12

Introduction to Three Dimensional Geometry

Short Answer Type Questions

Q. 1 Locate the following points
(i) $(1,-1,3)$
(ii) $(-1,2,4)$
(iii) $(-2,-4,-7)$
(iv) $(-4,2,-5)$

Sol. Given, coordinates are
(i) $(1,-1,3)$
(ii) $B(-1,2,4)$
(iii) $C(-2,-4,-7)$
(iv) $D(-4,2,-5)$

X-increment $=Y$-increment $=Z$-increment $=1$
Q. 2 Name the octant in which each of the following points lies.
(i) $(1,2,3$)
(ii) $(4,-2,3)$
(iii) $(4,-2,-5)$
(iv) $(4,2,-5)$
(v) $(-4,2,5)$
(iv) $(-3,-1,6)$
(vii) $(2,-4,-7)$
(viii) $(-4,2,-5)$.

Sol. (i) Point $(1,2,3)$ lies in first quadrant.
(ii) $(4,-2,3)$ in fourth octant.
(iii) $(4,-2,-5)$ in eight octant.
(iv) $(4,2,-5)$ in fifth octant.
(v) $(-4,2,5)$ in second octant.
(vi) $(-3,-1,6)$ in third octant.
(vii) $(2,-4,-7)$ in eight octant.
(viii) $(-4,2,-5)$ in sixth octant.
Q. 3 If A, B, C be the feet of perpendiculars from a point P on the X, Y and Z-axes respectively, then find the coordinates of A, B and C in each of the following where the point P is
(i) $\mathrm{A}(3,4,2)$
(ii) $B(-5,3,7)$
(iii) $C(4,-3,-5)$

Sol. The coordinates of A, B and C are the following
(i) $A(3,0,0), B(0,4,0), C(0,0,2)$
(ii) $A(-5,0,0), B(0,3,0), C(0,0,7)$
(iii) $A(4,0,0), B(0,-3,0), C(0,0,-5)$
Q. 4 If A, B, and C be the feet of perpendiculars from a point P on the $X Y, Y Z$ and $Z X$-planes respectively, then find the coordinates of A, B and C in each of the following where the point P is
(i) $(3,4,5)$
(ii) $(-5,3,7)$
(iii) $(4,-3,-5)$

Sol. We know that, on XY-plane $z=0$, on YZ-plane, $x=0$ and on $Z X$-plane, $y=0$. Thus, the coordinate of A, B and C are following
(i) $A(3,4,0), B(0,4,5), C(3,0,5)$
(ii) $A(-5,3,0), B(0,3,7), C(-5,0,7)$
(iii) $A(4,-3,0), B(0,-3,-5), C(4,0,-5)$
Q. 5 How far apart are the points $(2,0,0)$ and $(-3,0,0)$?

- Thinking Process

Distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

Sol. Given points, $A(2,0,0)$ and $B(-3,0,0)$

$$
A B=\sqrt{(2+3)^{2}+0^{2}+0^{2}}=5
$$

Q. 6 Find the distance from the origin to $(6,6,7)$.

Sol. Distance from origin to the point $(6,6,7)$

$$
\begin{aligned}
& =\sqrt{(0-6)^{2}+(0-6)^{2}+(0-7)^{2}} \quad\left[\because d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}\right] \\
& =\sqrt{36+36+49} \\
& =\sqrt{121}=11
\end{aligned}
$$

Q. 7 Show that, if $x^{2}+y^{2}=1$, then the point $\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$ is at a distance 1 unit form the origin.
Sol. Given that, $x^{2}+y^{2}=1$
\therefore Distance of the point $\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$ from origin is given as

$$
\begin{aligned}
d & =\left|\sqrt{x^{2}+y^{2}+\left(\sqrt{1-x^{2}-y^{2}}\right)^{2}}\right| \\
& =\left|\sqrt{x^{2}+y^{2}+1-x^{2}-y^{2}}\right|=1
\end{aligned}
$$

Hence proved.
Q. 8 Show that the point $A(1,-1,3), B(2,-4,5)$ and $C(5,-13,11)$ are collinear.

- Thinking Process

If the three points A, B, and C are collinear, then $A B+B C=A C$.
Sol. Given points, $A(1,-1,3), B(2,-4,5)$ and $C(5,-13,11)$.

$$
\begin{aligned}
& A B=\sqrt{(1-2)^{2}+(-1+4)^{2}+(3-5)^{2}} \\
&=\sqrt{1+9+4}=\sqrt{14} \\
& B C=\sqrt{(2-5)^{2}+(-4+13)^{2}+(5-11)^{2}} \\
&=\sqrt{9+81+36}=\sqrt{126} \\
& A C=\sqrt{(1-5)^{2}+(-1+13)^{2}+(3-11)^{2}} \\
&=\sqrt{16+144+64}=\sqrt{224} \\
& \because \quad A B+B C=A C \\
& \Rightarrow \quad \sqrt{14}+\sqrt{126}=\sqrt{224} \\
& \Rightarrow \quad \sqrt{14}+3 \sqrt{14}=4 \sqrt{14} \\
& \text { So, the points } A, B \text { and } C \text { are }
\end{aligned}
$$

Q. 9 Three consecutive vertices of a parallelogram $A B C D$ are $A(6,-2,4)$, $B(2,4,-8)$ and $C(-2,2,4)$. Find the coordinates of the fourth vertex.
Sol. Let the coordinates of the fourth vertices $D(x, y, z)$.

Mid-points of diagonal $A C$,
and

$$
\begin{aligned}
& x=\frac{x_{1}+x_{2}}{2}, y=\frac{y_{1}+y_{2}}{2}, z=\frac{z_{1}+z_{2}}{2} \\
& x=\frac{6-2}{2}=2, y=\frac{-2+2}{2}=0, z=\frac{4+4}{2}=4
\end{aligned}
$$

Since, the mid-point of $A C$ are $(2,0,4)$.
Now, mid-point of $B D, 2=\frac{x+2}{2} \Rightarrow x=2$

$$
\begin{array}{ll}
\Rightarrow & 0=\frac{y+4}{2} \Rightarrow y=-4 \\
\Rightarrow & 4=\frac{z-8}{2} \Rightarrow z=16
\end{array}
$$

So, the coordinates of fourth vertex D is $(2,-4,16)$.
Q. 10 Show that the $\triangle A B C$ with vertices $A(0,4,1), B(2,3,-1)$ and $C(4,5,0)$ is right angled.

- Thinking Process

In a right angled triangle sum of the square of two sides is equal to square of third side.
Sol. Given that, the vertices of the $\triangle A B C$ are $A(0,4,1), B(2,3,-1)$ and $C(4,5,0)$.
Now,

$$
\because \quad A C^{2}=A B^{2}+B C^{2}
$$

$$
\begin{aligned}
A B & =\sqrt{(0-2)^{2}+(4-3)^{3}+(1+1)^{2}} \\
& =\sqrt{4+1+4}=3 \\
B C & =\sqrt{(2-4)^{2}+(3-5)^{2}+(-1-0)^{2}} \\
& =\sqrt{4+4+1}=3 \\
A C & =\sqrt{(0-4)^{2}+(4-5)^{2}+(1-0)^{2}} \\
& =\sqrt{16+1+1}=\sqrt{18}
\end{aligned}
$$

$$
\Rightarrow \quad 18=9+9
$$

Hence, vertices $\triangle A B C$ is a right angled triangle.

Introduction to Three Dimensional Geometry

Q. 11 Find the third vertex of triangle whose centroid is origin and two vertices are $(2,4,6)$ and ($0,-2,5$).

- Thinking Process

The vertices of the $\triangle A B C$ are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$, then the coordinates of the centroid Gare $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$.

Sol. Let third vertex of $\triangle A B C$ i.e., is $A(x, y, z)$.

Given that, the coordinate of centroid G are $(0,0,0)$.

$$
\begin{aligned}
\because & =\frac{x+2+0}{3} \Rightarrow x=-2 \\
0 & =\frac{y+4-2}{3} \Rightarrow y=-2 \\
0 & =\frac{z+6-5}{2} \Rightarrow z=-1
\end{aligned}
$$

Hence, the third vertex of triangle is $(-2,-2,-1)$.
Q. 12 Find the centroid of a triangle, the mid-point of whose sides are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$.

Sol. Given that, mid-points of sides are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$.

Let the vertices of the $\triangle A B C$ are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{3}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$.
Then, mid-point of $B C$ are $(1,2,-3)$.

$$
\begin{align*}
\therefore & 1=\frac{x_{2}+x_{3}}{2} \Rightarrow x_{2}+x_{3}=2 \tag{i}\\
2 & =\frac{y_{2}+y_{3}}{2} \Rightarrow y_{2}+y_{3}=4 \tag{ii}\\
-3 & =\frac{z_{2}+z_{3}}{2} \Rightarrow z_{2}+z_{3}=-6 \tag{iii}
\end{align*}
$$

Similarly for the sides $A B$ and $A C$,

$$
\begin{array}{lc}
\Rightarrow & -1=\frac{x_{1}+x_{2}}{2} \Rightarrow x_{1}+x_{2}=-2 \\
\Rightarrow & 1=\frac{y_{1}+y_{2}}{2} \Rightarrow y_{1}+y_{2}=2 \\
\Rightarrow & -4=\frac{z_{1}+z_{2}}{2} \Rightarrow z_{1}+z_{2}=-8 \\
\Rightarrow & 3=\frac{x_{1}+x_{3}}{2} \Rightarrow x_{1}+x_{3}=6 \\
\Rightarrow & 0=\frac{y_{1}+y_{3}}{2} \Rightarrow y_{1}+y_{3}=0 \\
\Rightarrow & 1=\frac{z_{1}+z_{3}}{2} \Rightarrow z_{1}+z_{3}=2 . \tag{ix}
\end{array}
$$

On adding Eqs. (i) and (iv), we get

$$
\begin{equation*}
x_{1}+2 x_{2}+x_{3}=0 \tag{x}
\end{equation*}
$$

On adding Eqs. (ii) and (v), we get

$$
\begin{equation*}
y_{1}+2 y_{2}+y_{3}=6 \tag{xi}
\end{equation*}
$$

On adding Eqs. (iii) and (vi), we get

$$
\begin{equation*}
z_{1}+2 z_{2}+z_{3}=-14 \tag{xii}
\end{equation*}
$$

From Eqs. (vii) and (x),

$$
2 x_{2}=-6 \Rightarrow x_{2}=-3
$$

If $x_{2}=-3$, then $x_{3}=5$
If $x_{3}=5$, then $x_{1}=1, \quad x_{2}=-3, x_{3}=5$
From Eqs. (xi) and (viii),

$$
2 y_{2}=6 \Rightarrow y_{2}=3
$$

If $y_{2}=3$, then $y_{1}=-1 \quad$ If $y_{1}=-1$, then $y_{3}=1, \quad y_{2}=3, y_{3}=1$
From Eqs. (xii) and (ix),

$$
\begin{aligned}
& 2 z_{2}=-16 \Rightarrow z_{2}=-8 \\
& z_{2}=-8, \text { then } z_{1}=0 \\
& z_{1}=0, \text { then } z_{3}=2 \\
& z_{1}=0, z_{2}=-8, z_{3}=2
\end{aligned}
$$

So, the points are $A(1-1,0), B(-3,3,-8)$ and $C(5,1,2)$.
\therefore Centroid of the triangle $=G\left(\frac{1-3+5}{3}, \frac{-1+3+1}{3}, \frac{0-8+2}{3}\right)$ i.e., $G(1,1,-2)$
Q. 13 The mid-points of the sides of a triangle are $(5,7,11),(0,8,5)$ and $(2,3,-1)$. Find its vertices.
Sol. Let vertices of the $\triangle A B C$ are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$, then the mid-point of $B C(5,7,11)$.

Introduction to Three Dimensional Geometry

$$
\begin{align*}
& 5=\frac{x_{2}+x_{3}}{2} \Rightarrow x_{2}+x_{3}=10 \tag{i}\\
& 7=\frac{y_{2}+y_{3}}{2} \Rightarrow y_{2}+y_{3}=14 \tag{ii}\\
& 11=\frac{z_{2}+z_{3}}{2} \Rightarrow z_{2}+z_{3}=22 \tag{iii}
\end{align*}
$$

Similarly for the sides $A B$ and $A C$,

$$
\begin{align*}
& 2=\frac{x_{1}+x_{2}}{2} \Rightarrow x_{1}+x_{2}=4 \tag{iv}\\
& 3=\frac{y_{1}+y_{2}}{2} \Rightarrow y_{1}+y_{2}=6 \\
& -1=\frac{z_{1}+z_{2}}{2} \Rightarrow z_{1}+z_{2}=-2 \tag{vi}\\
& 0=\frac{x_{1}+x_{3}}{2} \Rightarrow x_{1}+x_{3}=0 \tag{vii}\\
& 8=\frac{y_{1}+y_{3}}{2} \Rightarrow y_{1}+y_{3}=16 \tag{viii}\\
& 5=\frac{z_{1}+z_{3}}{2} \Rightarrow z_{1}+z_{3}=10 \tag{ix}
\end{align*}
$$

From Eqs. (i) and (iv),

$$
\begin{equation*}
x_{1}+2 x_{2}+x_{3}=14 \tag{x}
\end{equation*}
$$

From Eqs. (ii) and (v),

$$
\begin{equation*}
y_{1}+2 y_{2}+y_{3}=20 \tag{xi}
\end{equation*}
$$

From Eqs. (iii) and (vi),

$$
\begin{equation*}
z_{1}+2 z_{2}+z_{3}=20 \tag{xii}
\end{equation*}
$$

From Eqs. (vii) and (x),

$$
\begin{aligned}
2 x_{2} & =14 \Rightarrow x_{2}=7 \\
x_{2} & =7, \text { then } x_{3}=10-7=3 \\
x_{3} & =3, \text { then } x_{1}=-3 \\
x_{1} & =-3, x_{2}=7, x_{3}=3
\end{aligned}
$$

From Eqs. (viii) and (xi),

$$
\begin{aligned}
2 y_{2} & =4 \Rightarrow y_{2}=2 \\
y_{2} & =2, \text { then } y_{1}=4 \\
y_{1} & =4, \text { then } y_{3}=12 \\
y_{1} & =4, y_{2}=2, y_{3}=12
\end{aligned}
$$

From Eqs. (ix) and (xii),

$$
\begin{aligned}
2 z_{2} & =10 \Rightarrow z_{2}=5 \\
z_{2} & =5, \text { then } z_{1}=-7 \\
z_{1} & =-7, \text { then } z_{3}=17 \\
z_{1} & =-7, z_{2}=5, z_{3}=17
\end{aligned}
$$

So, the vertices are $A(-3,4,-7), B(7,2,5)$ and $C(3,12,17)$.
Q. 14 If the vertices of a parallelogram $A B C D$ are $A(1,2,3), B(-1,-2,-1)$ and $C(2,3,2)$, then find the fourth vertex D.

- Thinking Process

The diagonal of a parallelogram have the same vertices. Use this property to solve the problem.
Sol. Let the fourth vertex of the parallelogram $A B C D$ is $D(x, y, z)$. Then, the mid-point of $A C$ are

$$
P\left(\frac{1+2}{2}, \frac{2+3}{2}, \frac{3+2}{2}\right) \text { i.e., } P\left(\frac{3}{2}, \frac{5}{2}, \frac{5}{2}\right) \text {. }
$$

Now, mid-point of $B D$,

$$
\begin{aligned}
& \frac{3}{2}=\frac{-1+x}{2} \Rightarrow x=4 \\
& \frac{5}{2}=\frac{-2+y}{2} \Rightarrow y=7 \\
& \frac{5}{2}=\frac{-1+z}{2} \Rightarrow z=6
\end{aligned}
$$

So, the coordinates of fourth vertex is $(4,7,6)$.
Q. 15 Find the coordinate of the points which trisect the line segment joining the points $A(2,1,-3)$ and $B(5,-8,3)$.

- Thinking Process

If point P divided line segment joint the point $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ in $m_{1}: m_{2}$ internally then the coordinate of P are $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, \frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}\right)$

Sol. Let the $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ trisect line segment $A B$.

$$
\begin{array}{ccc}
\stackrel{A}{P} & P & Q \\
(2,1,-3) & \left(x_{1}, y_{1}, z_{1}\right) & \left(x_{2}, y_{2}, z_{2}\right) \\
(5,-8,3)
\end{array}
$$

Since, the point P divided line $A B$ in $1: 2$ internally, then

$$
\begin{aligned}
& x_{1}=\frac{2 \times 2+1 \times 5}{1+2}=\frac{9}{3}=3 \\
& y_{1}=\frac{2 \times 1+1 \times(-8)}{3}=\frac{-6}{3}=-2 \\
& z_{1}=\frac{2 \times(-3)+1 \times 3}{3}=\frac{-6+3}{3}=\frac{-3}{3}=-1
\end{aligned}
$$

Since, the point Q divide the line segment $A B$ in $2: 1$, then

$$
\begin{aligned}
& x_{2}=\frac{1 \times 2+2 \times 5}{3}=4 \\
& y_{2}=\frac{1 \times 1+(-8 \times 2)}{3}=-5 \\
& z_{2}=\frac{1 \times(-3)+2 \times 3}{3}=-1
\end{aligned}
$$

So, the coordinates of P are $(3,-2,-1)$ and the coordinates of Q are $(4,-5,1)$.

Introduction to Three Dimensional Geometry

Q. 16 If the origin is the centroid of a $\triangle A B C$ having vertices $A(a, 1,3)$, $B(-2, b,-5)$ and $C(4,7, c)$, then find the values of a, b, c.

Sol. Given that origin is the centroid of the $\triangle A B C$ i.e., $G(0,0,0)$.

\because

$$
(-2, b,-5)
$$

$(4,7, c)$

$$
0=\frac{a-2+4}{3} \Rightarrow a=-2
$$

$$
0=\frac{1+b+7}{3} \Rightarrow b=-8
$$

$$
0=\frac{3-5+c}{3} \Rightarrow c=+2
$$

$\therefore \quad a=-2, b=-8$ and $c=2$
Q. 17 If $A(2,2,-3), B(5,6,9), C(2,7,9)$ be the vertices of a triangle. The internal bisector of the angle A meets $B C$ at the point D, then find the coordinates of D.

Sol. Let the coordinates of D are (x, y, z).

Since, D is divide the line $B C$ in two equal parts. So, D is the mid-point of $B C$.

$$
\begin{array}{ll}
\therefore & x=\frac{5+2}{2}=7 / 2 \\
\Rightarrow & y=\frac{6+7}{2}=13 / 2 \\
\Rightarrow & z=\frac{9+9}{2}=9
\end{array}
$$

So, the coordinates of D are $\left(\frac{7}{2}, \frac{13}{2}, 9\right)$.

Long Answer Type Questions

Q. 18 Show that the three points $A(2,3,4), B(1,2,-3)$ and $C(-4,1,-10)$ are collinear and find the ratio in which C divides $A B$.

Sol. Given points are $A(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$.

```
\(\therefore\)
                    \(A B=\sqrt{(2+1)^{2}+(3-2)^{2}+(4+3)^{2}}\)
\[
=\sqrt{9+1+49}=\sqrt{59}
\]
\[
B C=\sqrt{(-1+4)^{2}+(2-1)^{2}+(-3+10)^{2}}
\]
\[
=\sqrt{9+1+49}=\sqrt{59}
\]
\[
A C=\sqrt{(2+4)^{2}+(3-1)^{2}+(4+10)^{2}}
\]
\[
=\sqrt{36+4+196}
\]
\[
=\sqrt{236}=2 \sqrt{59}
\]
Now, \(A B+B C=\sqrt{59}+\sqrt{59}=2 \sqrt{59}\)
\(\because \quad A B+B C=A C\)
Hence, the points \(A, B\) and \(C\) are collinear.
Now,
\(A C: B C=2 \sqrt{59}: \sqrt{59}=2: 1\)
So, \(C\) divide \(A B\) in \(2: 1\) externally.
```

Q. 19 The mid-point of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find its vertices and also find the centroid of the triangle.
Sol. Let the vertices of $\triangle A B C$ are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$.

Since, the mid-point of side $B C$ is $D(1,5,-1)$.
Then, $\quad \begin{array}{ll}\frac{x_{2}+x_{3}}{2}=1 \Rightarrow x_{2}+x_{3}=2 \\ & \frac{y_{2}+y_{3}}{2}=5 \Rightarrow y_{2}+y_{3}=10 \\ & \frac{z_{2}+z_{3}}{2}=-1 \Rightarrow z_{2}+z_{3}=-2\end{array}$
Similarly, the mid-points of $A B$ and $A C$ are $F(2,3,4)$ and $E(0,4,-2)$,
and

$$
\begin{align*}
& \frac{x_{1}+x_{2}}{2}=2 \Rightarrow x_{1}+x_{2}=4 \tag{iv}\\
& \frac{y_{1}+y_{2}}{2}=3 \Rightarrow y_{1}+y_{2}=6 \tag{v}
\end{align*}
$$

Introduction to Three Dimensional Geometry

Now,

$$
\begin{gather*}
\frac{x_{1}+x_{3}}{2}=0 \Rightarrow x_{1}+x_{3}=0 \tag{vii}\\
\frac{y_{1}+y_{3}}{2}=4 \Rightarrow y_{1}+y_{3}=8 \tag{viii}\\
\frac{z_{1}+z_{3}}{2}=-2 \Rightarrow z_{1}+z_{3}=-4 \tag{ix}
\end{gather*}
$$

From Eqs. (i) and (iv),

$$
\begin{equation*}
x_{1}+2 x_{2}+x_{3}=6 \tag{x}
\end{equation*}
$$

From Eqs. (ii) and (v),

$$
\begin{equation*}
y_{1}+2 y_{2}+y_{3}=16 \tag{xi}
\end{equation*}
$$

From Eqs. (iii) and (vi),

$$
\begin{equation*}
z_{1}+2 z_{2}+z_{3}=6 \tag{xii}
\end{equation*}
$$

From Eqs. (vii) and (x),

Then,
From Eqs. (viii) and (xi),

$$
\begin{aligned}
2 x_{2} & =6 \Rightarrow x_{2}=3 \\
x_{2} & =3, \text { then } x_{3}=-1 \\
x_{3} & =-1 \\
x_{1} & =1 \Rightarrow x_{1}=1, x_{2}=3, x_{2}=-1
\end{aligned}
$$

$$
2 y_{2}=8 \Rightarrow y_{2}=4
$$

$$
y_{2}=4
$$

Then,

$$
y_{1}=2
$$

$$
y_{1}=2,
$$

$$
y_{3}=6,
$$

$$
y_{1}=2, y_{2}=4, y_{3}=6
$$

From Eqs. (ix) and (xii),

$$
2 z_{2}=10 \Rightarrow z_{2}=5
$$

$$
z_{2}=5,
$$

Then,

$$
z_{1}=3
$$

$$
z_{1}=3
$$

Then,

$$
z_{3}=-7
$$

$$
z_{1}=3, z_{2}=5, z_{3}=-7
$$

$\Rightarrow \quad \quad z_{1}-3, z_{2}-5, z_{3}-7$
So, the vertices of the triangle $A(1,2,3), B(3,4,5)$ and $C(-1,6,-7)$.
Hence, centroid of the triangle $G\left(\frac{1+3-1}{3}, \frac{2+4+6}{3}, \frac{3+5-7}{3}\right)$ i.e., $G(1,4,1 / 3)$.
Q. 20 Prove that the points $(0,-1,-7),(2,1,-9)$ and $(6,5,-13)$ are collinear. Find the ratio in which the first point divides the join of the other two.

- Thinking Process

First of all find the value of $A B, A C$ and $B C$ using distance formula i.e., $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)+\left(z_{1}-z_{2}\right)^{2}}$, then show that $A B+B C=A C$ for collinearity of the points A, B and C.

Sol. Given points are $A(0,-1,-7), B(2,1,-9)$ and $C(6,5,-13)$

$$
\begin{aligned}
& A B=\sqrt{(0-2)^{2}+(-1-1)^{2}+(-7+9)^{2}}=\sqrt{4+4+4}=2 \sqrt{3} \\
& B C=\sqrt{(2-6)^{2}+(1-5)^{2}+(-9+13)^{2}}=\sqrt{16+16+16}=4 \sqrt{3} \\
& A C=\sqrt{(0-6)^{2}+(-1-5)^{2}+(-7+13)^{2}}=\sqrt{36+36+36}=6 \sqrt{3}
\end{aligned}
$$

$\because \quad A B+B C=2 \sqrt{3}+4 \sqrt{3}=6 \sqrt{3}$
So,

$$
A B+B C=A C
$$

Hence, the points A, B and C are collinear.

$$
A B
$$

So, point A divide B and C in 1:3 externally.
Q. 21 What are the coordinates of the vertices of a cube whose edge is 2 units, one of whose vertices coincides with the origin and the three edges passing through the origin, coincides with the positive direction of the axes through the origin?

Sol. The coordinates of the cube which edge is 2 units, are $(2,0,0),(2,2,0),(0,2,0)$, $(0,2,2),(0,0,2),(2,0,2),(0,0,0)$ and (2, 2, 2).

Objective Type Questions

Q. 22 The distance of point $P(3,4,5)$ from the $Y Z$-plane is
(a) 3 units
(b) 4 units
(c) 5 units
(d) 550

Sol. (a) Given, point is $P(3,4,5)$.
Distance of P from YZ-plane,
$[\because$ YZ-plane, $x=0]$

$$
d=\sqrt{(0-3)^{2}+(4-4)^{2}+(5-5)^{2}}=3
$$

Q. 23 What is the length of foot of perpendicular drawn from the point P $(3,4,5)$ on Y-axis?
(a) $\sqrt{41}$
(b) $\sqrt{34}$
(c) 5
(d) None of these

Sol. (b) We know that, on the y-axis, $x=0$ and $z=0$.
\therefore Point $A(0,4,0)$,

$$
\begin{aligned}
P A & =\sqrt{(0-3)^{2}+(4-4)^{2}+(0-5)^{2}} \\
& =\sqrt{9+0+25}=\sqrt{34}
\end{aligned}
$$

Q. 24 Distance of the point $(3,4,5)$ from the origin $(0,0,0)$ is
(a) $\sqrt{50}$
(b) 3
(c) 4
(d) 5

Sol. (a) Given, points $P(3,4,5)$ and $O(0,0,0)$,

$$
\begin{aligned}
P O & =\sqrt{(0-3)^{2}+(0-4)^{2}+(0-5)^{2}} \\
& =\sqrt{9+16+25}=\sqrt{50}
\end{aligned}
$$

Introduction to Three Dimensional Geometry

Q. 25 If the distance between the points $(a, 0,1)$ and $(0,1,2)$ is $\sqrt{27}$, then the value of a is
(a) 5
(b) ± 5
(c) -5
(d) None of these

Sol. (b) Given, the points are $A(a, 0,1)$ and $B(0,1,2)$.

$$
\begin{array}{lrl}
\therefore & A B & =\sqrt{(a-0)^{2}+(0-1)^{2}+(1-2)^{2}} \\
\Rightarrow & \sqrt{27} & =\sqrt{a^{2}+1+1} \\
\Rightarrow & 27 & =a^{2}+2 \\
\Rightarrow & a^{2} & =25 \\
\Rightarrow & a & = \pm 5
\end{array}
$$

Q. $26 X$-axis is the intersection of two planes
(a) $X Y$ and $X Z$
(b) $Y Z$ and $Z X$
(c) $X Y$ and $Y Z$
(d) None of these

Sol. (a) We know that, on the $X Y$ and $X Z$-planes, the line of intersection is X-axis.

Q. 27 Equation of Y-axis is considered as
(a) $x=0, y=0$
(b) $y=0, z=0$
(c) $z=0, x=0$
(d) None of these

Sol. (c) On the Y-axis, $x=0$ and $z=0$.
Q. 28 The point $(-2,-3,-4)$ lies in the
(a) first octant
(b) seventh octant
(c) second octant
(d) eight octant

Sol. (b) The point $(-2,-3,-4)$ lies in seventh octant.
Q. 29 A plane is parallel to YZ-plane, so it is perpendicular to
(a) X-axis
(b) Y-axis
(c) Z-axis
(d) None of these

Sol. (a) A plane is parallel to $Y Z$-plane, so it is perpendicular to X-axis.
Q. 30 The locus of a point for which $y=0$ and $z=0$, is
(a) equation of X-axis
(b) equation of Y-axis
(c) equation at Z-axis
(d) None of these

Sol. (a) We know that, equation on the X-axis, $y=0, z=0$.
So, the locus of the point is equation of X-axis.
Q. 31 The locus of a point for which $x=0$ is
(a) $X Y$-plane
(b) YZ-plane
(c) ZX-plane
(d) None of these

Sol. (b) On the YZ-plane, $x=0$, hence the locus of the point is $Y Z$-plane.
Q. 32 If a parallelopiped is formed by planes drawn through the points $(5,8,10)$ and $(3,6,8)$ parallel to the coordinate planes, then the length of diagonal of the parallelopiped is
(a) $2 \sqrt{3}$
(b) $3 \sqrt{2}$
(c) $\sqrt{2}$
(d) $\sqrt{3}$

Sol. (a) Given points of the parallelopiped are $A(5,8,10)$ and $B(3,6,8)$.

$$
\begin{aligned}
\therefore \quad A B & =\sqrt{(5-3)^{2}+(6-8)^{2}+(10-8)^{2}} \\
& =\sqrt{4+4+4}=2 \sqrt{3}
\end{aligned}
$$

Q. $33 L$ is the foot of the perpendicular drawn from a point $P(3,4,5)$ on the $X Y$-plane. The coordinates of point L are
(a) $(3,0,0)$
(b) $(0,4,5)$
(c) $(3,0,5)$
(d) None of these

Sol. (d) We know that, on the XY-plane $z=0$.
Hence, the coordinates of the points L are $(3,4,0)$.
Q. $34 L$ is the foot of the perpendicular drawn from a point $(3,4,5)$ on X-axis. The coordinates of L are
(a) $(3,0,0)$
(b) $(0,4,0)$
(c) $(0,0,5)$
(d) None of these

Sol. (a) On the X-axis, $y=0$ and $z=0$
Hence, the required coordinates are $(3,0,0)$.

Introduction to Three Dimensional Geometry

Fillers

Q. 35 The three axes $O X, O Y$ and $O Z$ determine \qquad .
Sol. The three axes $O X, O Y$ and $O Z$ determine three coordinates planes.

Q. 36 The three planes determine a rectangular parallelopiped which has of rectangular faces.
Sol. Three points
Q. 37 The coordinates of a point are the perpendicular distance from the on the respectives axes.
Sol. Given points
Q. 38 The three coordinate planes divide the space into \qquad parts.
Sol. Eight parts
Q. 39 If a point P lies in $Y Z$-plane, then the coordinates of a point on $Y Z$-plane is of the form \qquad
Sol. We know that, on YZ-plane, $x=0$. So, the coordinates of the required point is $(0, y, z)$.
Q. 40 The equation of $Y Z$-plane is \qquad .
Sol. The equation of YZ-plane is $x=0$.
Q. 41 If the point P lies on Z-axis, then coordinates of P are of the form
Sol. On the Z-axis, $x=0$ and $y=0$. So, the required coordinates are $(0,0, z)$.
Q. 42 The equation of Z-axis, are \qquad .
Sol. The equation of Z-axis, $x=0$ and $y=0$.
Q. 43 A line is parallel to $X Y$-plane if all the points on the line have equal

Sol. z-coordinates.
Q. 44 A line is parallel to X-axis, if all the points on the line have equal \qquad .
Sol. y and z -coordinates.
Q. $45 x=a$ represent a plane parallel to \qquad .
Sol. $x=$ a represent a plane parallel to YZ-plane.
Q. 46 The plane parallel to $Y Z$-plane is perpendicular to \qquad .
Sol. The plane parallel to $Y Z$-plane is perpendicular to X-axis.
Q. 47 The length of the longest piece of a string that can be stretched straight in a rectangular room whose dimensions are 10,13 and 8 units are
\qquad .
Sol. Given dimensions are $a=10, b=13$ and $c=8$.

$$
\begin{aligned}
\therefore \quad \text { Required length } & =\sqrt{a^{2}+b^{2}+c^{2}} \\
& =\sqrt{100+169+64}=\sqrt{333}
\end{aligned}
$$

Q. 48 If the distance between the points $(a, 2,1)$ and $(1,-1,1)$ is 5 , then a
\qquad
Sol. Given points are $(a, 2,1)$ and $(1,-1,1)$.

$$
\begin{array}{lr}
\therefore & \sqrt{(a-1)^{2}+(2+1)^{2}+(1-1)^{2}}=5 \\
\Rightarrow & (a-1)^{2}+9+0=25 \\
\Rightarrow & a^{2}-2 a+1+9=25 \\
\Rightarrow & a^{2}-2 a-15=0 \\
\Rightarrow & a^{2}-5 a+3 a-15=0 \\
\Rightarrow & a(a-5)+3(a-5)=0 \\
\Rightarrow & (a-5)(a+3)=0 \\
\Rightarrow & a-5=0 \text { or } a+3=0 \\
\therefore & a=+5 \text { or }-3
\end{array}
$$

Q. 49 If the mid-points of the sides of a triangle $A B, B C$ and $C A$ are $D(1,2,-3)$, $E(3,0,1)$ and $F(-1,1,-4)$, then the centroid of the $\triangle A B C$ is \qquad .
Sol. Let the vertices of $\triangle A B C$ is $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$.

Introduction to Three Dimensional Geometry

Since, D is the mid-point of $A B$, then

$$
\begin{align*}
& \frac{x_{1}+x_{2}}{2}=1 \Rightarrow x_{1}+x_{2}=2 \tag{i}\\
& \frac{y_{1}+y_{2}}{2}=2 \Rightarrow y_{1}+y_{2}=4 \tag{ii}\\
& \frac{z_{1}+z_{2}}{2}=-3 \Rightarrow z_{1}+z_{2}=-6 \tag{iii}
\end{align*}
$$

Similarly, E and F are the mid-points of sides $B C$ and $A C$, respectively.

$$
\begin{align*}
& \frac{x_{2}+x_{3}}{2}=3 \Rightarrow x_{2}+x_{3}=6 \tag{iv}\\
& \frac{y_{2}+y_{3}}{2}=0 \Rightarrow y_{2}+y_{3}=0 \tag{v}\\
& \frac{z_{2}+z_{3}}{2}=1 \Rightarrow z_{2}+z_{3}=2 \tag{vi}\\
& \frac{x_{1}+x_{3}}{2}=-1 \Rightarrow x_{1}+x_{3}=-2 \tag{vii}\\
& \frac{y_{1}+y_{3}}{2}=1 \Rightarrow y_{1}+y_{3}=2 \tag{viii}\\
& \frac{z_{1}+z_{3}}{2}=-4 \Rightarrow z_{1}+z_{3}=-8 \tag{ix}
\end{align*}
$$

From Eqs. (i) and (iv),

$$
\begin{equation*}
x_{1}+2 x_{2}+x_{3}=8 \tag{x}
\end{equation*}
$$

From Eqs. (ii) and (v),

$$
\begin{equation*}
y_{1}+2 y_{2}+y_{3}=4 \tag{xi}
\end{equation*}
$$

From Eqs. (iii) and (vi),

$$
\begin{equation*}
z_{1}+2 z_{2}+z_{3}=-4 \tag{xii}
\end{equation*}
$$

From Eqs. (vii) and (x),

$$
\begin{array}{ll}
\Rightarrow & \begin{array}{l}
2 x_{2}=10 \Rightarrow x_{2}=5 \\
x_{2}
\end{array}=5, \text { then } x_{3}=1 \\
\text { If } x_{3}=1 \text {, then } x_{1}=-3 & \\
\because & x_{1}=-3, x_{2}=5, x_{3}=1 \\
\text { From Eqs. (viii) and (xi), } & 2 y_{2}=2 \Rightarrow y_{2}=1 \\
& y_{2}=1 \text {, then } y_{3}=-1 \\
\text { If } & y_{3}=-1, \text { then } y_{1}=3 \\
\text { If } & y_{1}=3, y_{2}=1, y_{3}=-1
\end{array}
$$

From Eqs. (ix) and (xii),

If

$$
\begin{aligned}
2 z_{2} & =4 \Rightarrow z_{2}=2 \\
z_{2} & =2, \text { then } z_{3}=0 \\
z_{3} & =0, \text { then } z_{1}=-8
\end{aligned}
$$

$$
\because \quad z_{1}=-8, z_{2}=2, z_{3}=0
$$

So, the vertices of $\triangle A B C$ are $A(-3,3,-8), B(5,1,2)$ and $C(1,-1,0)$.
Hence, coordinates of centroid of $\triangle A B C, G\left(\frac{-3+5+1}{3}, \frac{3+1-1}{3}, \frac{-8+2+0}{3}\right)$
i.e.,

$$
G(1,1,-2) .
$$

Q. 50 Match each item given under the Column I to its correct answer given under Column II.

	Column I	Column II	
(i)	In -XY-plane	(a)	Ist octant
(ii)	Point $(2,3,4)$ lies in the	(b)	YZ-plane
(iii)	Locus of the points having X coordinate 0 is	(c)	z-coordinate is zero
(iv)	A line is parallel to X-axis if and only	(d)	Z-axis
(v)	If $X=0, y=0$ taken together will represent the	(e)	plane parallel to $X Y$-plane
(vi)	$z=c$ represent the plane	(f)	if all the points on the line have equal y and z-coordinates
(vii)	Planes $X=a, Y=b$ represent the line	(f)	from the point on the respective
(viii)	Coordinates of a point are the distances from the origin to the feet of perpendiculars	(h)	parallel to Z-axis
(ix)	A ball is the solid region in the space enclosed by a		
(x)	Region in the plane enclosed by a circle is known as a		sphere

Sol. (i) In XY-plane, z-coordinates is zero.
(ii) The point $(2,3,4)$ lies in 1st octant
(iii) Locus of the points having x-coordinate is zero is $Y Z$-plane.
(iv) A line is parallel to X-axis if and only if all the points on the line have equal y and z-coordinates.
(v) $x=0, y=0$ represent Z-axis.
(vi) $z=c$ represent the plane parallel to $X Y$-plane.
(vii) The planes $x=a, y=b$ represent the line parallel to Z-axis.
(viii) Coordinates of a point are the distances from the origin to the feet of perpendicular from the point on the respective.
(ix) A ball is the solid region in the space enclosed by a sphere.
(x) The region in the plane enclosed by a circle is known as a disc.

