is given that $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$
Since $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Therefore,

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left[\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\left(\frac{x-1}{x-2}\right)\left(\frac{x+1}{x+2}\right)}\right)=\frac{\pi}{4} \\
& \Rightarrow \tan ^{-1}\left[\frac{(x-1)(x+2)+(x+1)(x-2)}{(x+2)(x-2)-(x-1)(x+1)}\right]=\frac{\pi}{4} \\
& \Rightarrow \tan ^{-1}\left[\frac{x^{2}+x-2+x^{2}-x-2}{x^{2}-4-x^{2}+1}\right]=\frac{\pi}{4} \\
& \Rightarrow \tan ^{-1}\left[\frac{2 x^{2}-4}{-3}\right]=\frac{\pi}{4} \\
& \Rightarrow \tan \left[\tan ^{-1} \frac{4-2 x^{2}}{3}\right]=\tan \frac{\pi}{4} \\
& \Rightarrow \frac{4-2 x^{2}}{3}=1 \\
& \Rightarrow 4-2 x^{2}=3 \\
& \Rightarrow 2 x^{2}=1 \\
& \Rightarrow x^{2}=\frac{1}{2} \\
& \Rightarrow x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

Question 16:

Find the value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$.

Solution:

Since, ${ }^{\sin \operatorname{sim}}(A-)$
Therefore,

$$
\begin{aligned}
\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right) & =\sin ^{-1}\left[\sin \left(\pi-\frac{2 \pi}{3}\right)\right] \\
& =\sin ^{-1}\left(\sin \frac{\pi}{3}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

Question 17:

Find the value of $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$.

Solution:

Since, fan tan ($0-$)
Therefore,

$$
\begin{aligned}
\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right) & =\tan ^{-1}\left[-\tan \left(-\frac{3 \pi}{4}\right)\right] \\
& =\tan ^{-1}\left[-\tan \left(\pi-\frac{\pi}{4}\right)\right] \\
& =\tan ^{-1}\left[-\tan \left(\frac{\pi}{4}\right)\right] \\
& =\tan ^{-1}\left[\tan \left(-\frac{\pi}{4}\right)\right] \\
& =\left(-\frac{\pi}{4}\right)
\end{aligned}
$$

Question 18:

Find the value of $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$.

Solution:
Let $\sin ^{-1} \frac{3}{5}=x \Rightarrow \sin x=\frac{3}{5}$
Then,

$$
\begin{aligned}
& \Rightarrow \cos x=\sqrt{1-\sin ^{2} x}=\frac{4}{5} \\
& \Rightarrow \sec x=\frac{5}{4}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\tan x & =\sqrt{\sec ^{2} x-1} \\
& =\sqrt{\frac{25}{16}-1} \\
& =\frac{3}{4} \\
x & =\tan ^{-1} \frac{3}{4} \\
\sin ^{-1} \frac{3}{5} & =\tan ^{-1} \frac{3}{4} \tag{1}
\end{align*}
$$

Now,

$$
\begin{equation*}
\cot ^{-1} \frac{3}{2}=\tan ^{-1} \frac{2}{3} \tag{2}
\end{equation*}
$$

Thus, by using (1) and (2)

$$
\begin{aligned}
\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{2}{3}\right) & =\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right) \\
& =\tan \left[\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}\right] \\
& =\tan \left(\tan ^{-1} \frac{17}{6}\right) \\
& =\frac{17}{6}
\end{aligned}
$$

Question 19:
$\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is equal to
(A) $\frac{7 \pi}{6}$
(B) $\frac{5 \pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$

Solution:

$$
\begin{aligned}
\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right) & =\cos ^{-1}\left(\cos \frac{-7 \pi}{6}\right) \\
& =\cos ^{-1}\left[\cos \left(2 \pi-\frac{7 \pi}{6}\right)\right] \\
& =\cos ^{-1}\left[\cos \left(\frac{5 \pi}{6}\right)\right] \\
& =\frac{5 \pi}{6}
\end{aligned}
$$

Thus, the correct option is B.

Question 20:
$\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) 1

Solution:

Let $\sin ^{-1}\left(-\frac{1}{2}\right)=x$

Hence,

$$
\begin{aligned}
\sin x & =-\frac{1}{2} \\
& =-\sin \frac{\pi}{6} \\
& =\sin \left(-\frac{\pi}{6}\right) \\
x & =-\frac{\pi}{6}
\end{aligned}
$$

Since, Range of principal value of $\sin ^{-1}(x)=\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$. Therefore,

$$
\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}
$$

Then,

$$
\begin{aligned}
\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right) & =\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right) \\
& =\sin \left(\frac{\pi}{2}\right) \\
& =1
\end{aligned}
$$

Thus, the correct option is D.

Question 21:

Find the values of $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$ is equal to
(A) π
(B) $-\frac{\pi}{2}$
(C) 0
(D) $2 \sqrt{3}$

Solution:

Let $\tan ^{-1} \sqrt{3}=x$
Hence,

$$
\tan x=\sqrt{3}=\tan \frac{\pi}{3}, \text { where } \frac{\pi}{3} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

Therefore, $\tan ^{-1} \sqrt{3}=\frac{\pi}{3}$
Now, let $\cot ^{-1}(-\sqrt{3})=y$

Hence,

$$
\begin{aligned}
\cot y & =(-\sqrt{3}) \\
& =-\cot \left(\frac{\pi}{6}\right) \\
& =\cot \left(\pi-\frac{\pi}{6}\right) \\
& =\cot \left(\frac{5 \pi}{6}\right)
\end{aligned}
$$

Since, Range of principal value of $\cot ^{-1} x=(0, \pi)$ Therefore,

$$
\cot ^{-1}(-\sqrt{3})=\frac{5 \pi}{6}
$$

Then,

$$
\begin{aligned}
\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3}) & =\frac{\pi}{3}-\frac{5 \pi}{6} \\
& =-\frac{\pi}{2}
\end{aligned}
$$

Thus, the correct option is B.

MISCELLANEOUS EXERCISE

Question 1:

Find the value of $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$.

Solution:

$$
\begin{aligned}
\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right) & =\cos ^{-1}\left[\cos \left(2 \pi+\frac{\pi}{6}\right)\right] \\
& =\cos ^{-1}\left[\cos \frac{\pi}{6}\right] \\
& =\frac{\pi}{6}
\end{aligned}
$$

Question 2:
Find the value of $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$.
Solution:

$$
\begin{aligned}
\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right) & =\tan ^{-1}\left[\tan \left(2 \pi-\frac{5 \pi}{6}\right)\right] \\
& =\tan ^{-1}\left[-\tan \left(\frac{5 \pi}{6}\right)\right] \\
& =\tan ^{-1}\left[\tan \left(\pi-\frac{5 \pi}{6}\right)\right] \\
& =\tan ^{-1}\left[\tan \frac{\pi}{6}\right] \\
& =\frac{\pi}{6}
\end{aligned}
$$

Question 3:
Prove that $2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}$.

Solution:

Let $\sin ^{-1} \frac{3}{5}=x \Rightarrow \sin x=\frac{3}{5}$
Then,

$$
\cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}
$$

Therefore,

$$
\begin{align*}
\tan x & =\frac{3}{4} \\
x & =\tan ^{-1} \frac{3}{4} \\
\sin ^{-1} \frac{3}{5} & =\tan ^{-1} \frac{3}{4} \tag{1}
\end{align*}
$$

Thus,

$$
\begin{aligned}
\text { LHS } & =2 \sin ^{-1} \frac{3}{5} \\
& =2 \tan ^{-1} \frac{3}{4} \\
& =\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right) \\
& =\tan ^{-1}\left(\frac{24}{7}\right) \\
& =\text { RHS }
\end{aligned}
$$

Question 4:

Prove that $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}$.

Solution:

Let $\sin ^{-1} \frac{8}{17}=x \Rightarrow \sin x=\frac{8}{17}$
Then,

$$
\cos x=\sqrt{1-\left(\frac{8}{17}\right)^{2}}=\sqrt{\frac{225}{289}}=\frac{15}{17}
$$

Therefore,

$$
\begin{align*}
\tan x & =\frac{8}{15} \\
x & =\tan ^{-1} \frac{8}{15} \\
\sin ^{-1} \frac{8}{17} & =\tan ^{-1} \frac{8}{15} \tag{1}
\end{align*}
$$

Now, let $\sin ^{-1} \frac{3}{5}=y \Rightarrow \sin y=\frac{3}{5}$
Then,

$$
\cos y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}
$$

Therefore,

$$
\begin{align*}
\tan y & =\frac{3}{4} \\
y & =\tan ^{-1} \frac{3}{4} \\
\sin ^{-1} \frac{3}{5} & =\tan ^{-1} \frac{3}{4} \tag{2}
\end{align*}
$$

Thus, by using (1) and (2)

$$
\begin{aligned}
\text { LHS } & =\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5} \\
& =\tan ^{-1} \frac{8}{15}+\tan ^{-1} \frac{3}{4} \\
& =\tan ^{-1}\left[\frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15} \cdot \frac{3}{4}}\right] \\
& =\tan ^{-1}\left[\frac{\frac{32+45}{60}}{\frac{60-24}{60}}\right] \\
& =\tan ^{-1} \frac{77}{36} \\
& =\text { RHS }
\end{aligned}
$$

Question 5:
Prove that $\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$.

Solution:

Let $\cos ^{-1} \frac{4}{5}=x \Rightarrow \cos x=\frac{4}{5}$
Then,

$$
\sin x=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\frac{3}{5}
$$

Therefore,

$$
\begin{align*}
\tan x & =\frac{3}{4} \\
x & =\tan ^{-1} \frac{3}{4} \\
\cos ^{-1} \frac{4}{5} & =\tan ^{-1} \frac{3}{4} \tag{1}
\end{align*}
$$

Now, let $\cos ^{-1} \frac{12}{13}=y \Rightarrow \cos y=\frac{12}{13}$

Then,

$$
\sin y=\frac{5}{13}
$$

Therefore,

$$
\begin{align*}
\tan y & =\frac{5}{12} \\
y & =\tan ^{-1} \frac{5}{12} \\
\cos ^{-1} \frac{12}{13} & =\tan ^{-1} \frac{5}{12} \tag{2}
\end{align*}
$$

Thus, by using (1) and (2)

$$
\begin{align*}
\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13} & =\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{5}{12} \\
& =\tan ^{-1}\left[\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \cdot \frac{5}{12}}\right] \\
& =\tan ^{-1}\left[\frac{56}{33}\right] \tag{3}
\end{align*}
$$

Now, let $\cos ^{-1} \frac{33}{65}=z \Rightarrow \cos z=\frac{33}{65}$
Then,

$$
\sin z=\sqrt{1-\left(\frac{33}{65}\right)^{2}}=\frac{56}{65}
$$

Therefore,

$$
\begin{align*}
\tan z & =\frac{33}{56} \\
z & =\tan ^{-1} \frac{56}{33} \\
\cos ^{-1} \frac{33}{65} & =\tan ^{-1} \frac{56}{33} \tag{4}
\end{align*}
$$

Thus, by using (3) and (4)

$$
\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}
$$

Hence proved.

Question 6:

Prove that $\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$.

Solution:

Let $\cos ^{-1} \frac{12}{13}=y \Rightarrow \cos y=\frac{12}{13}$
Then,

$$
\sin y=\sqrt{1-\left(\frac{12}{13}\right)^{2}}=\frac{5}{13}
$$

Therefore,

$$
\begin{align*}
\tan y & =\frac{5}{12} \\
y & =\tan ^{-1} \frac{5}{12} \\
\cos ^{-1} \frac{12}{13} & =\tan ^{-1} \frac{5}{12} \tag{1}
\end{align*}
$$

Now, let $\sin ^{-1} \frac{3}{5}=x \Rightarrow \sin x=\frac{3}{5}$
Then,

$$
\cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}
$$

Therefore,

$$
\begin{align*}
\tan x & =\frac{3}{4} \\
x & =\tan ^{-1} \frac{3}{4} \\
\sin ^{-1} \frac{3}{5} & =\tan ^{-1} \frac{3}{4} \tag{2}
\end{align*}
$$

Now, let $\sin ^{-1} \frac{56}{65}=z \Rightarrow \sin z=\frac{56}{65}$
Then,

$$
\cos z=\sqrt{1-\left(\frac{56}{65}\right)^{2}}=\frac{33}{65}
$$

Therefore,

$$
\begin{align*}
& \tan z=\frac{56}{33} \\
& z=\tan ^{-1} \frac{56}{33} \\
& \sin ^{-1} \frac{56}{65}=\tan ^{-1} \frac{56}{33} \tag{3}
\end{align*}
$$

Thus, by using (1) and (2)

$$
\begin{align*}
\text { LHS } & =\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5} \\
& =\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{3}{4} \\
& =\tan ^{-1}\left[\frac{\frac{5}{12}+\frac{3}{4}}{1-\frac{5}{12} \cdot \frac{3}{4}}\right] \\
& =\tan ^{-1}\left[\frac{\frac{20+36}{48}}{\frac{48-15}{48}}\right] \\
& =\tan ^{-1}\left(\frac{56}{33}\right) \\
& =\sin ^{-1} \frac{56}{65} \tag{Using}\\
& =\text { RHS }
\end{align*}
$$

Question 7:

Prove that $\tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}$.

Solution:

Let $\sin ^{-1} \frac{5}{13}=x \Rightarrow \sin x=\frac{5}{13}$
Then,

$$
\cos x=\sqrt{1-\left(\frac{5}{13}\right)^{2}}=\frac{12}{13}
$$

Therefore,

$$
\begin{align*}
\tan x & =\frac{5}{12} \\
x & =\tan ^{-1} \frac{5}{12} \\
\sin ^{-1} \frac{5}{13} & =\tan ^{-1} \frac{5}{12} \tag{1}
\end{align*}
$$

Now, let $\cos ^{-1} \frac{3}{5}=y \Rightarrow \cos y=\frac{3}{5}$
Then,

$$
\sin y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}
$$

Therefore,

$$
\begin{align*}
\tan y & =\frac{4}{3} \\
y & =\tan ^{-1} \frac{4}{3} \\
\cos ^{-1} \frac{3}{5} & =\tan ^{-1} \frac{4}{3} \tag{2}
\end{align*}
$$

Thus, by using (1) and (2)

$$
\begin{aligned}
\text { RHS } & =\sin ^{-1} \frac{5}{12}+\cos ^{-1} \frac{3}{5} \\
& =\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{4}{3} \\
& =\tan ^{-1}\left(\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \cdot \frac{4}{3}}\right) \\
& =\tan ^{-1}\left(\frac{63}{16}\right) \\
& =\text { LHS }
\end{aligned}
$$

Question 8:

Prove that $\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$

Solution:

$$
\begin{aligned}
\text { LHS } & =\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8} \\
& =\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{7}}{1-\frac{1}{5} \cdot \frac{1}{7}}\right)+\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{8}}{1-\frac{1}{3} \cdot \frac{1}{8}}\right) \\
& =\tan ^{-1}\left(\frac{12}{34}\right)+\tan ^{-1}\left(\frac{11}{23}\right) \\
& =\tan ^{-1}\left(\frac{6}{17}\right)+\tan ^{-1}\left(\frac{11}{23}\right) \\
& =\tan ^{-1}\left(\frac{\frac{6}{17}+\frac{11}{23}}{1-\frac{6}{17} \cdot \frac{11}{23}}\right) \\
& =\tan ^{-1}\left(\frac{325}{325}\right) \\
& =\tan ^{-1}(1) \\
& =\frac{\pi}{4} \\
& =\text { RHS }
\end{aligned}
$$

Question 9:

Prove that $\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right), x \in[0,1]$.

Solution:

Let $x=\tan ^{2} \theta$
Then,

$$
\begin{aligned}
\sqrt{x} & =\tan \theta \\
\theta & =\tan ^{-1} \sqrt{x}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(\frac{1-x}{1+x}\right) & =\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \\
& =\cos 2 \theta
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\text { RHS } & =\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right) \\
& =\frac{1}{2} \cos ^{-1}(\cos 2 \theta) \\
& =\frac{1}{2} \times 2 \theta \\
& =\theta \\
& =\tan ^{-1} \sqrt{x} \\
& =\text { LHS }
\end{aligned}
$$

Question 10:

Prove that $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right)$.

Solution:

$$
\begin{aligned}
\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) & =\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x})^{2}-(\sqrt{1-\sin x})^{2}} \quad \text { (by rationalizing) } \\
& =\frac{(1+\sin x)+(1-\sin x)+2 \sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x-1+\sin x} \\
& =\frac{2\left(1+\sqrt{1-\sin ^{2} x}\right)}{2 \sin x}=\frac{1+\cos x}{\sin x} \\
& =\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \\
& =\cot \frac{x}{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\text { LHS } & =\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) \\
& =\cot ^{-1}\left(\cot \frac{x}{2}\right) \\
& =\frac{x}{2} \\
& =\text { RHS }
\end{aligned}
$$

Question 11:

Prove that $\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=\frac{\pi}{2}-\frac{1}{2} \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq 1$

Solution:

Let $x=\cos 2 \theta \Rightarrow \theta=\frac{1}{2} \cos ^{-1} x$
Thus,

$$
\begin{aligned}
\text { LHS } & =\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right) \\
& =\tan ^{-1} 1-\tan (\tan \theta) \\
& =\frac{\pi}{4}-\theta \\
& =\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x \\
& =R H S
\end{aligned}
$$

Question 12:

Prove that $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$

Solution:

$$
\begin{align*}
\text { LHS } & =\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3} \\
& =\frac{9}{4}\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{3}\right) \\
& =\frac{9}{4}\left(\cos ^{-1} \frac{1}{3}\right) \tag{1}
\end{align*}
$$

Now, let $\cos ^{-1} \frac{1}{3}=x \Rightarrow \cos x=\frac{1}{3}$
Therefore,

$$
\begin{align*}
\sin x & =\sqrt{1-\left(\frac{1}{3}\right)^{2}} \\
& =\frac{2 \sqrt{2}}{3} \\
x & =\sin ^{-1} \frac{2 \sqrt{2}}{3} \\
\cos ^{-1} \frac{1}{3} & =\sin ^{-1} \frac{2 \sqrt{2}}{3} \tag{2}
\end{align*}
$$

Thus, by using (1) and (2)

$$
\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}
$$

Hence proved.

Question 13:

Solve $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$.

Solution:

It is given that $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$
Since, $2 \tan ^{-1}(x)=\tan ^{-1} \frac{2 x}{1-x^{2}}$
Hence,

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}(2 \operatorname{cosec} x) \\
& \Rightarrow\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=(2 \operatorname{cosec} x) \\
& \Rightarrow \frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x} \\
& \Rightarrow \cos x=\sin x \\
& \Rightarrow \tan x=1 \\
& \Rightarrow \tan x=\tan \frac{\pi}{4}
\end{aligned}
$$

Therefore,

$$
x=n \pi+\frac{\pi}{4}, \text { where } n \in Z .
$$

Question 14:
Solve $\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x,(x>0)$

Solution:

Since $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}$
Hence,

$$
\begin{aligned}
& \Rightarrow \tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x \\
& \Rightarrow \tan ^{-1} 1-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x \\
& \Rightarrow \frac{\pi}{4}=\frac{3}{2} \tan ^{-1} x \\
& \Rightarrow \tan ^{-1} x=\frac{\pi}{6} \\
& \Rightarrow x=\tan \frac{\pi}{6} \\
& \Rightarrow x=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Question 15:
Solve $\sin \left(\tan ^{-1} x\right),|x|<1$ is equal to
(A) $\frac{x}{\sqrt{1-x^{2}}}$
(B) $\frac{1}{\sqrt{1-x^{2}}}$
(C) $\frac{1}{\sqrt{1+x^{2}}}$
(D) $\frac{x}{\sqrt{1+x^{2}}}$

Solution:

Let $\tan y=x$
Therefore,

$$
\sin y=\frac{x}{\sqrt{1+x^{2}}}
$$

Now, let $\tan ^{-1} x=y$
Therefore,

$$
y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)
$$

Hence,

$$
\tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)
$$

Thus,

$$
\begin{aligned}
\sin \left(\tan ^{-1} x\right) & =\sin \left(\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)\right) \\
& =\frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

Thus, the correct option is D.

Question 16:

Solve: $\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}$, then x is equal to
(A) $0, \frac{1}{2}$
(B) $1, \frac{1}{2}$
(C) 0
(D) $\frac{1}{2}$

Solution:
It is given that $\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}$

$$
\begin{align*}
& \Rightarrow \sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2} \\
& \Rightarrow-2 \sin ^{-1} x=\frac{\pi}{2}-\sin ^{-1}(1-x) \\
& \Rightarrow-2 \sin ^{-1} x=\cos ^{-1}(1-x) \tag{1}
\end{align*}
$$

Let $\sin ^{-1} x=y \Rightarrow \sin y=x$
Hence,

$$
\begin{aligned}
\cos y & =\sqrt{1-x^{2}} \\
y & =\cos ^{-1}\left(\sqrt{1-x^{2}}\right) \\
\sin ^{-1} x & =\cos ^{-1} \sqrt{1-x^{2}}
\end{aligned}
$$

From equation (1), we have

$$
-2 \cos ^{-1} \sqrt{1-x^{2}}=\cos ^{-1}(1-x)
$$

Put $x=\sin y$

$$
\begin{aligned}
& \Rightarrow-2 \cos ^{-1} \sqrt{1-\sin ^{2} y}=\cos ^{-1}(1-\sin y) \\
& \Rightarrow-2 \cos ^{-1}(\cos y)=\cos ^{-1}(1-\sin y) \\
& \Rightarrow-2 y=\cos ^{-1}(1-\sin y) \\
& \Rightarrow 1-\sin y=\cos (-2 y) \\
& \Rightarrow 1-\sin y=\cos 2 y \\
& \Rightarrow 1-\sin y=1-2 \sin ^{2} y \\
& \Rightarrow 2 \sin ^{2} y-\sin y=0 \\
& \Rightarrow \sin y(2 \sin y-1)=0 \\
& \Rightarrow \sin y=0, \frac{1}{2}
\end{aligned}
$$

Therefore,

$$
x=0, \frac{1}{2}
$$

When $x=\frac{1}{2}$, it does not satisfy the equation.
Hence, $x=0$ is the only solution
Thus, the correct option is C.

Question 17:

Solve $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y}$ is equal to
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{-3 \pi}{4}$

Solution:

$$
\begin{aligned}
\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y} & =\tan ^{-1}\left[\frac{\frac{x}{y}-\frac{x-y}{x+y}}{1+\left(\frac{x}{y}\right)\left(\frac{x-y}{x+y}\right)}\right] \\
& =\tan ^{-1}\left[\frac{\frac{x(x+y)-y(x-y)}{y(x+y)}}{\frac{y(x+y)+x(x-y)}{y(x+y)}}\right] \\
& =\tan ^{-1}\left(\frac{x^{2}+x y-x y+y^{2}}{x y+y^{2}+x^{2}-x y}\right) \\
& =\tan ^{-1}(1) \\
& =\tan ^{-1}\left(\tan \frac{\pi}{4}\right) \\
& =\frac{\pi}{4}
\end{aligned}
$$

Thus, the correct option is C .

