Chapter 7 Integrals

EXERCISE 7.1

Question 1:

Find an anti-derivative (or integral) of the following functions by the method of inspection, $\sin 2 x$.

Solution:

$\Rightarrow \frac{d}{d x}(\cos 2 x)=-2 \sin 2 x$
$\Rightarrow \sin 2 x=-\frac{1}{2} \frac{d}{d x}(\cos 2 x)$
$\Rightarrow \sin 2 x=\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x\right)$
Thus, the anti-derivative of $\sin 2 x$ is $-\frac{1}{2} \cos 2 x$

Question 2:

Find an anti-derivative (or integral) of the following functions by the method of inspection, $\cos 3 x$.

Solution:

$\Rightarrow \frac{d}{d x}(\sin 3 x)=3 \cos 3 x$
$\Rightarrow \cos 3 x=\frac{1}{3} \frac{d}{d x}(\sin 3 x)$
$\Rightarrow \cos 3 x=\frac{d}{d x}\left(\frac{1}{3} \sin 3 x\right)$
Thus, the anti-derivative of $\cos 3 x$ is $\frac{1}{3} \sin 3 x$

Question 3:

Find an anti-derivative (or integral) of the following functions by the method of inspection, $e^{2 x}$.

Solution:

$\Rightarrow \frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x}$
$\Rightarrow e^{2 x}=\frac{1}{2} \frac{d}{d x}\left(e^{2 x}\right)$
$\Rightarrow e^{2 x}=\frac{d}{d x}\left(\frac{1}{2} e^{2 x}\right)$
Thus, the anti-derivative of $e^{2 x}$ is $\frac{1}{2} e^{2 x}$.

Question 4:

Find an anti-derivative (or integral) of the following functions by the method of inspection, $(a x+b)^{2}$.

Solution:

$\frac{d}{d x}(a x+b)^{3}=3 a(a x+b)^{2}$
$\Rightarrow(a x+b)^{2}=\frac{1}{3 a} \frac{d}{d x}(a x+b)^{3}$
$\Rightarrow(a x+b)^{2}=\frac{d}{d x}\left(\frac{1}{3 a}(a x+b)^{3}\right)$
Thus, the anti-derivative $(a x+b)^{2}$ of is $\frac{1}{3 a}(a x+b)^{3}$

Question 5:

Find an anti-derivative (or integral) of the following functions by the method of inspection, $\sin 2 x-4 e^{3 x}$

Solution:

$\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\right)=\sin 2 x-4 e^{3 x}$
Thus, the anti-derivative of $\sin 2 x-4 e^{3 x}$ is $\left(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\right)$
Find the following integrals in Exercises 6 to 20:
Question 6:
$\int\left(4 e^{3 x}+1\right) d x$

Solution:

$$
\begin{aligned}
\int\left(4 e^{3 x}+1\right) d x & =4 \int e^{3 x} d x+\int 1 d x \\
& =4\left(\frac{e^{3 x}}{3}\right)+x+C \\
& =\frac{4}{3} e^{3 x}+x+C
\end{aligned}
$$

Question 7:
$\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x$
Solution:

$$
\begin{aligned}
\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x & =\int\left(x^{2}-1\right) d x \\
& =\int x^{2} d x-\int 1 d x \\
& =\frac{x^{3}}{3}-x+C
\end{aligned}
$$

Question 8:
$\int\left(a x^{2}+b x+c\right) d x$
Solution:

$$
\begin{aligned}
\int\left(a x^{2}+b x+c\right) d x & =a \int x^{2} d x+b \int x d x+c \int 1 d x \\
& =a\left(\frac{x^{3}}{3}\right)+b\left(\frac{x^{2}}{2}\right)+c x+C \\
& =\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x+C
\end{aligned}
$$

Question 9:

$$
\int\left(2 x^{2}+e^{x}\right) d x
$$

Solution:

$$
\begin{aligned}
\int\left(2 x^{2}+e^{x}\right) d x & =2 \int x^{2} d x+\int e^{x} d x \\
& =2\left(\frac{x^{3}}{3}\right)+e^{x}+C \\
& =\frac{2}{3} x^{3}+e^{x}+C
\end{aligned}
$$

Question 10:
$\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x$

Solution:

$$
\begin{aligned}
\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x & =\int\left(x+\frac{1}{x}-2\right) \\
& =\int x d x+\int \frac{1}{x} d x-2 \int 1 d x \\
& =\frac{x^{2}}{2}+\log |x|-2 x+C
\end{aligned}
$$

Question 11:
$\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x$
Solution:

$$
\begin{aligned}
\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x & =\int\left(x+5-4 x^{-2}\right) d x \\
& =\int x d x+5 \int 1 d x-4 \int x^{-2} d x \\
& =\frac{x^{2}}{2}+5 x-4\left(\frac{x^{-1}}{-1}\right)+C \\
& =\frac{x^{2}}{2}+5 x+\frac{4}{x}+C
\end{aligned}
$$

Question 12:
$\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x$

Solution:

$$
\begin{aligned}
\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x & =\int\left(x^{\frac{5}{2}}+3 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}\right) d x \\
& =\frac{x^{\frac{7}{2}}}{\frac{7}{2}}+\frac{3\left(x^{\frac{3}{2}}\right)}{\frac{3}{2}}+\frac{4\left(x^{\frac{1}{2}}\right)}{\frac{1}{2}}+C \\
& =\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 x^{\frac{1}{2}}+C \\
& =\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 \sqrt{x}+C
\end{aligned}
$$

Question 13:

$$
\int \frac{x^{3}-x^{2}+x-1}{x-1} d x
$$

Solution:

$$
\begin{aligned}
\int \frac{x^{3}-x^{2}+x-1}{x-1} d x & =\int\left[\frac{\left(x^{2}+1\right)(x-1)}{x-1}\right] d x \\
& =\int\left(x^{2}+1\right) d x \\
& =\int x^{2} d x+\int 1 d x \\
& =\frac{x^{3}}{3}+x+C
\end{aligned}
$$

Question 14:
$\int(1-x) \sqrt{x} d x$
Solution:

$$
\begin{aligned}
\int(1-x) \sqrt{x} d x & =\int\left(\sqrt{x}-x^{\frac{3}{2}}\right) d x \\
& =\int x^{\frac{1}{2}} d x-\int x^{\frac{3}{2}} d x \\
& =\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+C \\
& =\frac{2}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}+C
\end{aligned}
$$

Question 15:
$\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x$
Solution:

$$
\begin{aligned}
\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x & =\int\left(3 x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+3 x^{\frac{1}{2}}\right) d x \\
& =3 \int x^{\frac{5}{2}} d x+2 \int x^{\frac{3}{2}} d x+3 \int x^{\frac{1}{2}} d x \\
& =3\left(\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\right)+2\left(\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)+3\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)+C \\
& =\frac{6}{7} x^{\frac{7}{2}}+\frac{4}{5} x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+C
\end{aligned}
$$

Question 16:

$$
\int\left(2 x-3 \cos x+e^{x}\right) d x
$$

Solution:

$$
\begin{aligned}
\int\left(2 x-3 \cos x+e^{x}\right) d x & =2 \int x d x-3 \int \cos x d x+\int e^{x} d x \\
& =\frac{2 x^{2}}{2}-3(\sin x)+e^{x}+C \\
& =x^{2}-3 \sin x+e^{x}+C
\end{aligned}
$$

Question 17:
$\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x$

Solution:

$$
\begin{aligned}
\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x & =2 \int x^{2} d x-3 \int \sin x d x+5 \int x^{\frac{1}{2}} d x \\
& =\frac{2 x^{3}}{3}-3(-\cos x)+5\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)+C \\
& =\frac{2}{3} x^{3}+3 \cos x+\frac{10}{3} x^{\frac{3}{2}}+C
\end{aligned}
$$

Question 18:
$\int \sec x(\sec x+\tan x) d x$

Solution:

$$
\begin{aligned}
\int \sec x(\sec x+\tan x) d x & =\int\left(\sec ^{2} x+\sec x \tan x\right) d x \\
& =\int \sec ^{2} x d x+\int \sec x \tan x d x \\
& =\tan x+\sec x+C
\end{aligned}
$$

Question 19:
$\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$

Solution:

$$
\begin{aligned}
\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x & =\int \frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}} d x \\
& =\int \frac{\sin ^{2} x}{\cos ^{2} x} d x \\
& =\int \tan ^{2} x d x \\
& =\int\left(\sec ^{2} x-1\right) d x \\
& =\int \sec ^{2} x d x-\int 1 d x \\
& =\tan x-x+C
\end{aligned}
$$

Question 20:
$\int \frac{2-3 \sin x}{\cos ^{2} x} d x$

Solution:

$$
\begin{aligned}
\int \frac{2-3 \sin x}{\cos ^{2} x} d x & =\int\left(\frac{2}{\cos ^{2} x}-\frac{3 \sin x}{\cos ^{2} x}\right) d x \\
& =\int 2 \sec ^{2} x d x-3 \int \tan x \sec x d x \\
& =2 \tan x-3 \sec x+C
\end{aligned}
$$

Choose the correct answer in Exercises 21 and 22

Question 21:

The anti-derivative of $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$ equals
(A) $\frac{1}{3} x^{\frac{1}{3}}+2 x^{\frac{1}{2}}+C$
(B) $\frac{2}{3} x^{\frac{2}{3}}+\frac{1}{2} x^{2}+C$
(C) $\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+C$
(D) $\frac{3}{3} x^{\frac{3}{2}}+\frac{1}{2} x^{\frac{1}{2}}+C$

Solution:

$$
\begin{aligned}
\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) & =\int x^{\frac{1}{2}} d x+\int x^{-\frac{1}{2}} d x \\
& =\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+C \\
& =\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+C
\end{aligned}
$$

Thus, the correct option is C.

Question 22:

If $\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$ such that $f(2)=0$, then $f(x)$ is
(A) $x^{4}+\frac{1}{x^{3}}-\frac{129}{8}$
(B) $x^{3}+\frac{1}{x^{4}}+\frac{129}{8}$
(C) $x^{4}+\frac{1}{x^{3}}+\frac{129}{8}$
(D) $x^{3}+\frac{1}{x^{4}}-\frac{129}{8}$

Solution:

Given, $\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$
Anti-derivative of $4 x^{3}-\frac{3}{x^{4}}=f(x)$ Therefore,

$$
\begin{aligned}
& f(x)=\int 4 x^{3}-\frac{3}{x^{4}} d x \\
& f(x)=4 \int x^{3} d x-3 \int\left(x^{-4}\right) d x \\
& f(x)=4\left(\frac{x^{4}}{4}\right)-3\left(\frac{x^{-3}}{-3}\right)+C \\
& f(x)=x^{4}+\frac{1}{x^{3}}+C
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \Rightarrow f(2)=0 \\
& \Rightarrow f(2)=(2)^{4}+\frac{1}{(2)^{3}}+C=0 \\
& \Rightarrow 16+\frac{1}{8}+C=0 \\
& \Rightarrow C=-\left(16+\frac{1}{8}\right) \\
& \Rightarrow C=-\frac{129}{8} \\
& \Rightarrow f(x)=x^{4}+\frac{1}{x^{3}}-\frac{129}{8}
\end{aligned}
$$

Thus, the correct option is A.

EXERCISE 7.2

Integrate the functions in Exercises 1 to 37:
Question 1:
$\frac{2 x}{1+x^{2}}$
Solution:
Put $1+x^{2}=t$
Therefore, $2 x d x=d t$

$$
\begin{aligned}
\int \frac{2 x}{1+x^{2}} d x=\int \frac{1}{t} d t & =\log |t|+C \\
& =\log \left|1+x^{2}\right|+C \\
& =\log \left(1+x^{2}\right)+C
\end{aligned}
$$

Question 2:
$\frac{(\log x)^{2}}{x}$

Solution:
Put $\log |x|=t$
Therefore, $\frac{1}{x} d x=d t$

$$
\begin{aligned}
\int \frac{(\log |x|)^{2}}{x} d x & =\int t^{2} d t \\
& =\frac{t^{3}}{3}+C \\
& =\frac{(\log |x|)^{3}}{3}+C
\end{aligned}
$$

Question 3:
$\frac{1}{x+x \log x}$
Solution:
$\frac{1}{x+x \log x}=\frac{1}{x(1+\log x)}$
Put $1+\log x=t$

Therefore, $\frac{1}{x} d x=d t$

$$
\begin{aligned}
\int \frac{1}{x(1+\log x)} d x=\int \frac{1}{t} d t & =\log |t|+C \\
& =\log |1+\log x|+C
\end{aligned}
$$

Question 4:
$\sin x \sin (\cos x)$

Solution:

Put $\cos x=t$
Therefore, $-\sin x d x=d t$

$$
\begin{aligned}
\int \sin x \sin (\cos x) d x=-\int \sin t d t & =-[-\cos t]+C \\
& =\cos t+C \\
& =\cos (\cos x)+C
\end{aligned}
$$

Question 5:
$\operatorname{Sin}(a x+b) \cos (a x+b)$

Solution:

$\sin (a x+b) \cos (a x+b)=\frac{2 \sin (a x+b) \cos (a x+b)}{2}$

$$
=\frac{\sin 2(a x+b)}{2}
$$

Put $2(a x+b)=t$
Therefore, $2 a d x=d t$

$$
\begin{aligned}
\int \frac{\sin 2(a x+b)}{2} d x & =\frac{1}{2} \int \frac{\sin t d t}{2 a} \\
& =\frac{1}{4 a}[-\cos t]+C \\
& =\frac{-1}{4 a} \cos 2(a x+b)+C
\end{aligned}
$$

Question 6:
$\sqrt{a x+b}$
Solution:
Put $a x+b=t$
Therefore,

$$
\begin{aligned}
& \Rightarrow a d x=d t \\
& \Rightarrow d x=\frac{1}{a} d t
\end{aligned}
$$

$\int(a x+b)^{\frac{1}{2}} d x=\frac{1}{a} \int t^{\frac{1}{2}} d t=\frac{1}{a}\left(\frac{t^{\frac{1}{2}}}{\frac{3}{2}}\right)+C$

$$
=\frac{2}{3 a}(a x+b)^{\frac{3}{2}}+C
$$

Question 7:
$x \sqrt{x+2}$

Solution:
Put, $x+2=t$
$\therefore d x=d t$
$\Rightarrow \int x \sqrt{x+2}=\int(t-2) \sqrt{t} d t$
$=\int\left(t^{\frac{3}{2}}-2 t^{\frac{1}{2}}\right) d t$
$=\int t^{\frac{3}{2}} d t-2 \int t^{\frac{1}{2}} d t$
$=\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C$
$=\frac{2}{5} t^{\frac{5}{2}}-\frac{4}{3} t^{\frac{3}{2}}+C$
$=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+C$

Question 8:
$x \sqrt{1+2 x^{2}}$

Solution:

$$
\begin{aligned}
& \text { Put, } 1+2 x^{2}=t \\
& \begin{aligned}
& \therefore 4 x d x=d t \\
& \Rightarrow \int x \sqrt{1+2 x^{2}} d x=\int \frac{\sqrt{t}}{4} d t \\
&=\frac{1}{4} \int t^{\frac{1}{2}} d t \\
&=\frac{1}{4}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C \\
&=\frac{1}{6}\left(1+2 x^{2}\right)^{\frac{3}{2}}+C
\end{aligned}
\end{aligned}
$$

Question 9:
$(4 x+2) \sqrt{x^{2}+x+1}$
Solution:

Put, $x^{2}+x+1=t$
$\therefore(2 x+1) d x=d t$
$\int(4 x+2) \sqrt{x^{2}+x+1} d x$
$=\int 2 \sqrt{t} d t$
$=2 \int \sqrt{t} d t$
$=2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C=\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+C$

Question 10:
$\frac{1}{x-\sqrt{x}}$

Solution:
$\frac{1}{x-\sqrt{x}}=\frac{1}{\sqrt{x(\sqrt{x}-1)}}$
Put, $(\sqrt{x}-1)=t$
$\therefore \frac{1}{2 \sqrt{x}} d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{x}(\sqrt{x}-1)} d x=\int \frac{2}{t} d t$
$=2 \log |t|+C$
$=2 \log |\sqrt{x}-1|+C$

Question 11:
$\frac{x}{\sqrt{x+4}}, x>0$

Solution:
Put, $x+4=t$
$\therefore d x=d t$
$\int \frac{x}{\sqrt{x+4}} d x=\int \frac{(t-4)}{\sqrt{t}} d t=\int\left(\sqrt{t}-\frac{4}{\sqrt{t}}\right) d t$
$=\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)-4\left(\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\right)+C=\frac{2}{3}(t)^{\frac{3}{2}}-8(t)^{\frac{1}{2}}+C$
$=\frac{2}{3} t \cdot t^{\frac{1}{2}}-8 t^{\frac{1}{2}}+C$
$=\frac{2}{3} t^{\frac{1}{2}}(t-12)+C$
$=\frac{2}{3}(x+4)^{\frac{1}{2}}(x+4-12)+C$
$=\frac{2}{3} \sqrt{x+4}(x-8)+C$

Question 12:
$\left(x^{3}-1\right)^{\frac{1}{3}} x^{5}$

Solution:
Put, $x^{3}-1=t$
$\therefore 3 x^{2} d x=d t$
$\Rightarrow \int\left(x^{3}-1\right)^{\frac{1}{3}} x^{5} d x=\int\left(x^{3}-1\right)^{\frac{1}{3}} x^{3} x^{2} d x$
$\Rightarrow \int t^{\frac{1}{3}}(t+1) \frac{d t}{3}=\frac{1}{3} \int\left(t^{\frac{4}{3}}+t^{\frac{1}{3}}\right) d t$
$=\frac{1}{3}\left[\frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}}\right]+C$
$=\frac{1}{3}\left[\frac{3}{7} t^{\frac{7}{3}}+\frac{3}{4} t^{\frac{4}{3}}\right]+C$
$=\frac{1}{7}\left(x^{3}-1\right)^{\frac{7}{3}}+\frac{1}{4}\left(x^{3}-1\right)^{\frac{4}{3}}+C$

Question 13:
$\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}$
Solution:
Put, $2+3 x^{3}=t$
$\therefore 9 x^{2} d x=d t$
$\Rightarrow \int \frac{x^{2}}{\left(2+3 x^{3}\right)^{3}} d x=\frac{1}{9} \int \frac{d t}{(t)^{3}}$
$=\frac{1}{9}\left[\frac{t^{-2}}{-2}\right]+C$
$=-\frac{1}{18}\left(\frac{1}{t^{2}}\right)+C$
$=\frac{-1}{18\left(2+3 x^{3}\right)^{2}}+C$

Question 14:
$\frac{1}{x(\log x)^{m}}, x>0$
Solution:
Put, $\log x=t$
$\therefore \frac{1}{x} d x=d t$
$\Rightarrow \int \frac{1}{x(\log x)^{m}} d x=\int \frac{d t}{(t)^{m}}=\left(\frac{t^{-m-1}}{1-m}\right)+C$
$=\frac{(\log x)^{1-m}}{(1-m)}+C$
Question 15:
$\frac{x}{9-4 x^{2}}$
Solution:
Put, $9-4 x^{2}=t$
$\therefore-8 x d x=d t$
$\Rightarrow \int \frac{x}{9-4 x^{2}} d x=\frac{-1}{8} \int \frac{1}{t} d t$
$=\frac{-1}{8} \log |t|+C$
$=\frac{-1}{8} \log \left|9-4 x^{2}\right|+C$

Question 16:
$e^{2 x+3}$
Solution:
Put, $2 x+3=t$
$\therefore 2 d x=d t$
$\Rightarrow \int e^{2 x+3} d x=\frac{1}{2} \int e^{t} d t$
$=\frac{1}{2}\left(e^{t}\right)+C$
$=\frac{1}{2} e^{(2 x+3)}+C$

Question 17:
$\frac{x}{e^{x^{2}}}$

Solution:
Put, $x^{2}=t$
$\therefore 2 x d x=d t$
$\Rightarrow \int \frac{x}{e^{x^{2}}} d x=\frac{1}{2} \int \frac{1}{e^{t}} d t=\frac{1}{2} \int e^{-t} d t$
$=\frac{1}{2}\left(\frac{e^{-t}}{-1}\right)+C$
$=-\frac{1}{2} e^{-x^{2}}+C$
$=\frac{-1}{2 e^{x^{2}}}+C$

Question 18:
$\frac{e^{\tan ^{-1} x}}{1+x^{2}}$

Solution:
Put, $\tan ^{-1} x=t$
$\therefore \frac{1}{1+x^{2}} d x=d t$
$\Rightarrow \int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x=\int e^{t} d t$
$=e^{t}+C$
$=e^{\tan ^{-1} x}+C$

Question 19:
$\frac{e^{2 x}-1}{e^{2 x}+1}$
Solution:
$\frac{e^{2 x}-1}{e^{2 x}+1}$
Dividing Nr and Dr by e^{x}, we get
$\frac{\frac{e^{2 x}-1}{e^{x}}}{\frac{e^{2 x}+1}{e^{x}}}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Let $e^{x}+e^{-x}=t$
$\left(e^{x}-e^{-x}\right) d x=d t$
$\Rightarrow \int \frac{e^{2 x}-1}{e^{2 x}+1} d x=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$
$=\int \frac{d t}{t}$
$=\log |t|+C$
$=\log \left|e^{x}+e^{-x}\right|+C$

Question 20:
$\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}$

Solution:

Put, $e^{2 x}+e^{-2 x}=t$
$\left(2 e^{2 x}-2 e^{-2 x}\right) d x=d t$
$\Rightarrow 2\left(e^{2 x}-e^{-2 x}\right) d x=d t$
$\Rightarrow \int\left(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\right) d x=\int \frac{d t}{2 t}$
$=\frac{1}{2} \int \frac{1}{t} d t$
$=\frac{1}{2} \log |t|+C$
$=\frac{1}{2} \log \left|e^{2 x}+e^{-2 x}\right|+C$

Question 21:
$\tan ^{2}(2 x-3)$

Solution:
$\tan ^{2}(2 x-3)=\sec ^{2}(2 x-3)-1$
Put, $2 x-3=t$
$\therefore 2 d x=d t$
$\Rightarrow \int \tan ^{2}(2 x-3) d x=\int\left[\sec ^{2}(2 x-3)-1\right] d x$
$=\frac{1}{2} \int\left(\sec ^{2} t\right) d t-\int 1 d x=\frac{1}{2} \int \sec ^{2} t d t-\int 1 d x$
$=\frac{1}{2} \tan t-x+C$
$=\frac{1}{2} \tan (2 x-3)-x+C$
Question 22:
$\sec ^{2}(7-4 x)$

Solution:

Put, $7-4 x=t$
$\therefore-4 d x=d t$
$\therefore \int \sec ^{2}(7-4 x) d x=\frac{-1}{4} \int \sec ^{2} t d t$
$=\frac{-1}{4}(\tan t)+C$
$=\frac{-1}{4} \tan (7-4 x)+C$
Question 23:
$\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$

Solution:

Put, $\sin ^{-1} x=t$
$\frac{1}{\sqrt{1-x^{2}}} d x=d t$
$\Rightarrow \int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int t d t$
$=\frac{t^{2}}{2}+C=\frac{\left(\sin ^{-1} x\right)^{2}}{2}+C$

Question 24:
$2 \cos x-3 \sin x$
$6 \cos x+4 \sin x$
Solution:
$\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}=\frac{2 \cos x-3 \sin x}{2(3 \cos x+2 \sin x)}$
Let $3 \cos x+2 \sin x=t$
$(-3 \sin x+2 \cos x) d x=d t$
$\int \frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x} d x=\int \frac{d t}{2 t}$
$=\frac{1}{2} \int_{t}^{1} d t$
$=\frac{1}{2} \log |t|+C$
$=\frac{1}{2} \log |2 \sin x+3 \cos x|+C$
Question 25:
$\frac{1}{\cos ^{2} x(1-\tan x)^{2}}$

Solution:
$\frac{1}{\cos ^{2} x(1-\tan x)^{2}}=\frac{\sec ^{2} x}{(1-\tan x)^{2}}$
Let $(1-\tan x)=t$
$-\sec ^{2} x d x=d t$
$\Rightarrow \int \frac{\sec ^{2} x}{(1-\tan x)^{2}} d x=\int \frac{-d t}{t^{2}}$
$=-\int t^{-2} d t$
$=\frac{1}{t}+C$
$=\frac{1}{(1-\tan x)}+C$

Question 26:
$\frac{\cos \sqrt{x}}{\sqrt{x}}$
Solution:
Let $\sqrt{x}=t$
$\frac{1}{2 \sqrt{x}} d x=d t$
$\Rightarrow \int \frac{\cos \sqrt{x}}{\sqrt{x}} d x=2 \int \cos t d t$
$=2 \sin t+C$
$=2 \sin \sqrt{x}+C$

Question 27:
$\sqrt{\sin 2 x} \cos 2 x$
Solution:
Put, $\sin 2 x=t$
So, $2 \cos 2 x d x=d t$
$\Rightarrow \int \sqrt{\sin 2 x} \cos 2 x d x=\frac{1}{2} \int \sqrt{t} d t$
$=\frac{1}{2}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C$
$=\frac{1}{3} t^{\frac{3}{2}}+C$
$=\frac{1}{3}(\sin 2 x)^{\frac{3}{2}}+C$

Question 28:
$\frac{\cos x}{\sqrt{1+\sin x}}$
Solution:
Put, $1+\sin x=t$
$\therefore \cos x d x=d t$
$\Rightarrow \int \frac{\cos x}{\sqrt{1+\sin x}} d x=\int \frac{d t}{\sqrt{t}}$
$=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+C$
$=2 \sqrt{t}+C$
$=2 \sqrt{1+\sin x}+C$

Question 29:
$\cot x \log \sin x$
Solution:
Let $\log \sin x=t$
$\Rightarrow \frac{1}{\sin x} \cos x d x=d t$
$\therefore \cot x d x=d t$
$\Rightarrow \int \cot x \log \sin x d x=\int t d t$
$=\frac{t^{2}}{2}+C$
$=\frac{1}{2}(\log \sin x)^{2}+C$

Question 30:
$\frac{\sin x}{1+\cos x}$

Solution:

Put, $1+\cos x=t$
$\therefore-\sin x d x=d t$
$\Rightarrow \int \frac{\sin x}{1+\cos x} d x=\int-\frac{d t}{t}$
$=-\log |t|+C$
$=-\log |1+\cos x|+C$

Question 31:
$\frac{\sin x}{(1+\cos x)^{2}}$

Solution:

Put, $1+\cos x=t$
$\therefore-\sin x d x=d t$
$\Rightarrow \int \frac{\sin x}{(1+\cos x)^{2}} d x=\int-\frac{d t}{t^{2}}$
$=-\int t^{-2} d t$
$=\frac{1}{t}+C$
$=\frac{1}{(1+\cos x)}+C$

Question 32:
$\frac{1}{1+\cos x}$
Solution:
Let I $=\int \frac{1}{1+\cos x} d x$
$=\int \frac{1}{1+\frac{\cos x}{\sin x}} d x$
$=\int \frac{\sin x}{\sin x+\cos x} d x$
$=\frac{1}{2} \int \frac{2 \sin x}{\sin x+\cos x} d x$
$=\frac{1}{2} \int \frac{(\sin x+\cos x)+(\sin x-\cos x)}{(\sin x+\cos x)} d x$
$=\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\sin x-\cos x}{\sin x+\cos x} d x$
$=\frac{1}{2}(x)+\frac{1}{2} \int \frac{\sin x-\cos x}{\sin x+\cos x} d x$
Let $\sin x+\cos x=t \Rightarrow(\cos x-\sin x) d x=d t$
$\therefore \mathrm{I}=\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t}$
$=\frac{x}{2}-\frac{1}{2} \log |t|+C=\frac{x}{2}-\frac{1}{2} \log |\sin x+\cos x|+C$

Question 33:
1

Solution:
Put, $\mathrm{I}=\int \frac{1}{1-\tan x} d x$
$=\int \frac{1}{1-\frac{\sin x}{\cos x}} d x=\int \frac{\cos x}{\cos x-\sin x} d x$
$=\frac{1}{2} \int \frac{2 \cos x}{\cos x-\sin x} d x=\frac{1}{2} \int \frac{(\cos x-\sin x)+(\cos x+\sin x)}{(\cos x-\sin x)} d x$
$=\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x=\frac{x}{2}+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x$
Put, $\cos x-\sin x=t \Rightarrow(-\sin x-\cos x) d x=d t$
$\therefore \mathrm{I}=\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t}=\frac{x}{2}-\frac{1}{2} \log |t|+C$
$=\frac{x}{2}-\frac{1}{2} \log |\cos x-\sin x|+C$

Question 34:
$\frac{\sqrt{\tan x}}{\sin x \cos x}$
Solution:
Let $\mathrm{I}=\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x=\int \frac{\sqrt{\tan x} \times \cos x}{\sin x \cos x \times \cos x} d x$
$=\int \frac{\sqrt{\tan x}}{\tan x \cos ^{2} x} d x=\int \frac{\sec ^{2} x d x}{\sqrt{\tan x}}$
Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
$\therefore \mathrm{I}=\int \frac{d t}{\sqrt{t}}$
$=2 \sqrt{t}+C$
$=2 \sqrt{\tan x}+C$

Question 35:
$\frac{(1+\log x)^{2}}{x}$

Solution:
Put, $1+\log x=t$
$\therefore \frac{1}{x} d x=d t$
$\Rightarrow \int \frac{(1+\log x)^{2}}{x} d x=\int t^{2} d t$
$=\frac{t^{3}}{3}+C$
$=\frac{(1+\log x)^{3}}{3}+C$

Question 36:
$\frac{(x+1)(x+\log x)^{2}}{x}$
Solution:
$\frac{(x+1)(x+\log x)^{2}}{x}=\left(\frac{x+1}{x}\right)(x+\log)^{2}=\left(1+\frac{1}{x}\right)(x+\log x)^{2}$
Put, $(x+\log x)=t$
$\therefore\left(1+\frac{1}{x}\right) d x=d t$
$\Rightarrow \int\left(1+\frac{1}{x}\right)(x+\log x)^{2} d x=\int t^{2} d t$
$=\frac{t^{3}}{3}+C$
$=\frac{1}{3}(x+\log x)^{3}+C$

Question 37:
$\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}$
Solution:
Put, $x^{4}=t$
$\therefore 4 x^{3} d x=d t$
$\Rightarrow \int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x=\frac{1}{4} \int \frac{\sin \left(\tan ^{-1} t\right)}{1+t^{2}} d t$
Let $\tan ^{-1} t=u$
$\therefore \frac{1}{1+t^{2}} d t=d u$
From (1), we get
$\int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right) d x}{1+x^{8}}=\frac{1}{4} \int \sin u d u$
$=\frac{1}{4}(-\cos u)+C$
$=-\frac{1}{4} \cos \left(\tan ^{-1} t\right)+C$
$=\frac{-1}{4} \cos \left(\tan ^{-1} x^{4}\right)+C$
Choose the correct answer in Exercises 38 and 39.

Question 38:

$\int \frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}} d x$ equals
(A) $10^{x}-x^{10}+C$
(B) $10^{x}+x^{10}+C$
(C) $\left(10^{x}-x^{10}\right)^{-1}+C$
(D) $\log \left(10^{x}+x^{10}\right)+C$

Solution:

Put, $x^{10}+10^{x}=t$
$\therefore\left(10 x^{9}+10^{x} \log _{e} 10\right) d x=\int \frac{d t}{t}$
$\Rightarrow \int \frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10 x} d x=\int \frac{d t}{t}$
$=\log t+C$
$=\log \left(10^{x}+x^{10}\right)+C$
Thus, the correct option is D .

Question 39:
$\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$ equals
(A) $\tan x+\cot x+C$
(B) $\tan x-\cot x+C$
(C) $\tan x \cot x+C$
(D) $\tan x-\cot 2 x+C$

Solution:

Put, $\mathrm{I}=\int \frac{d x}{\sin ^{2} x \cos ^{2} x}=\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x$
$=\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$
$=\int \frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} d x+\frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$
$=\int \sec ^{2} x d x+\int \operatorname{cosec} 2 d x$
$=\tan x-\cot x+C$
Thus, the correct option is B.

EXERCISE 7.3

Find the integrals of the functions in Exercises 1 to 22:

Question 1:
$\sin ^{2}(2 x+5)$

Solution:

$\sin ^{2}(2 x+5)=\frac{1-\cos 2(2 x+5)}{2}=\frac{1-\cos (4 x+10)}{2}$
$\Rightarrow \int \sin ^{2}(2 x+5) d x=\int \frac{1-\cos (4 x+10)}{2} d x$
$=\frac{1}{2} \int 1 d x-\frac{1}{2} \int \cos (4 x+10) d x$
$=\frac{1}{2} x-\frac{1}{2}\left(\frac{\sin (4 x+10)}{4}\right)+C$
$=\frac{1}{2} x-\frac{1}{8} \sin (4 x+10)+C$

Question 2:
$\sin 3 x \cos 4 x$

Solution:

Using, $\sin A \cos B=\frac{1}{2}\{\sin (A+B)+\sin (A-B)\}$
$\therefore \int \sin 3 x \cos 4 x d x=\frac{1}{2} \int\{\sin (3 x+4 x)+\sin (3 x-4 x)\} d x$
$=\frac{1}{2} \int\{\sin 7 x+\sin (-x)\} d x$
$=\frac{1}{2} \int\{\sin 7 x-\sin x\} d x$
$=\frac{1}{2} \int \sin 7 x d x-\frac{1}{2} \int \sin x d x$
$=\frac{1}{2}\left(\frac{-\cos 7 x}{7}\right)-\frac{1}{2}(-\cos x)+C$
$=\frac{-\cos 7 x}{14}+\frac{\cos x}{2}+C$

Question 3:
$\cos 2 x \cos 4 x \cos 6 x$

Solution:

Using, ${ }^{\cos A \cos B=\frac{1}{2}\{\cos (A+B)+\cos (A-B)\}, ~}$
$\therefore \int \cos 2 x(\cos 4 x \cos 6 x) d x=\int \cos 2 x\left[\frac{1}{2}\{\cos (4 x+6 x)+\cos (4 x-6 x)\}\right] d x$
$=\frac{1}{2} \int\{\cos 2 x \cos 10 x+\cos 2 x \cos (-2 x)\} d x$
$=\frac{1}{2} \int\left\{\cos 2 x \cos 10 x+\cos ^{2} 2 x\right\} d x$
$=\frac{1}{2} \int\left[\left\{\frac{1}{2} \cos (2 x+10 x)+\frac{1}{2} \cos (2 x-10 x)\right\}+\left(\frac{1+\cos 4 x}{2}\right)\right] d x$
$=\frac{1}{4} \int(\cos 12 x+\cos 8 x+1+\cos 4 x) d x$
$=\frac{1}{4}\left[\frac{\sin 12 x}{12}+\frac{\sin 8 x}{8}+x+\frac{\sin 4 x}{4}+C\right]$

Question 4:
$\sin ^{3}(2 x+1)$

Solution:

Put, $\mathrm{I}=\int \sin ^{3}(2 x+1)$
$\Rightarrow \int \sin ^{3}(2 x+1) d x=\int \sin ^{2}(2 x+1) \sin (2 x+1) d x$
$=\int\left(1-\cos ^{2}(2 x+1)\right) \sin (2 x+1) d x$
Let $\cos (2 x+1)=t$
$\Rightarrow-2 \sin (2 x+1) d x=d t$
$\Rightarrow \sin (2 x+1) d x=\frac{-d t}{2}$
$\Rightarrow \mathrm{I}=\frac{-1}{2} \int\left(1-t^{2}\right) d t$
$=\frac{-1}{2}\left\{t-\frac{t^{3}}{3}\right\}$
$=\frac{-1}{2}\left\{\cos (2 x+1)-\frac{\cos ^{3}(2 x+1)}{3}\right\}$
$=\frac{-\cos (2 x+1)}{2}+\frac{\cos ^{3}(2 x+1)}{6}+C$

Question 5:

$\sin ^{3} x \cos ^{3} x$

Solution:

Let $\mathrm{I}=\int \sin ^{3} x \cos ^{3} x d x$

$$
\begin{aligned}
& =\int \cos ^{3} x \sin ^{2} x \sin x d x \\
& =\int \cos ^{3} x\left(1-\cos ^{2} x\right) \sin x d x
\end{aligned}
$$

Let $\cos x=t$
$\Rightarrow-\sin x d x=d t$

$$
\begin{aligned}
\Rightarrow \mathrm{I} & =-\int t^{3}\left(1-t^{2}\right) d t \\
& =-\int\left(t^{3}-t^{5}\right) d t=-\left\{\frac{t^{4}}{4}-\frac{t^{6}}{6}\right\}+C \\
& =-\left\{\frac{\cos ^{4} x}{4}-\frac{\cos ^{6} x}{6}\right\}+C=\frac{\cos ^{6} x}{6}-\frac{\cos ^{4} x}{4}+C
\end{aligned}
$$

Question 6:

$\sin x \sin 2 x \sin 3 x$

Solution:

Using, $\sin A \sin B=\frac{1}{2}\{\cos (A-B)-\cos (A+B)\}$

$$
\begin{aligned}
\therefore \int \sin x \sin 2 x \sin 3 x d x & =\int\left[\sin x \frac{1}{2}\{\cos (2 x-3 x)-\cos (2 x+3 x)\}\right] d x \\
& =\frac{1}{2} \int(\sin x \cos (-x)-\sin x \cos 5 x) d x \\
& =\frac{1}{2} \int(\sin x \cos x-\sin x \cos 5 x) d x \\
& =\frac{1}{2} \int \frac{\sin 2 x}{2} d x-\frac{1}{2} \int \sin x \cos 5 x d x \\
& =\frac{1}{4}\left[\frac{-\cos 2 x}{2}\right]-\frac{1}{2} \int\left\{\frac{1}{2} \sin (x+5 x)+\frac{1}{2} \sin (x-5 x)\right\} d x \\
& =\frac{-\cos 2 x}{8}-\frac{1}{4} \int(\sin 6 x+\sin (-4 x)) d x \\
& =\frac{-\cos 2 x}{8}-\frac{1}{4}\left[\frac{-\cos 6 x}{6}+\frac{\cos 4 x}{4}\right]+C \\
& =\frac{-\cos 2 x}{8}-\frac{1}{8}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{2}\right]+C \\
& =\frac{1}{8}\left[\frac{\cos 6 x}{3}-\frac{\cos 4 x}{2}-\cos 2 x\right]+C
\end{aligned}
$$

Question 7:
$\sin 4 x \sin 8 x$

Solution:

Using, $\sin A \sin B=\frac{1}{2}\{\cos (A-B)-\cos (A+B)\}$

$$
\begin{aligned}
\therefore \int \sin 4 x \sin 8 x d x & =\int\left\{\frac{1}{2} \cos (4 x-8 x)-\frac{1}{2} \cos (4 x+8 x)\right\} d x \\
& =\frac{1}{2} \int(\cos (-4 x)-\cos 12 x) d x \\
& =\frac{1}{2} \int(\cos 4 x-\cos 12 x) d x \\
& =\frac{1}{2}\left[\frac{\sin 4 x}{4}-\frac{\sin 12 x}{12}\right]
\end{aligned}
$$

Question 8:
$\frac{1-\cos x}{1+\cos x}$

Solution:

$$
\begin{aligned}
& \frac{1-\cos x}{1+\cos x}=\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}} \quad\left[2 \sin ^{2} \frac{x}{2}=1-\cos x \text { and } 2 \cos ^{2} \frac{x}{2}=1+\cos x\right] \\
& =\tan ^{2} \frac{x}{2} \\
& =\left(\sec ^{2} \frac{x}{2}-1\right) \\
& \begin{aligned}
\therefore \frac{1-\cos x}{1+\cos x} d x & =\int\left(\sec ^{2} \frac{x}{2}-1\right) d x \\
& =\left[\frac{\tan \frac{x}{2}}{\frac{1}{2}}-x\right]+C \\
& =2 \tan \frac{x}{2}-x+C
\end{aligned}
\end{aligned}
$$

Question 9:
$\frac{\cos x}{1+\cos x}$
Solution:

$$
\begin{aligned}
& \frac{\cos x}{1+\cos x}=\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}} \quad\left[\cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2} \text { and } \cos x=2 \cos ^{2} \frac{x}{2}-1\right] \\
& =\frac{1}{2}\left[1-\tan ^{2} \frac{x}{2}\right] \\
& \begin{aligned}
\therefore \int \frac{\cos x}{1+\cos x} d x & =\frac{1}{2} \int\left(1-\tan ^{2} \frac{x}{2}\right) d x \\
& =\frac{1}{2} \int\left(1-\sec ^{2} \frac{x}{2}+1\right) d x \\
= & \frac{1}{2} \int\left(2-\sec ^{2} \frac{x}{2}\right) d x \\
& =\frac{1}{2}\left[2 x-\frac{\tan \frac{x}{2}}{\frac{1}{2}}\right]+C \\
= & x-\tan \frac{x}{2}+C
\end{aligned}
\end{aligned}
$$

Question 10:
$\sin ^{4} x$

Solution:
$\sin ^{4} x=\sin ^{2} x \sin ^{2} x$
$=\left(\frac{1-\cos 2 x}{2}\right)\left(\frac{1-\cos 2 x}{2}\right)$
$=\frac{1}{4}(1-\cos 2 x)^{2}$
$=\frac{1}{4}\left[1+\cos ^{2} 2 x-2 \cos 2 x\right]$
$=\frac{1}{4}\left[1+\left(\frac{1+\cos 4 x}{2}\right)-2 \cos 2 x\right]$
$=\frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right]$
$=\frac{1}{4}\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right]$
$\therefore \int \sin ^{4} x d x=\frac{1}{4} \int\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] d x$
$=\frac{1}{4}\left[\frac{3}{2} x+\frac{1}{2}\left(\frac{\sin 4 x}{4}\right)-2 \times \frac{\sin 2 x}{2}\right]+C$
$=\frac{1}{8}\left[3 x+\frac{\sin 4 x}{4}-2 \sin 2 x\right]+C$
$=\frac{3 x}{8}-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+C$

Question 11:
$\cos ^{4} 2 x$

Solution:

$$
\begin{aligned}
& \cos ^{4} 2 x=\left(\cos ^{2} 2 x\right)^{2} \\
& =\left(\frac{1+\cos 4 x}{2}\right)^{2} \\
& =\frac{1}{4}\left[1+\cos ^{2} 4 x+2 \cos 4 x\right] \\
& =\frac{1}{4}\left[1+\left(\frac{1+\cos 8 x}{2}\right)+2 \cos 4 x\right] \\
& =\frac{1}{4}\left[1+\frac{1}{2}+\frac{\cos 8 x}{2}+2 \cos 4 x\right] \\
& =\frac{1}{4}\left[\frac{3}{2}+\frac{\cos 8 x}{2}+2 \cos 4 x\right] \\
& \therefore \int \cos ^{4} 2 x d x=\int\left(\frac{3}{8}+\frac{\cos 8 x}{8}+\frac{\cos 4 x}{2}\right) d x \\
& =\frac{3}{8} x+\frac{1}{64} \sin 8 x+\frac{1}{8} \sin 4 x+C
\end{aligned}
$$

Question 12:
$\frac{\sin ^{2} x}{1+\cos x}$

Solution:

$$
\begin{aligned}
& \frac{\sin ^{2} x}{1+\cos x}=\frac{\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}} \\
& =\frac{4 \sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}} \\
& =2 \sin ^{2} \frac{x}{2} \\
& =1-\cos x \\
& \therefore \int \frac{\sin ^{2} x}{1+\cos x} d x=\int(1-\cos x) d x \\
& \quad=x-\sin x+C
\end{aligned}
$$

$$
\left[\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2} ; \cos x=2 \cos ^{2} \frac{x}{2}-1\right]
$$

Question 13:
$\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}$

Solution:

$\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}=\frac{-2 \sin \frac{2 x+2 \alpha}{2} \sin \frac{2 x-2 \alpha}{2}}{-2 \sin \frac{x+\alpha}{2} \sin \frac{x-\alpha}{2}}$
$\left[\cos C-\cos D=-2 \sin \frac{C+D}{2} \sin \frac{C-D}{2}\right]$
$=\frac{\sin (x+\alpha) \sin (x-\alpha)}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)}$
$=\frac{\left[2 \sin \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right)\right]\left[2 \sin \left(\frac{x-\alpha}{2}\right) \cos \left(\frac{x+\alpha}{2}\right)\right]}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)}$
$=4 \cos \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right)$
$=2\left[\cos \left(\frac{x+\alpha}{2}+\frac{x-\alpha}{2}\right)+\cos \left(\frac{x+\alpha}{2}-\frac{x-\alpha}{2}\right)\right]$
$=2[\cos (x)+\cos \alpha]$
$=2 \cos x+2 \cos \alpha$
$\therefore \int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x=\int 2 \cos x+2 \cos \alpha d x$
$=2[\sin x+x \cos \alpha]+C$

Question 14:
$\frac{\cos x-\sin x}{1+\sin 2 x}$

Solution:

$$
\begin{aligned}
\frac{\cos x-\sin x}{1+\sin 2 x} & =\frac{\cos x-\sin x}{\left(\sin ^{2} x+\cos ^{2} x\right)+2 \sin x \cos x} \quad\left[\sin ^{2} x+\cos ^{2} x=1 ; \sin 2 x=2 \sin x \cos x\right] \\
& =\frac{\cos x-\sin x}{(\sin x+\cos x)^{2}}
\end{aligned}
$$

Let $\sin x+\cos x=t$

$$
\begin{aligned}
\therefore(\cos x-\sin x) d x & =d t \\
\Rightarrow \int \frac{\cos x-\sin x}{1+\sin 2 x} d x & =\int \frac{\cos x-\sin x}{(\sin x+\cos x)^{2}} d x \\
& =\int \frac{d t}{t^{2}} \\
& =\int t^{-2} d t \\
& =-t^{-1}+C \\
& =-\frac{1}{t}+C \\
& =\frac{-1}{\sin x+\cos x}+C
\end{aligned}
$$

Question 15:
$\tan ^{3} 2 x \sec 2 x$

Solution:

$$
\tan ^{3} 2 x \sec 2 x=\tan ^{2} 2 x \tan 2 x \sec 2 x
$$

$$
\begin{aligned}
& =\left(\sec ^{2} 2 x-1\right) \tan 2 x \sec 2 x \\
& =\sec ^{2} 2 x \tan 2 x \sec 2 x-\tan 2 x \sec 2 x
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int \tan ^{3} 2 x \sec 2 x d x & =\int \sec ^{2} 2 x \tan 2 x \sec 2 x-\int \tan 2 x \sec 2 x \\
& =\int \sec ^{2} 2 x \tan 2 x \sec 2 x-\frac{\sec 2 x}{2}+C
\end{aligned}
$$

Let $\sec 2 x=t$
$\therefore 2 \sec 2 x \tan 2 x d x=d t$
$\therefore \int \tan ^{3} 2 x \sec 2 x d x=\frac{1}{2} \int t^{2} d t-\frac{\sec 2 x}{2}+C$

$$
\begin{aligned}
& =\frac{t^{3}}{6}-\frac{\sec 2 x}{2}+C \\
& =\frac{(\sec 2 x)^{3}}{6}-\frac{\sec 2 x}{2}+C
\end{aligned}
$$

Question 16:

$\tan ^{4} x$

Solution:

$\tan ^{4} x$
$=\tan ^{2} x \tan ^{2} x$
$=\left(\sec ^{2} x-1\right) \tan ^{2} x$
$=\sec ^{2} x \tan ^{2} x-\tan ^{2} x$
$=\sec ^{2} x \tan ^{2} x-\left(\sec ^{2} x-1\right)$
$=\sec ^{2} x \tan ^{2} x-\sec ^{2} x+1$
$\therefore \int \tan ^{4} x d x=\int \sec ^{2} x \tan ^{2} x d x-\int \sec ^{2} x d x+\int 1 d x$

$$
\begin{equation*}
=\int \sec ^{2} x \tan ^{2} x d x-\tan x+x+C \tag{1}
\end{equation*}
$$

Consider $\sec ^{2} x \tan ^{2} x d x$
Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
$\Rightarrow \int \sec ^{2} x \tan ^{2} x d x=\int t^{2} d t=\frac{t^{3}}{3}=\frac{\tan ^{3} x}{3}$
From equation (1), we get
$\int \tan ^{4} x d x=\frac{1}{3} \tan ^{3} x-\tan x+x+C$

Question 17:
$\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}$

Solution:

$$
\begin{aligned}
& \begin{aligned}
\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} & =\frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x}+\frac{\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x}+\frac{\cos x}{\sin ^{2} x} \\
& =\tan x \sec x+\cot x \operatorname{cosec} x
\end{aligned} \\
& \begin{aligned}
\therefore \int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x & =\int(\tan x \sec x+\cot x \operatorname{cosec} x) d x \\
& =\sec x-\operatorname{cosec} x+C
\end{aligned}
\end{aligned}
$$

Question 18:
$\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}$

Solution:

$$
\begin{aligned}
& \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} \\
& =\frac{\cos 2 x+(1-\cos 2 x)}{\cos ^{2} x} \quad\left[\cos 2 x=1-2 \sin ^{2} x\right] \\
& =\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
& \therefore \int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} d x=\int \sec ^{2} x d x=\tan x+C
\end{aligned}
$$

Question 19:

$\frac{1}{\sin x \cos ^{3} x}$

Solution:

$$
\begin{aligned}
\frac{1}{\sin x \cos ^{3} x} & =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos ^{3} x} \\
& =\frac{\sin x}{\cos ^{3} x}+\frac{1}{\sin x \cos x} \\
& =\tan x \sec ^{2} x+\frac{\frac{1}{\cos ^{2} x}}{\frac{\sin x \cos x}{\cos ^{2} x}} \\
& =\tan x \sec ^{2} x+\frac{\sec ^{2} x}{\tan x}
\end{aligned}
$$

$$
\therefore \int \frac{1}{\sin x \cos ^{3} x} d x=\int \tan x \sec ^{2} x d x+\int \frac{\sec ^{2} x}{\tan x} d x
$$

Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
$\Rightarrow \int \frac{1}{\sin x \cos ^{3} x} d x=\int t d t+\int \frac{1}{t} d t$
$=\frac{t^{2}}{2}+\log |t|+C$
$=\frac{1}{2} \tan ^{2} x+\log |\tan x|+C$

Question 20:
$\frac{\cos 2 x}{(\cos x+\sin x)^{2}}$

Solution:

$\frac{\cos 2 x}{(\cos x+\sin x)^{2}}=\frac{\cos 2 x}{\cos ^{2} x+\sin x^{2}+2 \cos x \sin x}=\frac{\cos 2 x}{1+\sin 2 x}$
$\therefore \int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\int \frac{\cos 2 x}{(1+\sin 2 x)} d x$
Let $1+\sin 2 x=t$
$\Rightarrow 2 \cos 2 x d x=d t$
$\therefore \int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\frac{1}{2} \int \frac{1}{t} d t$
$=\frac{1}{2} \log |t|+C$
$=\frac{1}{2} \log |1+\sin 2 x|+C$
$=\frac{1}{2} \log \left|(\sin x+\cos x)^{2}\right|+C$
$=\log |\sin x+\cos x|+C$
Question 21:
$\sin ^{-1}(\cos x)$
Solution:
$\sin ^{-1}(\cos x)$
Let $\cos x=t$
Then, $\sin x=\sqrt{1-t^{2}}$
$\Rightarrow(-\sin x) d x=d t$
$d x=\frac{-d t}{\sin x}$
$d x=\frac{-d t}{\sqrt{1-t^{2}}}$
$\therefore \int \sin ^{-1}(\cos x) d x=\int \sin ^{-1} t\left(\frac{-d t}{\sqrt{1-t^{2}}}\right)$
$=-\int \frac{\sin ^{-1} t}{\sqrt{1-t^{2}}}$

Let $\sin ^{-1} t=u$
$\Rightarrow \frac{1}{\sqrt{1-t^{2}}} d t=d u$
$\therefore \int \sin ^{-1}(\cos x) d x=-\int u d u$
$=-\frac{u^{2}}{2}+C$
$=\frac{-\left(\sin ^{-1} t\right)^{2}}{2}+C$
$=\frac{-\left[\sin ^{-1}(\cos x)\right]^{2}}{2}+C$
We know that,
$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
$\therefore \sin ^{-1}(\cos x)=\frac{\pi}{2}-\cos ^{-1}(\cos x)=\left(\frac{\pi}{2}-x\right)$
Substituting in equation (1), we get
$\int \sin ^{-1}(\cos x) d x=\frac{-\left[\frac{\pi}{2}-x\right]^{2}}{2}+C$
$=-\frac{1}{2}\left(\frac{\pi^{2}}{4}+x^{2}-\pi x\right)+C$
$=-\frac{\pi^{2}}{8}-\frac{x^{2}}{2}+\frac{\pi x}{2}+C$
$=\frac{\pi x}{2}-\frac{x^{2}}{2}+\left(C-\frac{\pi^{2}}{8}\right)$
$=\frac{\pi x}{2}-\frac{x^{2}}{2}+C_{1}$

Question 22:
$\frac{1}{\cos (x-a) \cos (x-b)}$

Solution:

$\frac{1}{\cos (x-a) \cos (x-b)}=\frac{1}{\sin (a-b)}\left[\frac{\sin (a-b)}{\cos (x-a) \cos (x-b)}\right]$
$=\frac{1}{\sin (a-b)}\left[\frac{\sin [(x-b)-(x-a)]}{\cos (x-a) \cos (x-b)}\right]$
$=\frac{1}{\sin (a-b)} \frac{[\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)]}{\cos (x-a) \cos (x-b)}$
$=\frac{1}{\sin (a-b)}[\tan (x-b)-\tan (x-a)]$
$\Rightarrow \int \frac{1}{\cos (x-a) \cos (x-b)} d x=\frac{1}{\sin (a-b)} \int[\tan (x-b)-\tan (x-a)] d x$
$=\frac{1}{\sin (a-b)}[-\log |\cos (x-b)|+\log |\cos (x-a)|]$
$=\frac{1}{\sin (a-b)}\left[\log \left|\frac{\cos (x-a)}{\cos (x-b)}\right|\right]+C$
Choose the correct answer in Exercises 23 and 24.

Question 23:

$\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$ is equal to
(A) $\tan x+\cot x+C$
(B) $\tan x+\operatorname{cosec} x+C$
(C) $-\tan x+\cot x+C$
(D) $\tan x+\sec x+C$

Solution:

$\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x=\int\left(\frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x}-\frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\right) d x$
$=\int\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right) d x$
$=\tan x+\cot x+C$
Thus, the correct option is A.

Question 24:
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x$ equals
(A) $-\cot \left(e x^{x}\right)+C$
(B) $\tan \left(x e^{x}\right)+C$
(C) $\tan \left(e^{x}\right)+C$
(D) $\cot \left(e^{x}\right)+C$

Solution:
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x$
Put, $e^{x} x=t$
$\Rightarrow\left(e^{x} x+e^{x} .1\right) d x=d t$
$e^{x}(x+1) d x=d t$
$\therefore \int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x=\int \frac{d t}{\cos ^{2} t}$
$=\int \sec ^{2} t d t$
$=\tan t+C$
$=\tan \left(e^{x} x\right)+C$
Thus, the correct answer is B.

EXERCISE 7.4

Integrate the functions in Exercises 1 to 23
Question 1:
$\frac{3 x^{2}}{x^{6}+1}$

Solution:

Put, $x^{3}=t$
$\therefore 3 x^{2} d x=d t$
$\Rightarrow \frac{3 x^{2}}{x^{6}+1} d x=\int \frac{d t}{t^{2}+1}$

$$
=\tan ^{-1} t+C
$$

$$
=\tan ^{-1}\left(x^{3}\right)+C
$$

Question 2:
$\frac{1}{\sqrt{1+4 x^{2}}}$

Solution:

Put, $2 x=t$
$\therefore 2 d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{1+4 x^{2}}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{1+t^{2}}}$

$$
\begin{aligned}
& =\frac{1}{2}\left[\log \left|t+\sqrt{t^{2}+1}\right|\right]+C \quad\left[\int \frac{1}{\sqrt{x^{2}+a^{2}}} d t=\log \left|x+\sqrt{x^{2}+a^{2}}\right|\right] \\
& =\frac{1}{2} \log \left|2 x+\sqrt{4 x^{2}+1}\right|+C
\end{aligned}
$$

Question 3:
$\frac{1}{\sqrt{(2-x)^{2}+1}}$
Solution:
Put, 2-x=t
$\Rightarrow-d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{(2-x)^{2}+1}} d x=-\int \frac{1}{\sqrt{t^{2}+1}} d t$
$=-\log \left|t+\sqrt{t^{2}+1}\right|+C \quad\left[\int \frac{1}{\sqrt{x^{2}+a^{2}}} d t=\log \left|x+\sqrt{x^{2}+a^{2}}\right|\right]$
$=-\log \left|2-x+\sqrt{(2-x)^{2}+1}\right|+C$
$=\log \left|\frac{1}{(2-x)+\sqrt{x^{2}-4 x+5}}\right|+C$

Question 4:
$\frac{1}{\sqrt{9-25 x^{2}}}$

Solution:

Put, $5 x=t$
$\therefore 5 d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{9-25 x^{2}}} d x=\frac{1}{5} \int \frac{1}{\sqrt{9-t^{2}}} d t$
$=\frac{1}{5} \int \frac{1}{\sqrt{3^{2}-t^{2}}} d t$
$=\frac{1}{5} \sin ^{-1}\left(\frac{t}{3}\right)+C$
$=\frac{1}{5} \sin ^{-1}\left(\frac{5 x}{3}\right)+C$

Question 5:

$\frac{3 x}{1+2 x^{4}}$

Solution:

Let $\sqrt{2} x^{2}=t$
$\therefore 2 \sqrt{2} x d x=d t$
$\Rightarrow \int \frac{3 x}{1+2 x^{4}} d x=\frac{3}{2 \sqrt{2}} \int \frac{d t}{1+t^{2}}$
$=\frac{3}{2 \sqrt{2}}\left[\tan ^{-1} t\right]+C$
$=\frac{3}{2 \sqrt{2}} \tan ^{-1}\left(\sqrt{2} x^{2}\right)+C$

Question 6:
$\frac{x^{2}}{1-x^{6}}$

Solution:

Put, $x^{3}=t$
$\therefore 3 x^{2} d x=d t$
$\Rightarrow \int \frac{x^{2}}{1-x^{6}} d x=\frac{1}{3} \int \frac{d t}{1-t^{2}}$
$=\frac{1}{3}\left[\frac{1}{2} \log \left|\frac{1+t}{1-t}\right|\right]+C$
$=\frac{1}{6} \log \left|\frac{1+x^{3}}{1-x^{3}}\right|+C$

Question 7:
$\frac{x-1}{\sqrt{x^{2}-1}}$
Solution:
$\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x$
For $\int \frac{x}{\sqrt{x^{2}-1}} d x$, let $x^{2}-1=t \Rightarrow 2 x d x=d t$
$\therefore \int \frac{x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}$
$=\frac{1}{2} \int t^{-\frac{1}{2}} d t$
$=\frac{1}{2}\left[2 t^{\frac{1}{2}}\right]$
$=\sqrt{t}$
$=\sqrt{x^{2}-1}$
From (1), we get
$\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x \quad\left[\int \frac{x}{\sqrt{x^{2}-a^{2}}} d t=\log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]$
$=\sqrt{x^{2}-1}-\log \left|x+\sqrt{x^{2}-1}\right|+C$

Question 8:
$\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}$

Solution:

Put, $x^{3}=t \Rightarrow 3 x^{2} d x=d t$
$\therefore \int \frac{x^{2}}{\sqrt{x^{6}+a^{6}}} d x=\frac{1}{3} \int \frac{d t}{\sqrt{t^{2}+\left(a^{3}\right)^{2}}}$
$=\frac{1}{3} \log \left|t+\sqrt{t^{2}+a^{6}}\right|+C$
$=\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}+a^{6}}\right|+C$

Question 9:
$\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}$

Solution:

Put, $\tan x=t$
$\therefore \sec ^{2} x d x=d t$
$\Rightarrow \int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}} d x=\int \frac{d t}{\sqrt{t^{2}+2^{2}}}$
$=\log \left|t+\sqrt{t^{2}+4}\right|+C$
$=\log \left|\tan x+\sqrt{\tan ^{2} x+4}\right|+C$

Question 10:
$\frac{1}{\sqrt{x^{2}+2 x+2}}$
Solution:
$\int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{(x+1)^{2}+(1)^{2}}} d x$
Let $x+1=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{t^{2}+1}} d t$
$=\log \left|t+\sqrt{t^{2}+1}\right| C$
$=\log \left|(x+1)+\sqrt{(x+1)^{2}+1}\right|+C$
$=\log \left|(x+1)+\sqrt{x^{2}+2 x+2}\right|+C$
Question 11:
$\frac{1}{\sqrt{9 x^{2}+6 x+5}}$

Solution:
$\int \frac{1}{\sqrt{9 x^{2}+6 x+5}} d x=\int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x$
Let $(3 x+1)=t$
$\Rightarrow 3 d x=d t$
$\Rightarrow \int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x=\frac{1}{3} \int \frac{1}{t^{2}+2^{2}} d t$
$=\frac{1}{3}\left[\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right)\right]+C$
$=\frac{1}{6}\left[\tan ^{-1}\left(\frac{3 x+1}{2}\right)\right]+C$

Question 12:
$\frac{1}{\sqrt{7-6 x-x^{2}}}$

Solution:

$7-6 x-x^{2}$ can be written as $7-\left(x^{2}+6 x+9-9\right)$
Thus,
$7-\left(x^{2}+6 x+9-9\right)$
$=16-\left(x^{2}+6 x+9\right)$
$=16-(x+3)^{2}$
$=(4)^{2}-(x+3)^{2}$
$\therefore \int \frac{1}{\sqrt{7-6 x-x^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x$
Let $x+3=t$
$\Rightarrow d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(t)^{2}}} d t$
$=\sin ^{-1}\left(\frac{t}{4}\right)+C$
$=\sin ^{-1}\left(\frac{x+3}{4}\right)+C$

Question 13:
$\frac{1}{\sqrt{(x-1)(x-2)}}$

Solution:

$(x-1)(x-2)$ can be written as $x^{2}-3 x+2$
Thus,
$x^{2}-3 x+2$
$=x^{2}-3 x+\frac{9}{4}-\frac{9}{4}+2$
$=\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}$
$=\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}$
$\therefore \int \frac{1}{\sqrt{(x-1)(x-2)}} d x=\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x$
Let $\left(x-\frac{3}{2}\right)=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{t^{2}-\left(\frac{1}{2}\right)^{2}}} d t$
$=\log \left|t+\sqrt{t^{2}-\left(\frac{1}{2}\right)^{2}}\right|+C$
$=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right|+C$

Question 14:
$\frac{1}{\sqrt{8+3 x-x^{2}}}$
Solution:
$8+3 x-x^{2}=8-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)$

Thus,
$8-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)$
$=\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}$
$=\int \frac{1}{\sqrt{8+3 x-x^{2}}} d x=\int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x$
Let $\left(x-\frac{3}{2}\right)=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{\left(\frac{41}{4}\right)-t^{2}}} d t$
$=\sin ^{-1}\left(\frac{t}{\frac{\sqrt{41}}{2}}\right)+C$
$=\sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{\sqrt{41}}{2}}\right)+C$
$=\sin ^{-1}\left(\frac{2 x-3}{\sqrt{41}}\right)+C$

Question 15:
$\frac{1}{\sqrt{(x-a)(x-b)}}$

Solution:

$(x-a)(x-b)=x^{2}-(a+b) x+a b$
Thus,
$x^{2}-(a+b) x+a b$
$=x^{2}-(a+b) x+\frac{(a+b)^{2}}{4}-\frac{(a+b)^{2}}{4}+a b$
$=\left[x-\left(\frac{a+b}{2}\right)\right]^{2}-\frac{(a-b)^{2}}{4}$
$\Rightarrow \int \frac{1}{\sqrt{(x-a)(x-b)}} d x=\int \frac{1}{\sqrt{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\left(\frac{a+b}{2}\right)^{2}}} d x$
Let $x-\left(\frac{a+b}{2}\right)=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\left(\frac{a+b}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{t^{2}-\left(\frac{a+b}{2}\right)^{2}}} d t$
$=\log \left|t+\sqrt{t^{2}-\left(\frac{a+b}{2}\right)^{2}}\right|+C$
$=\log \left|\left\{x-\left(\frac{a+b}{2}\right)\right\}+\sqrt{(x-a)(x-b)}\right|+C$

Question 16:
$\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}$

Solution:

Let, $4 x+1=\mathrm{A} \frac{d}{d x}\left(2 x^{2}+x-3\right)+\mathrm{B}$
$\Rightarrow 4 x+1=\mathrm{A}(4 x+1)+\mathrm{B}$
$\Rightarrow 4 x+1=4 \mathrm{~A} x+\mathrm{A}+\mathrm{B}$
Equating the coefficients of x and constant term on both sides, we get
$4 \mathrm{~A}=4 \Rightarrow \mathrm{~A}=1$
$\mathrm{A}+\mathrm{B}=1 \Rightarrow \mathrm{~B}=0$
Let $2 x^{2}+x-3=t$
$\therefore(4 x+1) d x=d t$
$\Rightarrow \int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x=\int \frac{1}{\sqrt{t}} d t$
$=2 \sqrt{t}+C$
$=2 \sqrt{2 x^{2}+x-3}+C$

Question 17:
$\frac{x+2}{\sqrt{x^{2}-1}}$

Solution:

Put, $x+2=\mathrm{A} \frac{d}{d x}\left(x^{2}-1\right)+\mathrm{B}$
$\Rightarrow x+2=\mathrm{A}(2 x)+\mathrm{B}$
Equating the coefficients of x and constant term on both sides, we get
$2 \mathrm{~A}=1 \Rightarrow \mathrm{~A}=\frac{1}{2}$
$\mathrm{B}=2$
From (1) we get
$\Rightarrow \int \frac{x+2}{\sqrt{x^{2}-1}} d x=\int \frac{\frac{1}{2}(2 x)+2}{\sqrt{x^{2}-1}} d x$
$=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x+\int \frac{2}{\sqrt{x^{2}-1}} d x$
In $\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x$, Let $x^{2}-1=t \Rightarrow 2 x d x=d t$
$\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}$
$=\frac{1}{2}[2 \sqrt{t}]$
$=\frac{1}{2}\left[2 \sqrt{x^{2}-1}\right]$
$=\sqrt{x^{2}-1}$
Then, $\int \frac{2}{\sqrt{x^{2}-1}} d x=2 \int \frac{1}{\sqrt{x^{2}-1}} d x=2 \log \left|x+\sqrt{x^{2}-1}\right|$
From equation (2) we get
$\int \frac{x+2}{\sqrt{x^{2}-1}} d x=\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+C$

Question 18:
$\frac{5 x-2}{1+2 x+3 x^{2}}$

Solution:

Let $5 x-2=A \frac{d}{d x}\left(1+2 x+3 x^{2}\right)+B$
$\Rightarrow 5 x-2=A(2+6 x)+B$
Equating the coefficients of x and constant term on both sides, we get
$5=6 A \Rightarrow A=\frac{5}{6}$
$2 A+B=-2 \Rightarrow B=-\frac{11}{3}$
$\therefore 5 x-2=\frac{5}{6}(2+6 x)+\left(-\frac{11}{3}\right)$
$\Rightarrow \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\int \frac{\frac{5}{6}(2+6 x)-\frac{11}{3}}{1+2 x+3 x^{2}} d x$
$\Rightarrow \frac{5}{6} \int \frac{2+6 x}{1+2 x+3 x^{2}} d x-\frac{11}{3} \int \frac{1}{1+2 x+3 x^{2}} d x$
Let
$I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x$ and $I_{2}=\int \frac{1}{1+2 x+3 x^{2}} d x$
$\therefore \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\frac{5}{6} I_{1}-\frac{11}{3} I_{2}$
$I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x$
Put $1+2 x+3 x^{2}=t$
$\Rightarrow(2+6 x) d x=d t$
$\therefore I_{1}=\int \frac{d t}{t}$
$I_{1}=\log |t|$
$I_{1}=\log \left|1+2 x+3 x^{2}\right|$
$I_{2}=\int \frac{1}{1+2 x+3 x^{2}} d x$
$1+2 x+3 x^{2}$ can be written as $1+3\left(x^{2}+\frac{2}{3} x\right)$
Thus,
$1+3\left(x^{2}+\frac{2}{3} x\right)$
$=1+3\left(x^{2}+\frac{2}{3} x+\frac{1}{9}-\frac{1}{9}\right)$
$=1+3\left(x+\frac{1}{3}\right)^{2}-\frac{1}{3}$
$=\frac{2}{3}+3\left(x+\frac{1}{3}\right)^{2}$
$=3\left[\left(x+\frac{1}{3}\right)^{2}+\frac{2}{9}\right]$
$=3\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right]$
$I_{2}=\frac{1}{3} \int \frac{1}{\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right]^{2}} d x$
$=\frac{1}{3}\left[\frac{1}{\frac{\sqrt{2}}{3}} \tan ^{-1}\left(\frac{x+\frac{1}{3}}{\frac{\sqrt{2}}{3}}\right)\right]$
$=\frac{1}{3}\left[\frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right]$
$=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)$
Substituting equations (2) and (3) in equation (1), we get
$\int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\frac{5}{6}\left[\log \left|1+2 x+3 x^{2}\right|\right]-\frac{11}{3}\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right]+C$
$=\frac{5}{6} \log \left|1+2 x+3 x^{2}\right|-\frac{11}{3 \sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+C$

Question 19:

$$
\frac{6 x+7}{\sqrt{(x-5)(x-4)}}
$$

Solution:

$\frac{6 x+7}{\sqrt{(x-5)(x-4)}}=\frac{6 x+7}{\sqrt{x^{2}-9 x+20}}$

Put, $\quad 6 x+7=A \frac{d}{d x}\left(x^{2}-9 x+20\right)+B$
$\Rightarrow 6 x+7=A(2 x-9)+B$
Equating the coefficients of x and constant term, we get
$2 A=6 \Rightarrow A=3$
$-9 A+B=7 \Rightarrow B=34$
$\therefore 6 x+7=3(2 x-9)+34$
$\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}}=\int \frac{3(2 x-9)+34}{\sqrt{x^{2}-9 x+20}} d x$
$=3 \int \frac{(2 x-9)}{\sqrt{x^{2}-9 x+20}} d x+34 \int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
Let $I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
$\therefore \int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}}=3 I_{1}+34 I_{2}$
Then,
$I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x$
Let $x^{2}-9 x+20=t$
$\Rightarrow(2 x-9) d x=d t$
$\Rightarrow I_{1}=\frac{d t}{\sqrt{t}}$
$I_{1}=2 \sqrt{t}$
$I_{1}=2 \sqrt{x^{2}-9 x+20}$
and
$I_{2}=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
$x^{2}-9 x+20=x^{2}-9 x+20+\frac{81}{4}-\frac{81}{4}$

Thus,
$x^{2}-9 x+20+\frac{81}{4}-\frac{81}{4}$
$=\left(x-\frac{9}{2}\right)^{2}-\frac{1}{4}$
$=\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}$
$\Rightarrow I_{2}=\int \frac{1}{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}} d x$
$I_{2}=\log \left|\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right|$
Substituting equations (2) and (3) in (1), we get
$\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} d x=3\left[2 \sqrt{x^{2}-9 x+20}\right]+34 \log \left[\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right]+C$
$=6 \sqrt{x^{2}-9 x+20}+34 \log \left[\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right]+C$

Question 20:

$\frac{x+2}{\sqrt{4 x-x^{2}}}$

Solution:

Consider, $\quad x+2=A \frac{d}{d x}\left(4 x-x^{2}\right)+B$
$\Rightarrow x+2=A(4-2 x)+B$
Equating the coefficients of x and constant term on both sides, we get
$-2 A=1 \Rightarrow A=-\frac{1}{2}$
$4 A+B=2 \Rightarrow B=4$
$\Rightarrow(x+2)=-\frac{1}{2}(4-2 x)+4$
$\therefore \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=\int \frac{-\frac{1}{2}(4-2 x)+4}{\sqrt{\left(4 x-x^{2}\right)}} d x$
$=-\frac{1}{2} \int \frac{(4-2 x)}{\sqrt{\left(4 x-x^{2}\right)}} d x+4 \int \frac{1}{\sqrt{\left(4 x-x^{2}\right)}} d x$
Let $I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$ and $I_{2}=\int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\therefore \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=-\frac{1}{2} I_{1}+4 I_{2}$
Then,
$I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$
Let $4 x-x^{2}=t$
$\Rightarrow(4-2 x) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}=2 \sqrt{4 x-x^{2}}$
$I_{2}=\int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\Rightarrow 4 x-x^{2}=-\left(-4 x+x^{2}\right)$
$=\left(-4 x+x^{2}+4-4\right)$
$=4-(x-2)^{2}$
$=(2)^{2}-(x-2)^{2}$
$\therefore I_{2}=\int \frac{1}{\sqrt{(2)^{2}-(x-2)^{2}}} d x=\sin ^{-1}\left(\frac{x-2}{2}\right)$
Using equations (2) and (3) in (1), we get

$$
\begin{aligned}
\int \frac{x+2}{\sqrt{4 x-x^{2}}} d x & =-\frac{1}{2}\left(2 \sqrt{4 x-x^{2}}\right)+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+C \\
& =-\sqrt{4 x-x^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+C
\end{aligned}
$$

Question 21:
$\frac{x+2}{\sqrt{x^{2}+2 x+3}}$

Solution:

$\int \frac{x+2}{\sqrt{x^{2}+2 x}+3} d x=\frac{1}{2} \int \frac{2(x+2)}{\sqrt{x^{2}+2 x+3}} d x$
$=\frac{1}{2} \int \frac{2 x+4}{\sqrt{x^{2}+2 x+3}} d x$
$=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\frac{1}{2} \int \frac{2}{\sqrt{x^{2}+2 x+3}} d x$
$=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$

Let $I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
$\therefore \int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2} I_{1}+I_{2}$
Then, $I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$
Put, $x^{2}+2 x+3=t$
$\Rightarrow(2 x+2) d x=d t$
$I_{1}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}=2 \sqrt{x^{2}+2 x+3}$
$I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
$\Rightarrow x^{2}+2 x+3=x^{2}+2 x+1+2=(x+1)^{2}+(\sqrt{2})^{2}$
$\therefore I_{2}=\int \frac{1}{\sqrt{(x+1)^{2}+(\sqrt{2})^{2}}} d x=\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|$
Using equations (2) and (3) in (1), we get
$\int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2}\left[2 \sqrt{x^{2}+2 x+3}\right]+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+C$
$=\sqrt{x^{2}+2 x+3}+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+C$

Question 22:
$\frac{x+3}{x^{2}-2 x-5}$

Solution:

Let $(x+3)=A \frac{d}{d x}\left(x^{2}-2 x-5\right)+B$ $(x+3)=A(2 x-2)+B$
Equating the coefficients of x and constant term on both sides, we get
$2 A=1 \Rightarrow A=\frac{1}{2}$
$-2 A+B=3 \Rightarrow B=4$
$\therefore(x+3)=\frac{1}{2}(2 x-2)+4$
$\Rightarrow \int \frac{x+3}{x^{2}-2 x-5} d x=\int \frac{\frac{1}{2}(2 x-2)+4}{x^{2}-2 x-5} d x$
$=\frac{1}{2} \int \frac{2 x-2}{x^{2}-2 x-5} d x+4 \int \frac{1}{x^{2}-2 x-5} d x$
Let $I_{1}=\int \frac{2 x-2}{x^{2}-2 x-5} d x$ and $I_{2}=\int \frac{1}{x^{2}-2 x-5} d x$
$\therefore \int \frac{x+3}{x^{2}-2 x-5} d x=\frac{1}{2} I_{1}+4 I_{2}$
Then, $I_{1}=\int \frac{2 x-2}{x^{2}-2 x-5} d x$
Put, $x^{2}-2 x-5=t$
$\Rightarrow(2 x-2) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}-2 x-5\right|$
$I_{2}=\int \frac{1}{x^{2}-2 x-5} d x$
$=\int \frac{1}{\left(x^{2}-2 x+1\right)-6} d x$
$=\int \frac{1}{(x-1)^{2}-(\sqrt{6})^{2}} d x$
$=\frac{1}{2 \sqrt{6}} \log \left(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right)$
Substituting (2) and (3) in (1), we get
$\int \frac{x+3}{x^{2}-2 x-5} d x=\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{4}{2 \sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+C$
$=\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{2}{\sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+C$
Question 23:
$\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}$

Solution:

Let $5 x+3=A \frac{d}{d x}\left(x^{2}+4 x+10\right)+B$
$\Rightarrow 5 x+3=A(2 x+4)+B$
Equating the coefficients of x and constant term, we get
$2 A=5 \Rightarrow A=\frac{5}{2}$
$4 A+B=3 \Rightarrow B=-7$
$\therefore 5 x+3=\frac{5}{2}(2 x+4)-7$
$\Rightarrow \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\int \frac{\frac{5}{2}(2 x+4)-7}{\sqrt{x^{2}+4 x+10}} d x$
$=\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x-7 \int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
Let $I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$\therefore \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2} I_{1}-7 I_{2}$
Then,
$I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$

Put, $x^{2}+4 x+10=t$
$\therefore(2 x+4) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{t}=2 \sqrt{t}=2 \sqrt{x^{2}+4 x+10}$
$I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$=\int \frac{1}{\sqrt{\left(x^{2}+4 x+4\right)+6}} d x$
$=\int \frac{1}{\sqrt{(x+2)^{2}+(\sqrt{6})^{2}}} d x$
$=\log \left|(x+2) \sqrt{x^{2}+4 x+10}\right|$
Using equations (2) and (3) in (1), we get
$\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2}\left[2 \sqrt{x^{2}+4 x+10}\right]-7 \log \left|(x+2) \sqrt{x^{2}+4 x+10}\right|+C$
$=5 \sqrt{x^{2}+4 x+10}-7 \log \left|(x+2) \sqrt{x^{2}+4 x+10}\right|+C$

Choose the correct answer in Exercises 24 and 25.

Question 24:

$\int \frac{d x}{x^{2}+2 x+2}$ equals
(A) $x \tan ^{-1}(x+1)+C$
(B) $\tan ^{-1}(x+1)+C$
(C) $(x+1) \tan ^{-1} x+C$
(D) $\tan ^{-1} x+C$

Solution:

$$
\begin{aligned}
\int \frac{d x}{x^{2}+2 x+2} & =\int \frac{d x}{\left(x^{2}+2 x+1\right)+1} \\
& =\int \frac{1}{(x+1)^{2}+(1)^{2}} d x \\
& =\left[\tan ^{-1}(x+1)\right]+C
\end{aligned}
$$

Hence, the correct option is B.

Question 25:
$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}$ equals
(A) $\frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C$
(B) $\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{8}\right)+C$
(C) $\frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C$
(D) $\frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{9}\right)+C$

Solution:
$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}$
$=\int \frac{1}{\sqrt{-4\left(x^{2}-\frac{9}{4} x\right)}} d x$
$=\int \frac{1}{\sqrt{-4\left(x^{2}-\frac{9}{4} x+\frac{81}{64}-\frac{81}{64}\right)}} d x$
$=\int \frac{1}{\sqrt{-4\left[\left(x-\frac{9}{8}\right)^{2}-\left(\frac{9}{8}\right)^{2}\right]}} d x$
$=\frac{1}{2} \int \frac{1}{\left(\frac{9}{8}\right)^{2}-\left(x-\frac{9}{8}\right)^{2}} d x$
$=\frac{1}{2}\left[\sin ^{-1}\left(\frac{x-\frac{9}{8}}{\frac{9}{8}}\right)\right]+C$
$\left(\int \frac{d y}{\sqrt{a^{2}-y^{2}}}=\sin ^{-1} \frac{y}{a}+C\right)$
$=\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+C$
Hence, the correct option is B.

EXERCISE 7.5

Integrate the rational functions in Exercises 1 to 21.

Question 1:

$\frac{x}{(x+1)(x+2)}$

Solution:

Let $\frac{x}{(x+1)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}$
$\Rightarrow x=A(x+2)+B(x+1)$
Equating the coefficients of x and constant term, we get
$A+B=1$
$2 A+B=0$
On solving, we get
$A=-1$ and $B=2$
$\therefore \frac{x}{(x+1)(x+2)}=\frac{-1}{(x+1)}+\frac{2}{(x+2)}$
$\Rightarrow \int \frac{x}{(x+1)(x+2)} d x=\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} d x$
$=-\log |x+1|+2 \log |x+2|+C$
$=\log (x+2)^{2}-\log (x+1)+C$
$=\log \frac{(x+2)^{2}}{(x+1)}+C$

Question 2:
$\frac{1}{x^{2}-9}$

Solution:

Let $\frac{1}{(x+3)(x-3)}=\frac{A}{(x+3)}+\frac{B}{(x-3)}$
$1=A(x-3)+B(x+3)$
Equating the coefficients of x and constants term, we get
$A+B=0$
$-3 A+3 B=1$
On solving, we get
$A=-\frac{1}{6}$ and $B=\frac{1}{6}$
$\therefore \frac{1}{(x+3)(x-3)}=\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}$
$\Rightarrow \int \frac{1}{\left(x^{2}-9\right)} d x=\int\left(\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}\right) d x$
$=-\frac{1}{6} \log |x+3|+\frac{1}{6} \log |x-3|+C$
$=\frac{1}{6} \log \frac{|(x-3)|}{|(x+3)|}+C$

Question 3:

$\frac{3 x-1}{(x-1)(x-2)(x-3)}$

Solution:

Let $\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$3 x-1=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$
Equating the coefficients of x^{2}, x and constant terms, we get
$A+B+C=0$
$-5 A-4 B-3 C=3$
$6 A+3 B+2 C=-1$
Solving these equations, we get
$A=1, B=-5$ and $C=4$
$\therefore \frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}$
$\Rightarrow \int \frac{3 x-1}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}\right\} d x$
$=\log |x-1|-5 \log |x-2|+4 \log |x-3|+C$

Question 4:

$\frac{x}{(x-1)(x-2)(x-3)}$

Solution:

Let $\frac{x}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$x=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2) \quad \ldots(1)$

Equating the coefficients of x^{2}, x and constant terms, we get
$A+B+C=0$
$-5 A-4 B-3 C=1$
$6 A+4 B+2 C=0$
Solving these equations, we get
$A=\frac{1}{2}, B=-2$ and $C=\frac{3}{2}$
$\therefore \frac{x}{(x-1)(x-2)(x-3)}=\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}$
$\Rightarrow \int \frac{x}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}\right\} d x$
$=\frac{1}{2} \log |x-1|-2 \log |x-2|+\frac{3}{2} \log |x-3|+C$

Question 5:
$\frac{2 x}{x^{2}+3 x+2}$

Solution:

Let $\frac{2 x}{x^{2}+3 x+2}=\frac{A}{(x+1)}+\frac{B}{(x+2)}$
$2 x=A(x+2)+B(x+1) \quad \ldots(1)$
Equating the coefficients of x and constant terms, we get
$A+B=2$
$2 A+B=0$
Solving these equations, we get
$A=-2$ and $B=4$
$\therefore \frac{2 x}{(x+1)(x+2)}=\frac{-2}{(x+1)}+\frac{4}{(x+2)}$
$\Rightarrow \int \frac{2 x}{(x+1)(x+2)} d x=\int\left\{\frac{4}{(x+2)}-\frac{2}{(x+1)}\right\} d x$
$=4 \log |x+2|-2 \log |x+1|+C$

Question 6:

$\frac{1-x^{2}}{x(1-2 x)}$

Solution:

It can be seen that the given integrand is not a proper fraction.
Therefore, on dividing $\left(1-x^{2}\right)_{\text {by }} x(1-2 x)$, we get
$\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left(\frac{2-x}{x(1-2 x)}\right) \ldots$
Let $\frac{2-x}{x(1-2 x)}=\frac{A}{x}+\frac{B}{(1-2 x)}$
$\Rightarrow(2-x)=A(1-2 x)+B x$
Equating the coefficients of x and constant term, we get
$-2 A+B=-1$
And, $A=2$
Solving these equations, we get
$A=2$ and $B=3$
$\therefore \frac{2-x}{x(1-2 x)}=\frac{2}{x}+\frac{3}{(1-2 x)}$
Substituting in equation (1), we get
$\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left\{\frac{2}{x}+\frac{3}{(1-2 x)}\right\}$
$\Rightarrow \int \frac{1-x^{2}}{x(1-2 x)} d x=\int\left\{\frac{1}{2}+\frac{1}{2}\left(\frac{2}{x}+\frac{3}{(1-2 x)}\right)\right\} d x$
$=\frac{x}{2}+\log |x|+\frac{3}{2(-2)} \log |1-2 x|+C$
$=\frac{x}{2}+\log |x|-\frac{3}{4} \log |1-2 x|+C$
Question 7:
$\frac{x}{\left(x^{2}+1\right)(x-1)}$

Solution:

Let $\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C}{(x-1)}$
$x=(A x+B)(x-1)+C\left(x^{2}+1\right)$
$x=A x^{2}-A x+B x-B+C x^{2}+C$
Equating the coefficients of x^{2}, x and constant term, we get

$$
\begin{aligned}
& A+C=0 \\
& -A+B=1 \\
& -B+C=0
\end{aligned}
$$

On solving these equations, we get

$$
A=-\frac{1}{2}, B=\frac{1}{2} \text { and } C=\frac{1}{2}
$$

From equation (1), we get
$\therefore \frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{\left(-\frac{1}{2} x+\frac{1}{2}\right)}{x^{2}+1}+\frac{\frac{1}{2}}{(x-1)}$
$\Rightarrow \int \frac{x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{2} \int \frac{x}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x-1} d x$
$=-\frac{1}{4} \int \frac{2 x}{x^{2}+1} d x+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+C$
Consider $\int \frac{2 x}{x^{2}+1} d x$, let $\left(x^{2}+1\right)=t \Rightarrow 2 x d x=d t$
$\Rightarrow \int \frac{2 x}{x^{2}+1} d x=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}+1\right|$
$\therefore \int \frac{x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+C$
$=\frac{1}{2} \log |x-1|-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+C$

Question 8:

$\frac{x}{(x-1)^{2}(x+2)}$

Solution:

Let $\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+2)}$
$x=A(x-1)(x+2)+B(x+2)+C(x-1)^{2}$
Equating the coefficients of x^{2}, x and constant term, we get
$A+C=0$
$A+B-2 C=1$
$-2 A+2 B+C=0$
On solving these equations, we get
$A=\frac{2}{9}, B=\frac{1}{3}$ and $C=-\frac{2}{9}$
$\therefore \frac{x}{(x-1)^{2}(x+2)}=\frac{2}{9(x+1)}+\frac{1}{3(x-1)^{2}}-\frac{2}{9(x+2)}$
$\Rightarrow \int \frac{x}{(x-1)^{2}(x+2)} d x=\frac{2}{9} \int \frac{1}{(x-1)} d x+\frac{1}{3} \int \frac{1}{(x-1)^{2}} d x-\frac{2}{9} \int \frac{1}{(x-2)} d x$
$=\frac{2}{9} \log |x-1|+\frac{1}{3}\left(\frac{-1}{x-1}\right)-\frac{2}{9} \log |x+2|+C$
$=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+C$

Question 9:
$\frac{3 x+5}{x^{3}-x^{2}-x+1}$

Solution:

$\frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{3 x+5}{(x-1)^{2}(x+1)}$
Let $\frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+1)}$
$3 x+5=A(x-1)(x+1)+B(x+1)+C(x-1)^{2}$
$3 x+5=A(x-1)(x+1)+B(x+1)+C\left(x^{2}-2 x+1\right)$

Equating the coefficients of x^{2}, x and constant term, we get
$A+C=0$
$B-2 C=3$
$-A+B+C=5$
On solving these equations, we get
$A=-\frac{1}{2}, B=4$ and $C=\frac{1}{2}$
$\therefore \frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{-1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)}$
$\Rightarrow \int \frac{3 x+5}{(x-1)^{2}(x+1)} d x=-\frac{1}{2} \int \frac{1}{(x-1)} d x+4 \int \frac{1}{(x-1)^{2}} d x+\frac{1}{2} \int \frac{1}{(x+1)} d x$
$=-\frac{1}{2} \log |x-1|+4\left(\frac{-1}{x-1}\right)+\frac{1}{2} \log |x+1|+C$
$=\frac{1}{2} \log \left|\frac{x+1}{x-1}\right|-\frac{4}{(x-1)}+C$

Question 10:
$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}$

Solution:

$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}=\frac{2 x-3}{(x-1)(x+1)(2 x+3)}$
Let $\frac{2 x-3}{(x-1)(x+1)(2 x+3)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C}{(2 x+3)}$
$\Rightarrow(2 x-3)=A(x-1)(2 x-3)+B(x+1)(2 x+3)+C(x+1)(x-1)$
$\Rightarrow(2 x-3)=A\left(2 x^{2}+x-3\right)+B\left(2 x^{2}+5 x+3\right)+C\left(x^{2}-1\right)$
$\Rightarrow(2 x-3)=(2 A+2 B+C) x^{2}+(A+5 B) x+(-3 A+3 B-C)$
Equating the coefficients of x^{2}, x and constant term, we get
$2 A+2 B+C=0$
$A+5 B=2$
$-3 A+3 B-C=-3$
On solving, we get

$$
\begin{aligned}
& A=\frac{5}{2}, B=-\frac{1}{10} \text { and } C=-\frac{24}{5} \\
& \therefore \frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{5}{2(x+1)}-\frac{1}{10(x-1)}-\frac{24}{5(2 x+3)} \\
& \Rightarrow \int \frac{2 x-3}{(x+1)(x-1)(x+1)} d x=\frac{5}{2} \int \frac{1}{(x+1)} d x-\frac{1}{10} \int \frac{1}{(x-1)} d x-\frac{24}{5} \int \frac{1}{(2 x+3)} d x \\
& =\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{24}{5 \times 2} \log |2 x+3|+C \\
& =\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{12}{5} \log |2 x+3|+C
\end{aligned}
$$

Question 11:

$\frac{5 x}{(x+1)\left(x^{2}-4\right)}$

Solution:

$\frac{5 x}{(x+1)\left(x^{2}-4\right)}=\frac{5 x}{(x+1)(x+2)(x-2)}$
Let $\frac{5 x}{(x+1)\left(x^{2}-4\right)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}+\frac{C}{(x-2)}$
$5 x=A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$
Equating the coefficients of x^{2}, x and constant term, we get

$$
\begin{aligned}
& A+B+C=0 \\
& -B+3 C=5 \\
& -4 A-2 B+2 C=0
\end{aligned}
$$

On solving, we get
$A=\frac{5}{3}, B=-\frac{5}{2}$ and $C=\frac{5}{6}$
$\therefore \frac{5 x}{(x+1)(x+2)(x-2)}=\frac{5}{3(x+1)}-\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$
$\Rightarrow \int \frac{5 x}{(x+1)(x+2)(x-2)} d x=\frac{5}{3} \int \frac{1}{(x+1)} d x-\frac{5}{2} \int \frac{1}{(x+2)} d x+\frac{5}{6} \int \frac{1}{(x-2)} d x$
$=\frac{5}{3} \log |x+1|-\frac{5}{2} \log |x+2|+\frac{5}{6} \log |x-2|+C$
Question 12:
$\frac{x^{3}+x+1}{x^{2}-1}$

Solution:

On dividing $\left(x^{3}+x+1\right)$ by $x^{2}-1$, we get
$\frac{x^{3}+x+1}{x^{2}-1}=x+\frac{2 x+1}{x^{2}-1}$
Let $\frac{2 x+1}{x^{2}-1}=\frac{A}{(x+1)}+\frac{B}{(x+1)}$
$2 x+1=A(x-1)+B(x+1)$
Equating the coefficients of x and constant term, we get
$A+B=2$
$-A+B=1$
On solving, we get
$A=\frac{1}{2}$ and $B=\frac{3}{2}$
$\therefore \frac{x^{3}+x+1}{x^{2}-1}=x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
$\Rightarrow \int \frac{x^{3}+x+1}{x^{2}-1} d x=\int x d x+\frac{1}{2} \int \frac{1}{(x+1)} d x+\frac{3}{2} \int \frac{1}{(x-1)} d x$
$=\frac{x^{2}}{2}+\frac{1}{2} \log |x+1|+\frac{3}{2} \log |x-1|+C$

Question 13:
$\frac{2}{(1-x)\left(1+x^{2}\right)}$

Solution:

Let $\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{(1-x)}+\frac{B x+C}{\left(1+x^{2}\right)}$
$2=A\left(1+x^{2}\right)+(B x+C)(1-x)$
$2=A+A x^{2}+B x-B x^{2}+C-C x$
Equating the coefficients of x^{2}, x and constant term, we get
$A-B=0$
$B-C=0$
$A+C=2$
On solving these equations, we get
$A=1, B=1$ and $C=1$
$\therefore \frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{1}{1-x}+\frac{x+1}{1+x^{2}}$
$\Rightarrow \int \frac{2}{(1-x)\left(1+x^{2}\right)} d x=\int \frac{1}{1-x} d x+\int \frac{x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x$
$=-\int \frac{1}{1-x} d x+\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x$
$=-\log |x-1|+\frac{1}{2} \log \left|1+x^{2}\right|+\tan ^{-1} x+C$

Question 14:

$\frac{3 x-1}{(x+2)^{2}}$

Solution:

Let $\frac{3 x-1}{(x+2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}}$
$\Rightarrow 3 x-1=A(x+2)+B$
Equating the coefficient of x and constant term, we get
$A=3$
$2 A+B=-1 \Rightarrow B=-7$
$\therefore \frac{3 x-1}{(x+2)^{2}}=\frac{3}{(x+2)}-\frac{7}{(x+2)^{2}}$
$\Rightarrow \int \frac{3 x-1}{(x+2)^{2}} d x=3 \int \frac{1}{(x+2)} d x-7 \int \frac{x}{(x+2)^{2}} d x$
$=3 \log |x+2|-7\left(\frac{-1}{(x+2)}\right)+C$
$=3 \log |x+2|+\frac{7}{(x+2)}+C$

Question 15:
$\frac{1}{x^{4}-1}$

Solution:

$\frac{1}{\left(x^{4}-1\right)}=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{1}{(x+1)(x-1)\left(x^{2}+1\right)}$
Let $\frac{1}{(x+1)(x-1)\left(x^{2}+1\right)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C x+D}{\left(x^{2}+1\right)}$
$1=A(x-1)\left(1+x^{2}\right)+B(x+1)\left(1+x^{2}\right)+(C x+D)\left(x^{2}-1\right)$
$1=A\left(x^{3}+x-x^{2}-1\right)+B\left(x^{3}+x+x^{2}+1\right)+C x^{3}+D x^{2}-C x-D$
$1=(A+B+C) x^{3}+(-A+B+D) x^{2}+(A+B-C) x+(-A+B-D)$
Equating the coefficients of x^{3}, x^{2}, x and constant term, we get $A+B+C=0$
$-A+B+D=0$
$A+B-C=0$
$-A+B-D=1$
On solving, we get
$A=\frac{-1}{4}, B=\frac{1}{4}, C=0$ and $\mathrm{D}=-\frac{1}{2}$
$\therefore \frac{1}{\left(x^{4}-1\right)}=\frac{-1}{4(x+1)}+\frac{1}{4(x-1)}+\frac{1}{2\left(1+x^{2}\right)}$
$\Rightarrow \int \frac{1}{\left(x^{4}-1\right)} d x=\int \frac{-1}{4(x+1)} d x+\int \frac{1}{4(x-1)} d x-\int \frac{1}{2\left(1+x^{2}\right)} d x$
$\Rightarrow \int \frac{1}{\left(x^{4}-1\right)} d x=-\frac{1}{4} \log |x+1|+\frac{1}{4} \log |x-1|-\frac{1}{2} \tan ^{-1} x+C$
$=\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \tan ^{-1} x+C$

Question 16:

$\frac{1}{x\left(x^{n}+1\right)}$
[Hint: multiply numerator and denominator by x^{n-1} and put $x^{n}=t$]

Solution:

$\frac{1}{x\left(x^{n}+1\right)}$
Multiplying numerator and denominator by x^{n-1}, we get

$$
\frac{1}{x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n-1} x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)}
$$

Let $x^{n}=t \Rightarrow n x^{n-1} d x=d t$
$\therefore \int \frac{1}{x\left(x^{n}+1\right)} d x=\int \frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)} d x=\frac{1}{n} \int \frac{1}{t(t+1)} d t$
Let $\frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{(t+1)}$
$1=A(1+t)+B t$
Equating the coefficients of t and constant term, we get
$A=1$ and $B=-1$
$\therefore \frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{(1+t)}$
$\Rightarrow \int \frac{1}{x\left(x^{n}+1\right)} d x=\frac{1}{n} \int\left\{\frac{1}{t}-\frac{1}{(1+t)}\right\} d x$
$=\frac{1}{n}[\log |t|-\log |t+1|]+C$
$=\frac{1}{n}\left[\log \left|x^{n}\right|-\log \left|x^{n}+1\right|\right]+C$
$=\frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right|+C$

Question 17:

$\frac{\cos x}{(1-\sin x)(2-\sin x)}[$ Hint: Put $\sin x=t]$

Solution:

$\frac{\cos x}{(1-\sin x)(2-\sin x)}$ Put, $\sin x=t \Rightarrow \cos x d x=d t$
$\therefore \int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int \frac{d t}{(1-t)(2-t)}$
Let $\frac{1}{(1-t)(2-t)}=\frac{A}{(1-t)}+\frac{B}{(2-t)}$
$1=A(2-t)+B(1-t)$
Equating the coefficients of t and constant, we get
$-2 A-B=0$, and $2 A+B=1$
On solving, we get
$A=1$ and $B=-1$
$\therefore \frac{1}{(1-t)(2-t)}=\frac{1}{(1-t)}-\frac{1}{(2-t)}$
$\Rightarrow \int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int\left\{\frac{1}{1-t}-\frac{1}{(2-t)}\right\} d t$
$=-\log |1-t|+\log |2-t|+C$
$=\log \left|\frac{2-t}{1-t}\right|+C$
$=\log \left|\frac{2-\sin x}{1-\sin x}\right|+C$

Question 18:
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$

Solution:

$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$
Let $\frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+3\right)}+\frac{C x+D}{\left(x^{2}+4\right)}$
$4 x^{2}+10=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+3\right)$
$4 x^{2}+10=A x^{3}+4 A x+B x^{2}+4 B+C x^{3}+3 C x+D x^{2}+3 D$
$4 x^{2}+10=(A+C) x^{3}+(B+D) x^{2}+(4 A+3 C) x+(4 B+3 D)$
Equating the coefficients of x^{3}, x^{2}, x and constant term, we get
$A+C=0$
$B+D=4$
$4 A+3 C=0$
$4 B+3 D=10$
On solving these equations, we get
$A=0, B=-2, C=0$ and $D=6$
$\therefore \frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}$
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\left(\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\right)$
$\Rightarrow \int \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} d x=\int 1-\left\{\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\right\} d x$
$=\int\left\{1+\frac{2}{x^{2}+(\sqrt{3})^{2}}-\frac{6}{x^{2}+2^{2}}\right\} d x$
$=x+2\left(\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right)-6\left(\frac{1}{2} \tan ^{-1} \frac{x}{2}\right)+C$
$=x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}-3 \tan ^{-1} \frac{x}{2}+C$

Question 19:
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$

Solution:

$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$
Put, $x^{2}=t \Rightarrow 2 x d x=d t$
$\therefore \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d t}{(t+1)(t+3)}$
Let $\frac{1}{(t+1)(t+3)}=\frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1=A(t+3)+B(t+1)$
Equating the coefficients of t and constant, we get
$A+B=0$ and $3 A+B=1$
On solving, we get
$A=\frac{1}{2}$ and $B=-\frac{1}{2}$
$\therefore \frac{1}{(t+1)(t+3)}=\frac{1}{2(t+1)}+\frac{1}{2(t+3)}$
$\Rightarrow \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int\left\{\frac{1}{2(t+1)}-\frac{1}{2(t+3)}\right\} d t$
$=\frac{1}{2} \log |(t+1)|-\frac{1}{2} \log |t+3|+C$
$=\frac{1}{2} \log \left|\frac{t+1}{t+3}\right|+C=\frac{1}{2} \log \left|\frac{x^{2}+1}{x^{2}+3}\right|+C$

Question 20:
$\frac{1}{x\left(x^{4}-1\right)}$

Solution:

$$
\frac{1}{x\left(x^{4}-1\right)}
$$

Multiplying Nr and Dr by x^{3}, we get
$\frac{1}{x\left(x^{4}-1\right)}=\frac{x^{3}}{x^{4}\left(x^{4}-1\right)}$
$\therefore \int \frac{1}{x\left(x^{4}-1\right)} d x=\int \frac{x^{3}}{x^{4}\left(x^{4}-1\right)} d x$
Put, $x^{4}=t \Rightarrow 4 x^{3}=d t$
$\therefore \int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int \frac{d t}{t(t-1)}$
Let $\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{(t-1)}$
$1=A(t-1)+B t \ldots(1)$
Equating the coefficients of t and constant, we get
$A=-1$ and $B=1$
$\Rightarrow \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int\left\{\frac{-1}{t}+\frac{1}{t-1}\right\} d t$
$=\frac{1}{4}[-\log |t|+\log |t-1|]+C$
$=\frac{1}{4} \log \left|\frac{t-1}{t}\right|+C=\frac{1}{4} \log \left|\frac{x^{4}-1}{x^{4}}\right|+C$

Question 21:
$\frac{1}{\left(e^{x}-1\right)}\left[\right.$ Hint: Put $\left.e^{x}=t\right]$

Solution:

Put $e^{x}=t \Rightarrow e^{x} d x=d t$

$$
\Rightarrow \int \frac{1}{\left(e^{x}-1\right)} d x=\int \frac{1}{t-1} \times \frac{d t}{t}=\int \frac{1}{t(t-1)} d t
$$

$$
\begin{equation*}
\text { Let } \frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1} \tag{1}
\end{equation*}
$$

$1=A(t-1)+B t$
Equating the coefficients of t and constant, we get
$A=-1$ and $B=1$
$\therefore \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{t(t-1)} d t=\log \left|\frac{t-1}{t}\right|+C$
$=\log \left|\frac{e^{x}-1}{e^{x}}\right|+C$

Question 22:

$\int \frac{x d x}{(x-1)(x-2)}$ equals
A. $\log \left|\frac{(x-1)^{2}}{(x-2)}\right|+C$
B. $\log \left|\frac{(x-2)^{2}}{(x-1)}\right|+C$
C. $\log \left|\left(\frac{x-1}{x-2}\right)^{2}\right|+C$
D. $\log |(x-1)(x-2)|+C$

Solution:

Let $\frac{x}{(x-1)(x-2)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}$
$x=A(x-2)+B(x-1)$
Equating the coefficients of x and constant, we get
$A=-1$ and $B=2$
$\therefore \frac{x}{(x-1)(x-2)}=\frac{-1}{(x-1)}+\frac{2}{(x-2)}$
$\Rightarrow \int \frac{x}{(x-1)(x-2)} d x=\int\left\{\frac{-1}{(x-1)}+\frac{2}{(x-2)}\right\} d x$
$=-\log |x-1|+2 \log |x-2|+C$
$=\log \left|\frac{(x-2)^{2}}{x-1}\right|+C$
Thus, the correct option is B.

Question 23:
$\int \frac{d x}{x\left(x^{2}+1\right)}$ equals
A. $\log |x|-\frac{1}{2} \log \left(x^{2}+1\right)+C$
B. $\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C$
C. $-\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C$
D. $\frac{1}{2} \log |x|+\log \left(x^{2}+1\right)+C$

Solution:

Let $\frac{1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}$
$1=A\left(x^{2}+1\right)+(B x+C) x$
Equating the coefficients of x^{2}, x and constant terms, we get
$A+B=0$
$C=0$
$A=1$
On solving these equations, we get
$A=1 B=-1$ and $C=0$
$\therefore \frac{1}{x\left(x^{2}+1\right)}=\frac{1}{x}+\frac{-x}{x^{2}+1}$
$\Rightarrow \int \frac{1}{x\left(x^{2}+1\right)} d x=\int\left\{\frac{1}{x}-\frac{x}{x^{2}-1}\right\} d x$
$=\log |x|-\frac{1}{2} \log \left|x^{2}+1\right|+C$
Thus, the correct option is A.

EXERCISE 7.6

Integrate the functions in Exercises 1 to 22.
Question 1:
$x \sin x$

Solution:

Let $I=\int x \sin x d x$
Taking $u=x$ and $v=\sin x$ and integrating by parts,

$$
\begin{aligned}
I & =x \int \sin x d x-\int\left\{\left(\frac{d}{d x}(x)\right) \int \sin x d x\right\} d x \\
& =x(-\cos x)-\int 1 \cdot(-\cos x) d x \\
& =-x \cos x+\sin x+C
\end{aligned}
$$

Question 2:

$x \sin 3 x$

Solution:

Let $I=\int x \sin 3 x d x$
Taking $u=x$ and $v=\sin 3 x$ and integrating by parts,

$$
\begin{aligned}
I & =x \int \sin 3 x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin 3 x d x\right\} d x \\
& =x\left(\frac{-\cos 3 x}{3}\right)-\int 1 \cdot\left(\frac{-\cos 3 x}{3}\right) d x \\
& =\frac{-x \cos 3 x}{3}+\frac{1}{3} \int \cos 3 x d x \\
& =\frac{-x \cos 3 x}{3}+\frac{1}{9} \sin 3 x+C
\end{aligned}
$$

Question 3:
$x^{2} e^{x}$

Solution:

Let $I=\int x^{2} e^{x} d x$
Taking $u=x^{2}$ and $v=e^{x}$ and integrating by parts, we get

$$
\begin{aligned}
I & =x^{2} \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x^{2}\right) \int e^{x} d x\right\} d x \\
& =x^{2} e^{x}-\int 2 x \cdot e^{x} d x \\
& =x^{2} e^{x}-2 \int x \cdot e^{x} d x
\end{aligned}
$$

Again using integration by parts, we get
$=x^{2} e^{x}-2\left[x \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \int e^{x} d x\right\} d x\right]$
$=x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right]$
$=x^{2} e^{x}-2\left[x e^{x}-e^{x}\right]$
$=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C$
$=e^{x}\left(x^{2}-2 x+2\right)+C$

Question 4:

$x \log x$

Solution:

Let $I=\int x \log x d x$
Taking $u=\log x$ and $v=x$ and integrating by parts, we get

$$
\begin{aligned}
I & =\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x \\
& =\log x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \log x}{2}-\int \frac{x}{2} d x \\
& =\frac{x^{2} \log x}{2}-\frac{x^{2}}{4}+C
\end{aligned}
$$

Question 5:

$x \log 2 x$

Solution:

Let $I=\int x \log 2 x d x$
Taking $u=\log 2 x$ and $v=x$ and integrating by parts, we get

$$
\begin{aligned}
I & =\log 2 x \int x d x-\int\left\{\left(\frac{d}{d x} \log 2 x\right) \int x d x\right\} d x \\
& =\log 2 x \cdot \frac{x^{2}}{2}-\int \frac{2}{2 x} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \log 2 x}{2}-\int \frac{x}{2} d x \\
& =\frac{x^{2} \log 2 x}{2}-\frac{x^{2}}{4}+C
\end{aligned}
$$

Question 6:

$x^{2} \log x$

Solution:

Let $I=\int x^{2} \log x d x$
Taking $u=\log x$ and $v=x^{2}$ and integrating by parts, we get

$$
\begin{aligned}
I & =\log x \int x^{2} d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right\} d x \\
& =\log x \cdot\left(\frac{x^{3}}{3}\right)-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x \\
& =\frac{x^{3} \log x}{3}-\int \frac{x^{2}}{3} d x \\
& =\frac{x^{3} \log x}{3}-\frac{x^{3}}{9}+C
\end{aligned}
$$

Question 7:

$x \sin ^{-1} x$

Solution:

Let $I=\int x \sin ^{-1} x d x$
Taking $u=\sin ^{-1} x$ and $v=x$ and integrating by parts, we get

$$
\begin{aligned}
& I=\sin ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int x d x\right\} d x \\
& =\sin ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\frac{1-x^{2}}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\right\} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\sqrt{1-x^{2}}-\frac{1}{\left.\sqrt{1-x^{2}}\right\} d x}\right\} \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\int \sqrt{1-x^{2}} d x-\int \frac{1}{\sqrt{1-x^{2}}} d x\right\} \\
& \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x-\sin ^{-1} x\right\}+C \\
& \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{x}{4} \sqrt{1-x^{2}}+\frac{1}{4} \sin ^{-1} x-\frac{1}{2} \sin ^{-1} x+C \\
& =\frac{1}{4}\left(2 x^{2}-1\right) \sin ^{-1} x+\frac{x}{4} \sqrt{1-x^{2}}+C
\end{aligned}
$$

Question 8:
$x \tan ^{-1} x$

Solution:

Let $I=\int x \tan ^{-1} x d x$
Taking $u=\tan ^{-1} x$ and $v=x$ and integrating by parts, we get
$I=\tan ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int x d x\right\} d x$
$=\tan ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x$
$=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x$
$=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int\left\{\frac{x^{2}+1}{1+x^{2}}-\frac{1}{1+x^{2}}\right\} d x$
$=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x$
$=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2}\left(x-\tan ^{-1} x\right)+C$
$=\frac{x^{2}}{2} \tan ^{-1} x-\frac{x}{2}+\frac{1}{2} \tan ^{-1} x+C$

Question 9:

$x \cos ^{-1} x$

Solution:

Let $I=\int x \cos ^{-1} x d x$
Taking $u=\cos ^{-1} x$ and $v=x$ and integrating by parts, we get

$$
\begin{align*}
& I=\cos ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int x d x\right\} d x \\
& =\cos ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int\left\{\sqrt{1-x^{2}}+\left(\frac{-1}{\sqrt{1-x^{2}}}\right)\right\} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \sqrt{1-x^{2}} d x-\frac{1}{2} \int\left(\frac{-1}{\sqrt{1-x^{2}}}\right) d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} I_{1}-\frac{1}{2} \cos ^{-1} x \ldots \ldots \ldots \ldots \ldots \ldots ~ \tag{1}
\end{align*}
$$

Where, $I_{1}=\int \sqrt{1-x^{2}} d x$
$\Rightarrow I_{1}=\sqrt{1-x^{2}} \int 1 d x-\int \frac{d}{d x} \sqrt{1-x^{2}} \int 1 d x$
$\Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{-2 x}{2 \sqrt{1-x^{2}}} x d x$
$\Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x$
$\Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x$
$\Rightarrow I_{1}=x \sqrt{1-x^{2}}-\left\{\int \sqrt{1-x^{2}} d x+\int \frac{-d x}{\sqrt{1-x^{2}}}\right\}$
$\Rightarrow I_{1}=x \sqrt{1-x^{2}}-\left\{I_{1}+\cos ^{-1} x\right\}$
$\Rightarrow 2 I_{1}=x \sqrt{1-x^{2}}-\cos ^{-1} x$
$\therefore I_{1}=\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x$
Substituting in (1),
$I=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2}\left(\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x\right)-\frac{1}{2} \cos ^{-1} x$
$=\frac{\left(2 x^{2}-1\right)}{4} \cos ^{-1} x-\frac{x}{4} \sqrt{1-x^{2}}+C$

Question 10:
$\left(\sin ^{-1} x\right)^{2}$

Solution:

Let $I=\int\left(\sin ^{-1} x\right)^{2} .1 d x$
Taking $u=\left(\sin ^{-1} x\right)^{2}$ and $v=1$ and integrating by parts, we get
$I=\int\left(\sin ^{-1} x\right)^{2} \cdot \int 1 d x-\int\left\{\frac{d}{d x}\left(\sin ^{-1} x\right)^{2} \cdot \int 1 d x\right\} d x$
$=\left(\sin ^{-1} x\right)^{2} \cdot x-\int \frac{2 \sin ^{-1} x}{\sqrt{1-x^{2}}} \cdot x d x$
$=x\left(\sin ^{-1} x\right)^{2}+\int \sin ^{-1} x\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right) d x$
$=x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\right]$
$=x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right]$
$=x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-\int 2 d x$
$=x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-2 x+C$
Question 11:
$\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}$

Solution:

Let $I=\int \frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}} d x$
$I=\frac{-1}{2} \int \frac{-2 x}{\sqrt{1-x^{2}}} \cdot \cos ^{-1} x d x$
Taking $u=\cos ^{-1} x$ and $v=\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right)$ and integrating by parts, we get
$I=\frac{-1}{2}\left[\cos ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\right]$
$=\frac{-1}{2}\left[\cos ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right]$
$=\frac{-1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+\int 2 d x\right]$
$=\frac{-1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+2 x\right]+C$
$=-\left\lceil\sqrt{1-x^{2}} \cos ^{-1} x+x\right\rceil+C$

Question 12:

$x \sec ^{2} x$

Solution:

Let $I=\int x \sec ^{2} x d x$

Taking $u=x$ and $v=\sec ^{2} x$ and integrating by parts, we get
$I=x \int \sec ^{2} x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sec ^{2} x d x\right\} d x$
$=x \tan x-\int 1 \cdot \tan x d x$
$=x \tan x+\log |\cos x|+C$

Question 13:
$\tan ^{-1} x$

Solution:

Let $I=\int 1 \cdot \tan ^{-1} x d x$
Taking $u=\tan ^{-1} x$ and $v=1$ and integrating by parts, we get
$I=\tan ^{-1} x \int 1 d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int 1 . d x\right\} d x$
$=\tan ^{-1} x \cdot x-\int \frac{1}{1+x^{2}} x d x$
$=x \tan ^{-1} x-\frac{1}{2} \int \frac{2}{1+x^{2}} d x$
$=x \tan ^{-1} x-\frac{1}{2} \log \left|1+x^{2}\right|+C$
$=x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)+C$

Question 14:

$x(\log x)^{2}$

Solution:

Let $I=\int x(\log x)^{2} d x$
Taking $u=(\log x)^{2}$ and $v=x$ and integrating by parts, we get
$I=(\log x)^{2} \int x d x-\int\left[\left\{\frac{d}{d x}(\log x)^{2}\right\} \int x d x\right] d x$
$=\frac{x^{2}}{2}(\log x)^{2}-\left[\int 2 \log x \cdot \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right]$
$=\frac{x^{2}}{2}(\log x)^{2}-\int x \log x d x$
Again, using integration by parts, we get

$$
\begin{aligned}
I & =\frac{x^{2}}{2}(\log x)^{2}-\left[\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x\right] \\
& =\frac{x^{2}}{2}(\log x)^{2}-\left[\frac{x^{2}}{2} \log x-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right] \\
& =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{1}{2} \int x d x \\
& =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4}+C
\end{aligned}
$$

Question 15:

$$
\left(x^{2}+1\right) \log x
$$

Solution:

Let $I=\int\left(x^{2}+1\right) \log x d x=\int x^{2} \log x d x+\int \log x d x$
Let $I=I_{1}+I_{2}$
Where, $I_{1}=\int x^{2} \log x d x$ and $I_{2}=\int \log x d x$
$I_{1}=\int x^{2} \log x d x$
Taking $u=\log x$ and $v=x^{2}$ and integrating by parts, we get

$$
\begin{align*}
& I_{1}=\log x \int x^{2} d x-\int\left[\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right] d x \\
& =\log x \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x \\
& =\frac{x^{3}}{3} \log x-\frac{1}{3}\left(\int x^{2} d x\right) \\
& =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+C_{1} \ldots \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

$I_{2}=\int \log x d x$
Taking $u=\log x$ and $v=1$ and integrating by parts,
$I_{2}=\log x \int 1 \cdot d x-\int\left[\left(\frac{d}{d x} \log x\right) \int 1 \cdot d x\right]$
$=\log x \cdot x-\int \frac{1}{x} \cdot x d x$
$=x \log x-\int 1 . d x$
$=x \log x-x+C_{2}$

Using equations (2) and (3) in (1),

$$
\begin{aligned}
I & =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+C_{1}+x \log x-x+C_{2} \\
& =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+x \log x-x+\left(C_{1}+C_{2}\right) \\
& =\left(\frac{x^{3}}{3}+x\right) \log x-\frac{x^{3}}{9}-x+C
\end{aligned}
$$

Question 16:
$e^{x}(\sin x+\cos x)$

Solution:

Let $I=\int e^{x}(\sin x+\cos x) d x$
Let $f(x)=\sin x$
$f^{\prime}(x)=\cos x$
$I=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
Since, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C$
$\therefore I=e^{x} \sin x+C$

Question 17:

$\frac{x e^{x}}{(1+x)^{2}}$

Solution:

Let, $I=\int \frac{x e^{x}}{(1+x)^{2}} d x=\int e^{x}\left\{\frac{x}{(1+x)^{2}}\right\} d x$

$$
=\int e^{x}\left\{\frac{1+x-1}{(1+x)^{2}}\right\} d x=\int e^{x}\left\{\frac{1}{1+x}-\frac{1}{(1+x)^{2}}\right\} d x
$$

Here, $f(x)=\frac{1}{1+x} \quad f^{\prime}(x)=\frac{-1}{(1+x)^{2}}$
$\Rightarrow \int \frac{x e^{x}}{(1+x)^{2}} d x=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
Since, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C$
$\therefore \int \frac{x e^{x}}{(1+x)^{2}} d x=e^{x} \frac{1}{1+x}+C$

Question 18:

$$
e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)
$$

Solution:

$$
\begin{align*}
& e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)=e^{x}\left(\frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right) \\
& =\frac{e^{x}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}}=\frac{1}{2} e^{x}\left(\frac{\sin \frac{x}{2}+\cos \frac{x}{2}}{\cos \frac{x}{2}}\right)^{2} \\
& =\frac{1}{2} e^{x}\left[\tan \frac{x}{2}+1\right]^{2} \\
& =\frac{1}{2} e^{x}\left[1+\tan \frac{x}{2}\right]^{2} \\
& =\frac{1}{2} e^{x}\left[1+\tan ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right] \\
& =\frac{1}{2} e^{x}\left[\sec { }^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right] \\
& \frac{e^{x}(1+\sin x) d x}{(1+\cos x)}=e^{x}\left[\frac{1}{2} \sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right] \ldots . . . \tag{1}
\end{align*}
$$

Let $\tan \frac{x}{2}=f(x) \quad$ so $f^{\prime}(x)=\frac{1}{2} \sec ^{2} \frac{x}{2}$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C$
From equation (1), we get

$$
\int \frac{e^{x}(1+\sin x)}{(1+\cos x)} d x=e^{x} \tan \frac{x}{2}+C
$$

Question 19:

$$
e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)
$$

Solution:

Let $I=\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x$
Here, $\frac{1}{x}=f(x) \quad f^{\prime}(x)=\frac{-1}{x^{2}}$
It is known that,
$\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
$=e^{x} f(x)+C$
$\therefore I=\frac{e^{x}}{x}+C$
Question 20:
$\frac{(x-3) e^{x}}{(x-1)^{3}}$

Solution:

$\int e^{x}\left\{\frac{x-3}{(x-1)^{3}}\right\} d x=\int e^{x}\left\{\frac{x-1-2}{(x-1)^{3}}\right\} d x$
$=\int e^{x}\left\{\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}\right\} d x$
Let $f(x)=\frac{1}{(x-1)^{2}} \quad f^{\prime}(x)=\frac{-2}{(x-1)^{3}}$
It is known that,

$$
\begin{aligned}
& \int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C \\
& \therefore \int e^{x}\left\{\frac{(x-3)}{(x-1)^{2}}\right\} d x=\frac{e^{x}}{(x-1)^{2}}+C
\end{aligned}
$$

Question 21:

$e^{2 x} \sin x$

Solution:

Let $I=e^{2 x} \sin x d x$
Taking $u=\sin x$ and $v=e^{2 x}$ and integrating by parts, we get
$I=\sin x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \sin x\right) \int e^{2 x} d x\right\} d x$
$\Rightarrow I=\sin x \cdot \frac{e^{2 x}}{2}-\int \cos x \cdot \frac{e^{2 x}}{2} d x$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2} \int e^{2 x} \cos x d x$
Again, using integration by parts, we get
$I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \cos x\right) \int e^{2 x} d x\right\} d x\right]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos x \cdot \frac{e^{2 x}}{2}-\int(-\sin x) \frac{e^{2 x}}{2} d x\right]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\frac{e^{2 x} \cos x}{2}+\frac{1}{2} \int e^{2 x} \sin x d x\right]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}-\frac{1}{4} I \quad[\operatorname{From}(1)]$
$\Rightarrow I+\frac{1}{4} I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}$
$\Rightarrow \frac{5}{4} I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}$
$\Rightarrow I=\frac{4}{5}\left[\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}\right]+C$
$\Rightarrow I=\frac{e^{2 x}}{5}[2 \sin x-\cos x]+C$
Question 22:
$\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$

Solution:

Let $x=\tan \theta \quad d x=\sec ^{2} \theta d \theta$
$\therefore \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\int \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=\int 2 \theta \cdot \sec ^{2} \theta d \theta=2 \int \theta \cdot \sec ^{2} \theta d \theta$

Using integration by parts, we get
$2\left[\theta \cdot \int \sec ^{2} \theta d \theta-\int\left\{\left(\frac{d}{d \theta} \theta\right) \int \sec ^{2} \theta d \theta\right\} d \theta\right]$
$=2\left[\theta \cdot \tan \theta-\int \tan \theta d \theta\right]$
$=2[\theta \cdot \tan \theta+\log |\cos \theta|]+C$
$=2\left[x \tan ^{-1} x+\log \left|\frac{1}{\sqrt{1+x^{2}}}\right|\right]+C$
$=2 x \tan ^{-1} x+2 \log \left(1+x^{2}\right)^{\frac{-1}{2}}+C$
$=2 x \tan ^{-1} x+2\left[\frac{-1}{2} \log \left(1+x^{2}\right)\right]+C$
$=2 x \tan ^{-1} x-\log \left(1+x^{2}\right)+C$
Question 23:
$\int x^{2} e^{x^{3}} d x$ equals
A. $\frac{1}{3} e^{x^{3}}+C$
B. $\frac{1}{3} e^{x^{2}}+C$
C. $\frac{1}{2} e^{x^{3}}+C$
D. $\frac{1}{2} e^{x^{2}}+C$

Solution:

Let $I=\int x^{2} e^{x^{3}} d x$
Also, let $x^{3}=t$ so, $3 x^{2} d x=d t$
$\Rightarrow I=\frac{1}{3} \int e^{t} d t$
$=\frac{1}{3}\left(e^{t}\right)+C$
$=\frac{1}{3} e^{x^{3}}+C$
Thus, the correct option is A.

Question 24:
$\int e^{x} \sec x(1+\tan x) d x$ equals
A. $e^{x} \cos x+C$
B. $e^{x} \sec x+C$
C. $e^{x} \sin x+C$
D. $e^{x} \tan x+C$

Solution:

$\int e^{x} \sec x(1+\tan x) d x$
Consider, $I=\int e^{x} \sec x(1+\tan x) d x=\int e^{x}(\sec x+\sec x \tan x) d x$
Let $\sec x=f(x) \quad \sec x \tan x=f^{\prime}(x)$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C$
$\therefore I=e^{x} \sec x+C$
Thus, the correct option is B.

EXERCISE 7.7

Integrate the functions in Exercises 1 to 9.
Question 1:
$\sqrt{4-x^{2}}$

Solution:

Let $I=\int \sqrt{4-x^{2}} d x=\int \sqrt{(2)^{2}-(x)^{2}} d x$
Since, $\sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
$\therefore I=\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}+C$
$=\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{-1} \frac{x}{2}+C$
Question 2:
$\sqrt{1-4 x^{2}}$

Solution:

Let, $I=\int \sqrt{1-4 x^{2}} d x=\int \sqrt{(1)^{2}-(2 x)^{2}} d x$
Put, $2 x=t \Rightarrow 2 d x=d t$
$\therefore I=\frac{1}{2} \int \sqrt{(1)^{2}-(t)^{2}}$

Since, $\sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
$\Rightarrow I=\frac{1}{2}\left[\frac{t}{2} \sqrt{1-t^{2}}+\frac{1}{2} \sin ^{-1} t\right]+C$
$=\frac{t}{4} \sqrt{1-t^{2}}+\frac{1}{4} \sin ^{-1} t+C$
$=\frac{2 x}{4} \sqrt{1-4 x^{2}}+\frac{1}{4} \sin ^{-1} 2 x+C$
$=\frac{x}{2} \sqrt{1-4 x^{2}}+\frac{1}{4} \sin ^{-1} 2 x+C$

Question 3:

$\sqrt{x^{2}+4 x+6}$

Solution:

Let $I=\int \sqrt{x^{2}+4 x+6} d x$
$=\int \sqrt{x^{2}+4 x+4+2} d x$
$=\int \sqrt{\left(x^{2}+4 x+4\right)+2} d x$
$=\int \sqrt{(x+2)^{2}+(\sqrt{2})^{2}} d x$
Since, $\sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$I=\frac{(x+2)}{2} \sqrt{x^{2}+4 x+6}+\frac{2}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+C$
$=\frac{(x+2)}{2} \sqrt{x^{2}+4 x+6}+\log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+C$
Question 4:
$\sqrt{x^{2}+4 x+1}$

Solution:

Consider,

$$
\begin{aligned}
& I=\int \sqrt{x^{2}+4 x+1} d x \\
& =\int \sqrt{\left(x^{2}+4 x+4\right)-3} d x \\
& =\int \sqrt{(x+2)^{2}-(\sqrt{3})^{2}} d x
\end{aligned}
$$

Since, $\sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\therefore I=\frac{(x+2)}{2} \sqrt{x^{2}+4 x+1}-\frac{3}{2} \log \left|(x-2)+\sqrt{x^{2}+4 x+1}\right|+C$

Question 5:
$\sqrt{1-4 x-x^{2}}$

Solution:

Consider, $I=\int \sqrt{1-4 x-x^{2}} d x$
$=\int \sqrt{1-\left(x^{2}+4 x+4-4\right)} d x$
$=\int \sqrt{1+4-(x+2)^{2}} d x$
$=\int \sqrt{(\sqrt{5})^{2}-(x+2)^{2}} d x$
Since, $\sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
$\therefore I=\frac{(x+2)}{2} \sqrt{1-4 x-x^{2}}+\frac{5}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+C$

Question 6:
$\sqrt{x^{2}+4 x-5}$

Solution:

Let $I=\int \sqrt{x^{2}+4 x-5} d x$
$=\int \sqrt{\left(x^{2}+4 x+4\right)-9} d x=\int \sqrt{(x+2)^{2}-(3)^{2}} d x$
Since, $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\therefore I=\frac{(x+2)}{2} \sqrt{x^{2}+4 x-5}-\frac{9}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x-5}\right|+C$

Question 7:

$\sqrt{1+3 x-x^{2}}$

Solution:

Put, $I=\int \sqrt{1+3 x-x^{2}} d x$
$=\int \sqrt{1-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)} d x$
$=\int \sqrt{\left(1+\frac{9}{4}\right)-\left(x-\frac{3}{2}\right)^{2}} d x=\int \sqrt{\left(\frac{\sqrt{13}}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}} d x$

Since, $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
$\therefore I=\frac{x-\frac{3}{2}}{2} \sqrt{1+3 x-x^{2}}+\frac{13}{4 \times 2} \sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{\sqrt{13}}{2}}\right)+C$
$=\frac{2 x-3}{4} \sqrt{1+3 x-x^{2}}+\frac{13}{8} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{13}}\right)+C$
Question 8:
$\sqrt{x^{2}+3 x}$

Solution:

Let $I=\int \sqrt{x^{2}+3 x} d x$
$=\int \sqrt{x^{2}+3 x+\frac{9}{4}-\frac{9}{4}} d x$
$=\int \sqrt{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}} d x$
Since, $\sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\therefore I=\frac{\left(x+\frac{3}{2}\right)}{2} \sqrt{x^{2}+3 x}-\frac{\frac{9}{4}}{2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x}\right|+C$
$=\frac{(2 x+3)}{4} \sqrt{x^{2}+3 x}-\frac{9}{8} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x}\right|+C$
Question 9:
$\sqrt{1+\frac{x^{2}}{9}}$

Solution:

Let $I=\int \sqrt{1+\frac{x^{2}}{9}} d x=\frac{1}{3} \int \sqrt{9+x^{2}} d x=\frac{1}{3} \int \sqrt{(3)^{2}+x^{2} d x}$
Since, $\sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$\therefore I=\frac{1}{3}\left[\frac{x}{2} \sqrt{x^{2}+9}+\frac{9}{2} \log \left|x+\sqrt{x^{2}+9}\right|\right]+C$
$=\frac{x}{6} \sqrt{x^{2}+9}+\frac{3}{2} \log \left|x+\sqrt{x^{2}+9}\right|+C$

Question 10:

$\int \sqrt{1+x^{2}}$ is equal to
A. $\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \log \left|x+\sqrt{1+x^{2}}\right|+C$
B. $\frac{2}{3}\left(1+x^{2}\right)^{\frac{2}{3}}+C$
C. $\frac{2}{3} x\left(1+x^{2}\right)^{\frac{2}{3}}+C$
D. $\frac{x^{3}}{2} \sqrt{1+x^{2}}+\frac{1}{2} x^{2} \log \left|x+\sqrt{1+x^{2}}\right|+C$

Solution:

Since. $\sqrt{a^{2}+x^{2}} d x=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$\therefore \int \sqrt{1+x^{2}} d x=\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \log \left|x+\sqrt{1+x^{2}}\right|+C$
Thus, the correct option is A.

Question 11:

$\int \sqrt{x^{2}-8 x+7} d x$ is equal to
A. $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}+9 \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$
B. $\frac{1}{2}(x+4) \sqrt{x^{2}-8 x+7}+9 \log \left|x+4+\sqrt{x^{2}-8 x+7}\right|+C$
C. $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}-3 \sqrt{2} \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$
D. $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}-\frac{9}{2} \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$

Solution:

Let $I=\int \sqrt{x^{2}-8 x+7} d x$
$=\int \sqrt{\left(x^{2}-8 x+16\right)-9} d x$
$=\int \sqrt{(x-4)^{2}-(3)^{2}} d x$
Since, $\sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\therefore I=\frac{(x-4)}{2} \sqrt{x^{2}-8 x+7}-\frac{9}{2} \log \left|(x-4)+\int \sqrt{x^{2}-8 x+7}\right|+C$
Thus, the correct option is D.

EXERCISE 7.8

Evaluate the following definite integrals as limit of sums.

Question 1:

$\int_{a}^{b} x d x$

Solution:

Since, $\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)]$ where $h=\frac{b-a}{n}$
Here, $a=a, b=b$ and $f(x)=x$

$$
\begin{aligned}
& \therefore \int_{a}^{b} x d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[a+(a+h) \ldots(a+2 h) \ldots a+(n-1) h] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\operatorname{n}^{+}+_{n+1 \text { times }}+\mathbb{T}^{a}\right)+(h+2 h+3 h+\ldots(n-1) h)\right] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[n a+h(1+2+3+\ldots+(n-1))] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}\left[n a+h\left\{\frac{(n-1)(n)}{2}\right\}\right] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}\left[n a+\frac{n(n-1) h}{2}\right]=(b-a) \lim _{n \rightarrow \infty} \frac{n}{n}\left[a+\frac{(n-1) h}{2}\right] \\
& =(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{(n-1) h}{2}\right]=(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{(n-1)(b-a)}{2 n}\right]
\end{aligned}
$$

$$
=(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{\left(1-\frac{1}{n}\right)(b-a)}{2}\right]=(b-a)\left[a+\frac{(b-a)}{2}\right]
$$

$$
=(b-a)\left[\frac{2 a+b-a}{2}\right]
$$

$$
=\frac{(b-a)(b+a)}{2}
$$

$$
=\frac{1}{2}\left(b^{2}-a^{2}\right)
$$

Question 2:
$\int_{0}^{b}(x+1) d x$

Solution:

Let $I=\int_{0}^{b}(x+1) d x$
Since, $\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=0, b=5$ and $f(x)=(x+1)$
$\Rightarrow h=\frac{5-0}{n}=\frac{5}{n}$
$\therefore \int_{0}^{5}(x+1) d x=(5-0) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(0)+f\left(\frac{5}{n}\right)+\ldots+f\left((n-1) \frac{5}{n}\right)\right]$
$=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(\frac{5}{n}+1\right)+\ldots\left\{1+\left(\frac{5(n-1)}{n}\right)\right\}\right]$
$=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(1+{ }_{n \text { times }}+1 \ldots 1\right)+\left[\frac{5}{n}+2 \cdot \frac{5}{n}+3 \cdot \frac{5}{n}+\ldots+(n-1) \frac{5}{n}\right]\right]$
$=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{5}{n}\{1+2+3 \ldots(n-1)\}\right]$
$=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{5}{n} \cdot \frac{(n-1) n}{2}\right]=5 \lim _{n \rightarrow \infty}\left[1+\frac{5(n-1)}{2 n}\right]$
$=5 \lim _{n \rightarrow \infty}\left[1+\frac{5}{2}\left(1-\frac{1}{n}\right)\right]=5\left[1+\frac{5}{2}\right]$
$=5\left[\frac{7}{2}\right]$
$=\frac{35}{2}$

Question 3:

$\int_{2}^{3} x^{2} d x$

Solution:

Since,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=2, b=3$ and $f(x)=x^{2}$
$\Rightarrow h=\frac{3-2}{n}=\frac{1}{n}$
$\therefore \int_{2}^{3} x^{2} d x=(3-2) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(2)+f\left(2+\frac{1}{n}\right)+f\left(2+\frac{2}{n}\right) \ldots f\left\{2+(n-1) \frac{1}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[(2)^{2}+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\ldots\left(2+\frac{(n-1)^{2}}{n}\right)\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[2^{2}+\left\{2^{2}+\left(\frac{1}{n}\right)^{2}+2.2 \frac{1}{n}\right\}+\ldots+\left\{(2)^{2}+\frac{(n-1)^{2}}{n^{2}}+2.2 \cdot \frac{(n-1)}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{}\left[\left(2^{2}+\ldots+2_{\text {nimens }}^{2}\right)+\left\{\left(\frac{1}{n}\right)^{2}+\left(\frac{2}{n}\right)^{2}+\ldots+\left(\frac{n-1}{n}\right)^{2}\right\}+2.2 .\left\{\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots+\frac{(n-1)}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[4 n+\frac{1}{n^{2}}\left\{1^{2}+2^{2}+3^{2} \ldots+(n-1)^{2}\right\}+\frac{4}{n}\{1+2+\ldots+(n-1)\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[4 n+\frac{1}{n^{2}}\left\{\frac{n(n-1)(2 n-1)}{6}\right\}+\frac{4}{n}\left\{\frac{n(n-1)}{2}\right\}\right]$
$=\lim _{n \rightarrow \infty} n\left[4 n+\frac{n\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)}{6}+\frac{4 n-4}{2}\right]=\lim _{n \rightarrow \infty}\left[4+\frac{1}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+2-\frac{2}{n}\right]$
$=4+\frac{2}{6}+2$
$=\frac{19}{3}$
Question 4:
$\int_{1}^{4}\left(x^{2}-x\right) d x$

Solution:

Let $I=\int_{1}^{4}\left(x^{2}-x\right) d x$
$=\int_{1}^{4} x^{2} d x-\int_{1}^{4} x d x$
Let $I=I_{1}-I_{2}$, where $I_{1}=\int_{1}^{4} x^{2} d x$ and $I_{2}=\int_{1}^{4} x d x$
Since, $\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
For, $I_{1}=\int_{1}^{4} x^{2} d x$,

$$
\begin{aligned}
& a=1, b=4 \text { and } f(x)=x^{2} \\
& \therefore h=\frac{4-1}{n}=\frac{3}{n} \\
& I_{1}=\int_{1}^{4} x^{2} d x=(4-1) \lim _{n \rightarrow \infty} \frac{1}{n}[f(1)+f(1+h)+\ldots+f(1+(n-1) h)] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1^{2}+\left(1+\frac{3}{n}\right)^{2}+\left(1+2 \cdot \frac{3}{n}\right)^{2}+\ldots\left(1+\frac{(n-1) 3}{n}\right)^{2}\right] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1^{2}+\left\{1^{2}+\left(\frac{3}{n}\right)^{2}+2 \cdot \frac{3}{n}\right\}+\ldots+\left\{1^{2}+\left(\frac{(n-1) 3}{n}\right)^{2}+\frac{2 \cdot(n-1) \cdot 3}{2}\right\}\right] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(1^{2}+\ldots+1^{2}\right)+\left(\frac{3}{n}\right)^{2}\left\{1^{2}+2^{2}+\ldots+(n-1)^{2}\right\}+2 \cdot \frac{3}{n}\{1+2+\ldots+(n-1)\}\right] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{9}{n^{2}}\left\{\frac{(n-1)(n)(2 n-1)}{6}\right\}+\frac{6}{n}\left\{\frac{(n-1)(n)}{2}\right\}\right] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{9 n}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+\frac{6 n-6}{2}\right] \\
& =3 \lim _{n \rightarrow \infty}\left[1+\frac{9}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+3-\frac{3}{n}\right] \\
& =3[1+3+3] \\
& =3[7] \\
& I_{1}=21 \quad \ldots(2)
\end{aligned}
$$

For $I_{2}=\int_{1}^{4} x d x$
$a=1, b=4$ and $f(x)=x$
$\Rightarrow h=\frac{4-1}{n}=\frac{3}{n}$
$\therefore I_{2}=(4-1) \lim _{n \rightarrow \infty} \frac{1}{n}[f(1)+f(1+h)+\ldots+f(a+(n-1) h)]$
$=3 \lim _{n \rightarrow \infty} \frac{1}{n}[1+(1+h)+\ldots+(1+(n-1) h)]$
$=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(1+\frac{3}{n}\right)+\ldots+\left\{1+(n-1) \frac{3}{n}\right\}\right]$
$=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[(1+1+\ldots\right.$ ntimes +1$\left.)+\frac{3}{n}(1+2+\ldots+(n-1))\right]$
$=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{3}{n}\left\{\frac{(n-1) n}{2}\right\}\right]$
$=3 \lim _{n \rightarrow \infty}\left[1+\frac{3}{2}\left(1-\frac{1}{n}\right)\right]$
$=3\left[1+\frac{3}{2}\right]=3\left[\frac{5}{2}\right]$
$I_{2}=\frac{15}{2}$
From equations (2) and (3), we get
$I=I_{1}-I_{2}=21-\frac{15}{2}=\frac{27}{2}$

Question 5:

$\int_{-1}^{1} e^{x} d x$

Solution:

Let $I=\int_{-1}^{1} e^{x} d x$
Since, $\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=-1, b=1$ and $f(x)=e^{x}$
$\therefore h=\frac{1+1}{n}=\frac{2}{n}$
$\therefore I=(1+1) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(-1)+f\left(-1+\frac{2}{n}\right)+f\left(-1+2 \cdot \frac{2}{n}\right)+\ldots+f\left(-1+\frac{(n-1) 2}{n}\right)\right]$
$=2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{-1}+e^{\left(-1+\frac{2}{n}\right)}+e^{\left(-1+2 \frac{2}{n}\right)}+e^{\left(-1+\left(n-1 \frac{2}{n}\right)\right.}\right]$
$=2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{-1}\left\{1+e^{\frac{2}{n}}+e^{\frac{4}{n}}+e^{\frac{6}{n}}+e^{(n-1) \frac{2}{n}}\right\}\right]$
$=2 \lim _{n \rightarrow \infty} \frac{e^{-1}}{n}\left[\frac{e^{\frac{2 n}{n}}-1}{e^{\frac{2}{n}}-1}\right]=e^{-1} \times 2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{e^{2}-1}{e^{\frac{2}{n}}-1}\right]$
$=\frac{e^{-1} \times 2\left(e^{2}-1\right)}{\lim _{\frac{2}{n} \rightarrow 0}\left(\frac{e^{\frac{2}{n}}-1}{\frac{2}{n}}\right) \times 2}$
$\left[\lim _{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right)=1\right]$
$=\frac{e^{2}-1}{e}$
$=\left(e-\frac{1}{e}\right)$
Question 6:
$\int_{0}^{4}\left(x+e^{2 x}\right) d x$

Solution:

Since,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots .+f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=0, b=4$ and $f(x)=x+e^{2 x}$
$\therefore h=\frac{4-0}{n}=\frac{4}{n}$
$\Rightarrow \int_{0}^{4}\left(x+e^{2 x}\right) d x=(4-0) \lim _{n \rightarrow \infty} \frac{1}{n}[f(0)+f(h)+f(2 h)+\ldots+f((n-1) h)]$
$=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(0+e^{0}\right)+\left(h+e^{2 h}\right)+\left(2 h+e^{22 h}\right)+\ldots+\left\{(n-1) h+e^{2(n-1) h}\right\}\right]$
$=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(h+e^{2 h}\right)+\left(2 h+e^{4 h}\right)+\ldots+\left\{(n-1) h+e^{2(n-1) h}\right\}\right]$
$=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\{h+2 h+3 h+\ldots \ldots+(n-1) h\}+\left(1+e^{2 h}+e^{4 h}+\ldots . .+e^{2(n-1) h}\right)\right]$
$=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[h\{1+2+\ldots(n-1)\}+\left(\frac{e^{2 h n}-1}{e^{2 h}-1}\right)\right]=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{[h(n-1) n]}{2}+\left(\frac{e^{2 h n}-1}{e^{2 h}-1}\right)\right]$
$=4 \lim _{x \rightarrow \infty} \frac{1}{n}\left[\frac{4}{n} \frac{(n-1) n}{2}+\left(\frac{e^{8}-1}{e^{\frac{8}{n}}-1}\right)\right]=4(2)+4 \lim _{n \rightarrow \infty} \frac{\left(e^{8}-1\right)}{\left(\frac{e^{\frac{8}{n}}-1}{\frac{8}{n}}\right)^{8}}$
$=8+\frac{4\left(e^{8}-1\right)}{8}$
$\left(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right)$
$=8+\frac{e^{8}-1}{2}=\frac{15+e^{8}}{2}$

EXERCISE 7.9

Evaluate the definite integrals in Exercises 1 to 20.
Question 1:
$\int_{-1}^{1}(x+1) d x$

Solution:

Let $I=\int_{-1}^{1}(x+1) d x$
$\int(x+1) d x=\frac{x^{2}}{2}+x=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(1)-F(-1)$
$=\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)$
$=\frac{1}{2}+1-\frac{1}{2}+1$
$=2$
Question 2:
$\int_{2}^{3} \frac{1}{x} d x$

Solution:

Let $I=\int_{2}^{3} \frac{1}{x} d x$
$\int \frac{1}{x} d x=\log |x|=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(3)-F(2)$
$=\log |3|-\log |2|=\log \frac{3}{2}$
Question 3:
$\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x$

Solution:

Let $I=\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x$
$\int\left(4 x^{3}-5 x^{2}+6 x+9\right) d x=4\left(\frac{x^{4}}{4}\right)-5\left(\frac{x^{3}}{3}\right)+6\left(\frac{x^{2}}{2}\right)+9(x)$
$=x^{4}-\frac{5 x^{3}}{3}+3 x^{2}+9 x=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(2)-F(1)$
$I=\left\{2^{4}-\frac{5(2)^{3}}{3}+3(2)^{2}+9(2)\right\}-\left\{(1)^{4}-\frac{5(1)^{3}}{3}+3(1)^{2}+9(1)\right\}$
$=\left(16-\frac{40}{3}+12+18\right)-\left(1-\frac{5}{3}+3+9\right)$
$=16-\frac{40}{3}+12+18-1+\frac{5}{3}-3-9$
$=33-\frac{35}{3}$
$=\frac{99-35}{3}$
$=\frac{64}{3}$
Question 4:
$\int_{0}^{\frac{\pi}{4}} \sin 2 x d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{4}} \sin 2 x d x$
$\int \sin 2 x d x=\left(\frac{-\cos 2 x}{2}\right)=F(x)$
Using second fundamental theorem of calculus, we get
$I=F\left(\frac{\pi}{4}\right)-F(0)$
$=-\frac{1}{2}\left[\cos 2\left(\frac{\pi}{4}\right)-\cos 0\right]=-\frac{1}{2}\left[\cos \left(\frac{\pi}{2}\right)-\cos 0\right]$
$=-\frac{1}{2}[0-1]$
$=\frac{1}{2}$

Question 5:
$\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$
$\int \cos 2 x d x=\left(\frac{\sin 2 x}{2}\right)=F(x)$
Using second fundamental theorem of calculus, we get
$I=F\left(\frac{\pi}{2}\right)-F(0)$
$=\frac{1}{2}\left[\sin 2\left(\frac{\pi}{2}\right)-\sin 0\right]=\frac{1}{2}[\sin \pi-\sin 0]$
$=\frac{1}{2}[0-0]=0$
Question 6:
$\int_{4}^{5} e^{x} d x$

Solution:

Let $I=\int_{4}^{5} e^{x} d x$
$\int e^{x} d x=e^{x}=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(5)-F(4)$
$=e^{5}-e^{4}$
$=e^{4}(e-1)$

Question 7:

$\int_{0}^{\frac{\pi}{4}} \tan x d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{4}} \tan x d x$
$\int \tan x d x=-\log |\cos x|=F(x)$
Using second fundamental theorem of calculus, we get
$I=F\left(\frac{\pi}{4}\right)-F(0)$
$=-\log \left|\cos \frac{\pi}{4}\right|+\log |\cos 0|=-\log \left|\frac{1}{\sqrt{2}}\right|+\log |1|$
$=-\log (2)^{-\frac{1}{2}}$
$=\frac{1}{2} \log 2$
Question 8:
$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos e c x d x$

Solution:

Let $I=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x$
$\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|=F(x)$
Using second fundamental theorem of calculus, we get
$I=F\left(\frac{\pi}{4}\right)-F\left(\frac{\pi}{6}\right)$
$=\log \left|\operatorname{cosec} \frac{\pi}{4}-\cot \frac{\pi}{4}\right|-\log \left|\operatorname{cosec} \frac{\pi}{6}-\cot \frac{\pi}{6}\right|$
$\log |\sqrt{2}-1|-\log |2-\sqrt{3}|=\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)$

Question 9:

$\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$

Solution:

Let $I=\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
$\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(1)-F(0)$
$=\sin ^{-1}(1)-\sin ^{-1}(0)$
$=\frac{\pi}{2}-0$
$=\frac{\pi}{2}$
Question 10:
$\int_{0}^{1} \frac{d x}{1+x^{2}}$

Solution:

Let $I=\int_{0}^{1} \frac{d x}{1+x^{2}}$
$\int \frac{d x}{1+x^{2}}=\tan ^{-1} x=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(1)-F(0)$
$=\tan ^{-1}(1)-\tan ^{-1}(0)$
$=\frac{\pi}{4}$
Question 11:
$\int_{2}^{3} \frac{d x}{x^{2}-1}$

Solution:

Let $I=\int_{2}^{3} \frac{d x}{x^{2}-1}$
$\int \frac{d x}{x^{2}-1}=\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(3)-F(2)$
$=\frac{1}{2}\left[\log \left|\frac{3-1}{3+1}\right|-\log \left|\frac{2-1}{2+1}\right|\right]=\frac{1}{2}\left[\log \left|\frac{2}{4}\right|-\log \left|\frac{1}{3}\right|\right]$
$=\frac{1}{2}\left[\log \frac{1}{2}-\log \frac{1}{3}\right]$
$=\frac{1}{2}\left[\log \frac{3}{2}\right]$

Question 12:
$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
$\int \cos ^{2} x d x=\int\left(\frac{1+\cos 2 x}{2}\right) d x=\frac{x}{2}+\frac{\sin 2 x}{4}=\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)=F(x)$
Using second fundamental theorem of calculus, we get
$I=\left[F\left(\frac{\pi}{2}\right)-F(0)\right]=\frac{1}{2}\left[\left(\frac{\pi}{2}+\frac{\sin \pi}{2}\right)-\left(0+\frac{\sin \pi}{2}\right)\right]$
$=\frac{1}{2}\left[\frac{\pi}{2}+0-0-0\right]$
$=\frac{\pi}{4}$

Question 13:
$\int_{2}^{3} \frac{x}{x^{2}+1} d x$

Solution:

Let $I=\int_{2}^{3} \frac{x}{x^{2}+1} d x$
$\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x=\frac{1}{2} \log \left(1+x^{2}\right)=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(3)-F(2)$
$=\frac{1}{2}\left[\log \left(1+(3)^{2}\right)-\log \left(1+(2)^{2}\right)\right]$
$=\frac{1}{2}[\log (10)-\log (5)]$
$=\frac{1}{2} \log \left(\frac{10}{5}\right)=\frac{1}{2} \log 2$

Question 14:

$\int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x$

Solution:

Let $I=\int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x$
$\int \frac{2 x+3}{5 x^{2}+1} d x=\frac{1}{5} \int \frac{5(2 x+3)}{5 x^{2}+1} d x=\frac{1}{5} \int \frac{10 x+15}{5 x^{2}+1} d x$
$=\frac{1}{5} \int \frac{10 x}{5 x^{2}+1} d x+3 \int \frac{1}{5 x^{2}+1} d x$
$=\frac{1}{5} \int \frac{10 x}{5 x^{2}+1} d x+3 \int \frac{1}{5\left(x^{2}+\frac{1}{5}\right)} d x=\frac{1}{5} \log \left(5 x^{2}+1\right)+\frac{3}{5} \cdot \frac{1}{\frac{1}{\sqrt{5}}} \tan ^{-1} \frac{x}{\frac{1}{\sqrt{5}}}$
$=\frac{1}{5} \log \left(5 x^{2}+1\right)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5}) x$
$=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(1)-F(0)$
$=\left\{\frac{1}{5} \log (5+1)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5})\right\}-\left\{\frac{1}{5} \log (5 \times 0+1)+\frac{3}{\sqrt{5}} \tan ^{-1}(0)\right\}$
$=\frac{1}{5} \log 6+\frac{3}{\sqrt{5}} \tan ^{-1} \sqrt{5}$
Question 15:
$\int_{0}^{1} x e^{x^{2}} d x$

Solution:

Let $I=\int_{0}^{1} x e^{x^{2}} d x$
Put, $x^{2}=t \Rightarrow 2 x d x=d t$
As $x \rightarrow 0, t \rightarrow 0$ and as $x \rightarrow 1, t \rightarrow 1$
$\therefore I=\frac{1}{2} \int_{0}^{1} e^{t} d t$
$\frac{1}{2} \int e^{t} d t=\frac{1}{2} e^{t}=F(t)$
Using second fundamental theorem of calculus, we get

$$
\begin{aligned}
& I=F(1)-F(0) \\
& =\frac{1}{2} e-\frac{1}{2} e^{0} \\
& =\frac{1}{2}(e-1)
\end{aligned}
$$

Question 16:

$\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} d x$

Solution:

Let $I=\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} d x$
Dividing $5 x^{2}$ by $x^{2}+4 x+3$, we get
$I=\int_{1}^{2}\left\{5-\frac{20 x+15}{x^{2}+4 x+3}\right\} d x$
$=\int_{1}^{2} 5 d x-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x$
$=[5 x]_{1}^{2}-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x$
$I=5-I_{1}$, where $I=\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x$
Let $20 x+15=A \frac{d}{d x}\left(x^{2}+4 x+3\right)+B$
$=2 A x+(4 A+B)$
Equating the coefficients of x and constant term, we get
$A=10$ and $B=-25$
Let $x^{2}+4 x+3=t$
$\Rightarrow(2 x+4) d x=d t$
$\Rightarrow I_{1}=10 \int \frac{d t}{t}-25 \int \frac{d x}{(x+2)^{2}-1^{2}}$
$=10 \log t-25\left[\frac{1}{2} \log \left(\frac{x+2-1}{x+2+1}\right)\right]=\left[10 \log \left(x^{2}+4 x+3\right)\right]_{1}^{2}-25\left[\frac{1}{2} \log \left(\frac{x+1}{x+3}\right)\right]_{1}^{2}$
$=[10 \log 15-10 \log 8]-25\left[\frac{1}{2} \log \frac{3}{5}-\frac{1}{2} \log \frac{2}{4}\right]$
$=[10 \log (5 \times 3)-10 \log (4 \times 2)]-\frac{25}{2}[\log 3-\log 5-\log 2+\log 4]$
$=[10 \log 5+10 \log 3-10 \log 4-10 \log 2]-\frac{25}{2}[\log 3-\log 5-\log 2+\log 4]$
$=\left[10+\frac{25}{2}\right] \log 5+\left[-10-\frac{25}{2}\right] \log 4+\left[10-\frac{25}{2}\right] \log 3+\left[-10+\frac{25}{2}\right] \log 2$
$=\frac{45}{2} \log 5-\frac{45}{2} \log 4-\frac{5}{2} \log 3+\frac{5}{2} \log 2$
$=\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}$
Substituting the value I_{1} in (1), we get
$I=5-\left[\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}\right]$
$=5-\frac{5}{2}\left[9 \log \frac{5}{4}-\log \frac{3}{2}\right]$

Question 17:

$\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x$
$\int\left(2 \sec ^{2} x+x^{3}+2\right) d x=2 \tan x+\frac{x^{4}}{4}+2 x=F(x)$
Using second fundamental theorem of calculus, we get
$I=F\left(\frac{\pi}{4}\right)-F(0)=\left\{\left(2 \tan \frac{\pi}{4}+\frac{1}{4}\left(\frac{\pi}{4}\right)^{4}+2\left(\frac{\pi}{4}\right)\right)-(2 \tan 0+0+0)\right\}$
$=2 \tan \frac{\pi}{4}+\frac{\pi^{4}}{4^{5}}+\frac{\pi}{2}$
$=2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}$

Question 18:

$\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x$

Solution:

Let $I=\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x=-\int_{0}^{\pi}\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right) d x$
$=-\int_{0}^{\pi} \cos x d x$
$\int \cos x d x=\sin x=F(x)$
Using second fundamental theorem of calculus, we get

$$
\begin{aligned}
& I=F(\pi)-F(0) \\
& =\sin \pi-\sin 0 \\
& =0
\end{aligned}
$$

Question 19:
$\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x$

Solution:

Let $I=\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x$
$\int \frac{6 x+3}{x^{2}+4} d x=3 \int \frac{2 x+1}{x^{2}+4} d x$
$=3 \int \frac{2 x}{x^{2}+4} d x+3 \int \frac{1}{x^{2}+4} d x$
$=3 \log \left(x^{2}+4\right)+\frac{3}{2} \tan ^{-1} \frac{x}{2}=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(2)-F(0)$
$=\left\{3 \log \left(2^{2}+4\right)+\frac{3}{2} \tan ^{-1}\left(\frac{2}{2}\right)\right\}-\left\{3 \log (0+4)+\frac{3}{2} \tan ^{-1}\left(\frac{0}{2}\right)\right\}$
$=3 \log 8+\frac{3}{2} \tan ^{-1} 1-3 \log 4-\frac{3}{2} \tan ^{-1} 0$
$=3 \log 8+\frac{3}{2}\left(\frac{\pi}{4}\right)-3 \log 4-0$
$=3 \log \left(\frac{8}{4}\right)+\frac{3 \pi}{8}$
$=3 \log 2+\frac{3 \pi}{8}$
Question 20:
$\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$

Solution:

Let $I=\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$
$\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x=x \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \int e^{x} d x\right\} d x+\left\{\frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}}\right\}$
$=x e^{x}-\int e^{x} d x-\frac{4}{\pi} \cos \frac{\pi x}{4}$
$=x e^{x}-e^{x}-\frac{4}{\pi} \cos \frac{\pi x}{4}$
$=F(x)$
Using second fundamental theorem of calculus, we get
$I=F(1)-F(0)$
$=\left(1 . e^{1}-e^{1}-\frac{4}{\pi} \cos \frac{\pi}{4}\right)-\left(0 . e^{0}-e^{0}-\frac{4}{\pi} \cos 0\right)$
$=e-e-\frac{4}{\pi}\left(\frac{1}{\sqrt{2}}\right)+1+\frac{4}{\pi}=1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}$

Question 21:
$\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}}$
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{12}$ equals

Solution:

$\int \frac{d x}{1+x^{2}}=\tan ^{-1} x=F(x)$
Using second fundamental theorem of calculus, we get
$\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}}=F(\sqrt{3})-F(1)$
$=\tan ^{-1} \sqrt{3}-\tan ^{-1} 1$
$=\frac{\pi}{3}-\frac{\pi}{4}$
$=\frac{\pi}{12}$
Thus, the correct option is D.

Question 22:
$\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{24}$
D. $\frac{\pi}{4}$ equals

Solution:

$\int \frac{d x}{4+9 x^{2}}=\int \frac{d x}{(2)^{2}+(3 x)^{2}}$
Put $3 x=t \Rightarrow 3 d x=d t$
$\therefore \int \frac{d x}{(2)^{2}+(3 x)^{2}}=\frac{1}{3} \int \frac{d t}{(2)^{2}+t^{2}}$
$=\frac{1}{3}\left[\frac{1}{2} \tan ^{-1} \frac{t}{2}\right]$
$=\frac{1}{6} \tan ^{-1}\left(\frac{3 x}{2}\right)$
$=F(x)$
Using second fundamental theorem of calculus, we get
$\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}=F\left(\frac{2}{3}\right)-F(0)$
$=\frac{1}{6} \tan ^{-1}\left(\frac{3}{2} \cdot \frac{2}{3}\right)-\frac{1}{6} \tan ^{-1} 0$
$=\frac{1}{6} \tan ^{-1} 1-0$
$=\frac{1}{6} \times \frac{\pi}{4}$
$=\frac{\pi}{24}$
Thus, the correct option is C.

EXERCISE 7.10

Evaluate the integrals in Exercises 1 to 8 using substitution.
Question 1:
$\int_{0}^{1} \frac{x}{x^{2}+1} d x$

Solution:
$\int_{0}^{1} \frac{x}{x^{2}+1} d x$
Put, $x^{2}+1=t \Rightarrow 2 x d x=d t$
When, $x=0, t=1$ and when $x=1, t=2$
$\therefore \int_{0}^{1} \frac{x}{x^{2}+1} d x=\frac{1}{2} \int_{1}^{2} \frac{d t}{t}$
$=\frac{1}{2}[\log |t|]_{1}^{2}$
$=\frac{1}{2}[\log 2-\log 1]$
$=\frac{1}{2} \log 2$
Question 2:
$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi$

Solution:

Consider, $I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{4} \phi \cos \phi d \phi$
Let $\sin \phi=t \Rightarrow \cos \phi d \phi=d t$
When $\phi=0, t=0$ and when $\phi=\frac{\pi}{2}, t=1$
$\therefore I=\int_{0}^{1} \sqrt{t}\left(1-t^{2}\right)^{2} d t$
$=\int_{0}^{1} t^{\frac{1}{2}}\left(1+t^{4}-2 t^{2}\right) d t$
$=\int_{0}^{1}\left[t^{\frac{1}{2}}+t^{\frac{9}{2}}-2 t^{\frac{5}{2}}\right] d t$
$=\left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{t^{\frac{11}{2}}}{\frac{11}{2}}-\frac{2 t^{\frac{7}{2}}}{\frac{7}{2}}\right]_{0}^{1}$
$=\frac{2}{3}+\frac{2}{11}-\frac{4}{7}$
$=\frac{154+42-132}{231}=\frac{64}{231}$

Question 3:
$\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$

Solution:

Consider, $I=\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$
Let $x=\tan \theta \Rightarrow d x=\sec ^{2} \theta d \theta$
When $x=0, \theta=0$ and when $x=1, \theta=\frac{\pi}{4}$
$I=\int_{0}^{\frac{\pi}{4}} \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \sec ^{2} \theta d \theta$
$=\int_{0}^{\frac{\pi}{4}} \sin ^{-1}(\sin 2 \theta) \sec ^{2} \theta d \theta$
$=\int_{0}^{\frac{\pi}{4}} 2 \theta \sec ^{2} \theta d \theta$
$=2 \int_{0}^{\frac{\pi}{4}} \theta \sec ^{2} \theta d \theta$
Taking $u=\theta$ and $v=\sec ^{2} \theta$ and integrating by parts, we get
$I=2\left[\theta \int \sec ^{2} \theta d \theta-\int\left\{\left(\frac{d}{d \theta} \theta\right) \int \sec ^{2} \theta d \theta\right\} d \theta\right]_{0}^{\frac{\pi}{4}}$
$=2\left[\theta \tan \theta-\int \tan \theta d \theta\right]_{0}^{\frac{\pi}{4}}$
$=2[\theta \tan \theta+\log |\cos \theta|]_{0}^{\frac{\pi}{4}}$
$=2\left[\frac{\pi}{4} \tan \frac{\pi}{4}+\log \left|\cos \frac{\pi}{4}\right|-\log |\cos 0|\right]=2\left[\frac{\pi}{4}+\log \left(\frac{1}{\sqrt{2}}\right)-\log 1\right]$
$=2\left[\frac{\pi}{4}-\frac{1}{2} \log 2\right]$
$=\frac{\pi}{2}-\log 2$
Question 4:
$\int_{0}^{2} x \sqrt{x+2} \quad\left(\right.$ Put $\left.x+2=t^{2}\right)$

Solution:

$\int_{0}^{2} x \sqrt{x+2} d x$
Put, $x+2=t^{2} \Rightarrow d x=2 t d t$
When $x=0, t=\sqrt{2}$ and when $x=2, t=2$
$\therefore \int_{0}^{2} x \sqrt{x+2} d x=\int_{\sqrt{2}}^{2}\left(t^{2}-2\right) \sqrt{t^{2}} 2 t d t$
$=2 \int_{\sqrt{2}}^{2}\left(t^{2}-2\right) t^{2} d t$
$=2 \int_{\sqrt{2}}^{2}\left(t^{4}-2 t^{2}\right) d t$
$=2\left[\frac{t^{5}}{5}-\frac{2 t^{3}}{3}\right]_{\sqrt{2}}^{2}$
$=2\left[\frac{32}{5}-\frac{16}{3}-\frac{4 \sqrt{2}}{5}+\frac{4 \sqrt{2}}{3}\right]=2\left[\frac{96-80-12 \sqrt{2}+20 \sqrt{2}}{15}\right]=2\left[\frac{16+8 \sqrt{2}}{15}\right]$
$=\frac{16(2+\sqrt{2})}{15}$
$=\frac{16 \sqrt{2}(\sqrt{2}+1)}{15}$

Question 5:

$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$

Solution:

$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$
Put, $\cos x=t \Rightarrow-\sin x d x=d t$
When $x=0, t=1$ and when $x=\frac{\pi}{2}, t=0$
$\Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x=-\int_{1}^{0} \frac{d t}{1+t^{2}}$
$=-\left[\tan ^{-1} t\right]_{1}^{0}$
$=-\left[\tan ^{-1} 0-\tan ^{-1} 1\right]$
$=-\left[-\frac{\pi}{4}\right]$
$=\frac{\pi}{4}$
Question 6:
$\int_{0}^{2} \frac{d x}{x+4-x^{2}}$
Solution:
$\int_{0}^{2} \frac{d x}{x+4-x^{2}}=\int_{0}^{2} \frac{d x}{-\left(x^{2}-x-4\right)}$
$=\int \frac{d x}{-\left(x^{2}-x+\frac{1}{4}-\frac{1}{4}-4\right)}=\int_{0}^{2} \frac{d x}{-\left[\left(x-\frac{1}{2}\right)^{2}-\frac{17}{4}\right]}$
$=\int_{0}^{2} \frac{d x}{\left(\frac{\sqrt{17}}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}}$
Let $x-\frac{1}{2}=t \Rightarrow d x=d t$
when $x=0, t=-\frac{1}{2}$ and when $x=2, t=\frac{3}{2}$
$\therefore \int_{0}^{2} \frac{d x}{\left(\frac{\sqrt{17}}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}}=\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{d t}{\left(\frac{\sqrt{17}}{2}\right)^{2}-t^{2}}$

$$
\begin{aligned}
& =\left[\frac{1}{2\left(\frac{\sqrt{17}}{2}\right)} \log \frac{\frac{\sqrt{17}}{2}+t}{\frac{\sqrt{17}}{2}-t}\right]_{-\frac{1}{2}}^{\frac{3}{2}}=\frac{1}{\sqrt{17}}\left[\log \frac{\frac{\sqrt{17}}{2}+\frac{3}{2}}{\frac{\sqrt{17}}{2}-\frac{3}{2}}-\frac{\log \frac{\sqrt{17}}{2}-\frac{1}{2}}{\log \frac{\sqrt{17}}{2}+\frac{1}{2}}\right] \\
& =\frac{1}{\sqrt{17}}\left[\log \frac{\sqrt{17}+3}{\sqrt{17}-3}-\log \frac{\sqrt{17}-1}{\sqrt{17}+1}\right]=\frac{1}{\sqrt{17}} \log \frac{\sqrt{17}+3}{\sqrt{17}-3} \times \frac{\sqrt{17}+1}{\sqrt{17}-1} \\
& =\frac{1}{\sqrt{17}} \log \left[\frac{17+3+4 \sqrt{17}}{17+3-4 \sqrt{17}}\right]=\frac{1}{\sqrt{17}} \log \left[\frac{20+4 \sqrt{17}}{20-4 \sqrt{17}}\right] \\
& =\frac{1}{\sqrt{17}} \log \left(\frac{5+\sqrt{17}}{5-\sqrt{17}}\right)=\frac{1}{\sqrt{17}} \log \left[\frac{(5+\sqrt{17})(5+\sqrt{17})}{25-17}\right] \\
& =\frac{1}{\sqrt{17}} \log \left[\frac{25+17+10 \sqrt{17}}{8}\right]=\frac{1}{\sqrt{17}} \log \left(\frac{42+10 \sqrt{17}}{8}\right) \\
& =\frac{1}{\sqrt{17}} \log \left(\frac{21+5 \sqrt{17}}{4}\right)
\end{aligned}
$$

Question 7:

$\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}$

Solution:

$\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}=\int_{-1}^{1} \frac{d x}{\left(x^{2}+2 x+1\right)+4}=\int_{-1}^{1} \frac{d x}{(x+1)^{2}+(2)^{2}}$
Put, $x+1=t \Rightarrow d x=d t$

When $x=-1, t=0$ and when $x=1, t=2$
$\int_{-1}^{1} \frac{d x}{(x-1)^{2}+(2)^{2}}=\int_{0}^{2} \frac{d t}{t^{2}+2^{2}}$
$=\left[\frac{1}{2} \tan ^{-1} \frac{t}{2}\right]_{0}^{2}=\frac{1}{2} \tan ^{-1} 1-\frac{1}{2} \tan ^{-1} 0$
$=\frac{1}{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{8}$

Question 8:
$\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x$

Solution:
$\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x$
Put, $2 x=t \Rightarrow 2 d x=d t$
When $x=1, t=2$ and when $x=2, t=4$
$\therefore \int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x=\frac{1}{2} \int_{2}^{4}\left(\frac{2}{t}-\frac{2}{t^{2}}\right) e^{t} d t$
$=\int_{2}^{4}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) e^{\prime} d t$
Let $\frac{1}{t}=f(t)$
Then, $f^{\prime}(t)=-\frac{1}{t^{2}}$
$\Rightarrow \int_{2}^{4}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) e^{t} d t=\int_{2}^{4} e^{t}\left[f(t)+f^{\prime}(t)\right] d t$
$=\left[e^{t} f(t)\right]_{2}^{4}$
$=\left[e^{t} \cdot \frac{1}{t}\right]_{2}^{4}$
$=\left[\frac{e^{t}}{t}\right]_{2}^{4}$
$=\frac{e^{4}}{4}-\frac{e^{2}}{2}$
$=\frac{e^{2}\left(e^{2}-2\right)}{4}$

Question 9:

A. 6
B. 0
C. 3
D. 4

Solution:

Consider, $I=\int_{\frac{1}{3}}^{1} \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} d x$
Let $x=\sin \theta \Rightarrow d x=\cos \theta d \theta$
When $x=\frac{1}{3}, \theta=\sin ^{-1}\left(\frac{1}{3}\right)$ and when $x=1, \theta=\frac{\pi}{2}$
$\Rightarrow I=\int_{\sin ^{-1}\left(\frac{1}{3}\right.}^{\frac{\pi}{2}} \frac{\left(\sin \theta-\sin ^{3} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta} \cos \theta d \theta$
$=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}\left(1-\sin ^{2} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta} \cos \theta d \theta=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}(\cos \theta)^{\frac{2}{3}}}{\sin ^{4} \theta} \cos \theta d \theta$
$=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}(\cos \theta)^{\frac{2}{3}}}{\sin ^{2} \theta \sin ^{2} \theta} \cos \theta d \theta=\int_{\sin ^{-1}\left(\frac{1}{3}\right.}^{\frac{\pi}{2}} \frac{(\cos \theta)^{\frac{5}{3}}}{(\sin \theta)^{\frac{5}{3}}} \operatorname{cosec}{ }^{2} \theta d \theta$
$=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}(\cot \theta)^{\frac{5}{3}} \operatorname{cosec}^{2} \theta d \theta$
Put $\cot \theta=t \Rightarrow-\operatorname{cosec}^{2} \theta d \theta=d t$
When $\theta=\sin ^{-1}\left(\frac{1}{3}\right), t=2 \sqrt{2}$ and when $\theta=\frac{\pi}{2}, t=0$
$\therefore I=-\int_{2 \sqrt{2}}^{0}(t)^{\frac{5}{3}} d t$
$=-\left[\frac{3}{8}(t)^{\frac{8}{3}}\right]_{2 \sqrt{2}}^{0}$
$=-\frac{3}{8}\left[-(2 \sqrt{2})^{\frac{8}{3}}\right]_{2 \sqrt{2}}^{0}=\frac{3}{8}\left[(\sqrt{8})^{\frac{8}{3}}\right]$
$=\frac{3}{8}\left[(8)^{\frac{4}{3}}\right]$
$=\frac{3}{8}[16]$
$=6$
Thus, the correct option is A.

Question 10:

If $f(x)=\int_{0}^{x} t \sin t d t$, then $f^{\prime}(x)$ is
A. $\cos x+x \sin x$
B. $x \sin x$
C. $x \cos x$
D. $\sin x+x \cos x$

Solution:

$f(x)=\int_{0}^{x} t \sin t d t$
Using integration by parts, we get

$$
\begin{aligned}
& f(x)=t \int_{0}^{x} \sin t d t-\int_{0}^{x}\left\{\left(\frac{d}{d t} t\right) \int \sin t d t d t\right. \\
& =[t(-\cos t)]_{0}^{x}-\int_{0}^{x}(-\cos t) d t \\
& =[-t \cos t+\sin t]_{0}^{x} \\
& =-x \cos x+\sin x \\
& \Rightarrow f^{\prime}(x)=-[\{x(-\sin x)\}+\cos x]+\cos x \\
& =x \sin x-\cos x+\cos x \\
& =x \sin x
\end{aligned}
$$

Thus, the correct option is B.

EXERCISE 7.11

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Question 1:
$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$

Solution:

$I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \cos ^{2}\left(\frac{\pi}{2}-x\right) d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x$
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} x+\cos ^{2} x\right) d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 . d x$
$\Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$

Question 2:

$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$

Solution:

$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
Consider, $I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
$\Rightarrow I=I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x$
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 . d x$
$\Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$

Question 3:

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x
$$

Solution:

$$
\begin{equation*}
\text { Let } I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x \tag{1}
\end{equation*}
$$

$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right) d x}{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)} d x \quad\left(\int_{0}^{a} f(x)=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{\frac{3}{2}} x d x}{\cos ^{\frac{3}{2}} x+\sin ^{\frac{3}{2}} x} d x$
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 . d x \Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2} \Rightarrow I=\frac{\pi}{4}$
Question 4:
$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x} d x$

Solution:
Consider,
$I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5}\left(\frac{\pi}{2}-x\right) d x}{\sin ^{5}\left(\frac{\pi}{2}-x\right)+\cos ^{5}\left(\frac{\pi}{2}-x\right)} d x \quad\left(\int_{0}^{a} f(x)=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x}{\cos ^{5} x+\sin ^{5} x} d x$
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x+\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x \Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2} \Rightarrow I=\frac{\pi}{4}$

Question 5:
$\int_{-5}^{5}|x+2| d x$

Solution:

Let $I=\int_{-5}^{5}|x+2| d x$
As, $(x+2) \leq 0$ on $[-5,-2]$ and $(x+2) \geq 0$ on $[-2,5]$
$\therefore \int_{-5}^{5}|x+2| d x=\int_{-5}^{-2}-(x+2) d x+\int_{-2}^{5}(x+2) d x \quad\left(\int_{a}^{b} f(x)=\int_{a}^{c} f(x)+\int_{c}^{b} f(x)\right)$
$I=-\left[\frac{x^{2}}{2}+2 x\right]_{-5}^{-2}+\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{5}$
$=-\left[\frac{(-2)^{2}}{2}+2(-2)-\frac{(-5)^{2}}{2}-2(-5)\right]+\left[\frac{(5)^{2}}{2}+2(5)-\frac{(-2)^{2}}{2}-2(-2)\right]$
$=-\left[2-4-\frac{25}{2}+10\right]+\left[\frac{25}{2}+10-2+4\right]$
$=-2+4+\frac{25}{2}-10+\frac{25}{2}+10-2+4$
$=29$
Question 6:
$\int_{2}^{8}|x-5| d x$

Solution:

Consider, $I=\int_{2}^{8}|x-5| d x$
As $(x-5) \leq 0$ on $[2,5]$ and $(x-5) \geq 0$ on $[5,8]$
$I=\int_{2}^{5}-(x-5) d x+\int_{2}^{8}(x-5) d x \quad\left(\int_{a}^{b} f(x)=\int_{a}^{c} f(x)+\int_{c}^{b} f(x)\right)$
$=-\left[\frac{x^{2}}{2}-5 x\right]_{2}^{5}+\left[\frac{x^{2}}{2}-5 x\right]_{5}^{8}$
$=-\left[\frac{25}{2}-25-2+10\right]+\left[32-40-\frac{25}{2}+25\right]=9$
Question 7:
$\int_{0}^{1} x(1-x)^{n} d x$

Solution:

Consider, $I=\int_{0}^{1} x(1-x)^{n} d x$
$\therefore I=\int_{0}^{1}(1-x)(1-(1-x))^{n} d x$
$=\int_{0}^{1}(1-x)(x)^{n} d x=\int_{0}^{1}\left(x^{n}-x^{n+1}\right) d x$
$=\left[\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}\right]_{0}^{1} \quad\left(\int_{1}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$==\left[\frac{1}{n+1}-\frac{1}{n+2}\right]$
$=\frac{(n+2)-(n+1)}{(n+1)(n+2)}$
$=\frac{1}{(n+1)(n+2)}$

Question 8:

$\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
$\therefore I=I=\int_{0}^{\frac{\pi}{4}} \log \left(1+\tan \left(\frac{\pi}{4}-x\right)\right) d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left\{1+\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right\} d x \quad\left(\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left\{1+\frac{1-\tan x}{1+\tan x}\right\} d x \Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \frac{2}{(1+\tan x)} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log 2 d x-\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log 2 d x-I \quad[$ from $(1)]$
$\Rightarrow 2 I=\log 2[x]_{0}^{\frac{\pi}{4}}$
$\Rightarrow 2 I=\log 2\left[\frac{\pi}{4}-0\right]$
$I=\frac{\pi}{8} \log 2$

Question 9:

$\int_{0}^{2} x \sqrt{2-x} d x$

Solution:

Consider, $I=\int_{0}^{2} x \sqrt{2-x} d x$
$I=\int_{0}^{2}(2-x) \sqrt{2-(2-x)} d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$=\int_{0}^{2}(2-x) \sqrt{x} d x$
$=\int_{0}^{2}\left\{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}\right\} d x=\left[2\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right]_{0}^{2}$
$=\left[\frac{4}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}\right]_{0}^{2}=\frac{4}{3}(2)^{\frac{3}{2}}-\frac{2}{5}(2)^{\frac{5}{2}}$
$=\frac{4 \times 2 \sqrt{2}}{3}-\frac{2}{5} \times 4 \sqrt{2}=\frac{8 \sqrt{2}}{3}-\frac{8 \sqrt{2}}{5}$
$=\frac{40 \sqrt{2}-24 \sqrt{2}}{15}=\frac{16 \sqrt{2}}{15}$

Question 10:
$\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$

Solution:

Consider, $I=\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$
$I=\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log (2 \sin x \cos x)) d x$
$I=\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin x-\log \cos x-\log 2) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{\log \sin x-\log \cos x-\log 2\}$
Since, $\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{\log \cos x-\log \sin x-\log 2\} d x$
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}}(-\log 2-\log 2) d x$
$\Rightarrow 2 I=-2 \log 2 \int_{0}^{\frac{\pi}{2}} 1 . d x$
$\Rightarrow I=-\log 2\left[\frac{\pi}{2}\right]$
$\Rightarrow I=\frac{\pi}{2}(-\log 2)$
$\Rightarrow I=\frac{\pi}{2}\left[\log \frac{1}{2}\right]$
$\Rightarrow I=\frac{\pi}{2} \log \frac{1}{2}$

Question 11:

$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x$

Solution:

Let $I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x$
As $\sin ^{2}(-x)=(\sin (-x))^{2}=(-\sin x)^{2}=\sin ^{2} x$, therefore $\sin ^{2} x$ is an even function.
If $f(x)_{\text {is }}$ an even function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
$I=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x=2 \int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x$
$=\int_{0}^{\frac{\pi}{2}}(1-\cos 2 x) d x=\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}$
$=\left[\frac{\pi}{2}-\frac{\sin 2\left(\frac{\pi}{2}\right)}{2}\right]-\left[0-\frac{\sin 2(0)}{2}\right]$
$=\frac{\pi}{2}-\frac{\sin \pi}{2}-0$
$=\frac{\pi}{2}$

Question 12:
$\int_{0}^{\pi} \frac{x d x}{1+\sin x}$

Solution:

Let $I=\int_{0}^{\pi} \frac{x d x}{1+\sin x}$
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin (\pi-x)} d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin x} d x$
Adding (1) and (2), we get
$2 I=\int_{0}^{\pi} \frac{x}{1+\sin x} d x+\int_{0}^{\pi} \frac{\pi-x}{1+\sin x} d x$
$\Rightarrow 2 I=\int_{0}^{\pi} \frac{\pi}{1+\sin x} d x$
Multiplying and Dividig by $(1-\sin x)$
$\Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{(1-\sin x)}{(1+\sin x)(1-\sin x)} d x$
$\Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{1-\sin x}{\cos ^{2} x} d x$
$\Rightarrow 2 I=\pi \int_{0}^{\pi}\left\{\sec ^{2} x-\tan x \sec x\right\} d x$
$\Rightarrow 2 I=\pi\left[[\tan x]_{0}^{\pi}-[\sec x]_{0}^{\pi}\right]$
$\Rightarrow 2 I=\pi[(\tan (\pi)-\tan (0))-(\sec (\pi)-\sec (0))]$
$\Rightarrow 2 I=\pi[2]$
$\Rightarrow I=\pi$

Question 13:

$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$

Solution:

Let $I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x \ldots(1)$
As $\sin ^{7}(-x)=(\sin (-x))^{7}=(-\sin x)^{7}=-\sin ^{7} x$, thus $\sin ^{2} x$ is an odd function.
$f(x)$ is an odd function, then $\int_{-a}^{a} f(x) d x=0$
$\therefore I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x=0$
Question 14:
$\int_{0}^{2 \pi} \cos ^{5} x d x$

Solution:

Let $I=\int_{0}^{2 \pi} \cos ^{5} x d x \ldots(1)$
$\cos ^{5}(2 \pi-x)=\cos ^{5} x$
We know that,
$\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x$, if $f(2 a-x)=f(x)$
$=0$ if $f(2 a-x)=-f(x)$
$\therefore I=2 \int_{0}^{2 \pi} \cos ^{5} x d x$
$\Rightarrow I=2(0)=0 \quad\left[\cos ^{5}(\pi-x)=-\cos ^{5} x\right]$
Question 15:
$\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x}$

Solution:

Consider, $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x \quad \ldots(1)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin x \cos x} d x$
Adding (1) and (2), we get
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \frac{0}{1+\sin x \cos x} d x \Rightarrow I=0$

Question 16:
$\int_{0}^{\pi} \log (1+\cos x) d x$

Solution:

Consider, $I=\int_{0}^{\pi} \log (1+\cos x) d x$
$\Rightarrow I=\int_{0}^{\pi} \log (1+\cos (\pi-x)) d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\pi} \log (1-\cos x) d x$
Adding (1) and (2), we get
$2 I=\int_{0}^{\pi}\{\log (1+\cos x)+\log (1-\cos x)\} d x$
$\Rightarrow 2 I=\int_{0}^{\pi} \log \left(1-\cos ^{2} x\right) d x$
$\Rightarrow 2 I=\int_{0}^{\pi} \log \left(\sin ^{2} x\right) d x$
$\Rightarrow 2 I=2 \int_{0}^{\pi} \log (\sin x) d x$
$\Rightarrow I=\int_{0}^{\pi} \log (\sin x) d x$
$\therefore \sin (\pi-x)=\sin x$
We know that,
$\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x$ if $f(2 a-x)=f(x)$
$\therefore I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x$
$\Rightarrow I=2 \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x=2 \int_{0}^{\frac{\pi}{2}} \log \cos x d x$
Adding (4) and (5), we get
$2 I=\int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x d x)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x+\log 2-\log 2) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}(\log 2 \sin x \cos x-\log 2) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 x d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x$
put, $2 x=t \Rightarrow 2 d x=d t$
When $x=0, t=0$
$\therefore I=\frac{1 \pi}{2} \int_{0}^{a} \log \sin t d t-\frac{\pi}{2} \log 2$
$\Rightarrow I=\frac{1}{2}-\frac{\pi}{2} \log 2$
$\Rightarrow I=-\pi \log 2$

Question 17:

$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$

Solution:
Let $I=\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
We know that, $\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$I=\int \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$
Adding (1) and (2), we get
$2 I=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x$
$\Rightarrow 2 I=\int_{0}^{a} 1 . d x$
$\Rightarrow 2 I=[x]_{0}^{a}$
$\Rightarrow 2 I=a$
$\Rightarrow I=\frac{a}{2}$

Question 18:
$\int_{0}^{4}|x-1| d x$

Solution:

$\int_{0}^{4}|x-1| d x$
Since,
$(x-1) \leq 0$ when $0 \leq x \leq 1$ and $(x-1) \geq 0$ when $1 \leq x \leq 4$
$I=\int_{0}^{1}|x-1| d x+\int_{1}^{4}|x-1| d x$
$\left(\int_{b}^{b} f(x) d x=\int_{b}^{c} f(x) d x+\int_{c}^{b} f(x) d x\right)$
$I=\int_{0}^{1}-(x-1) d x+\int_{0}^{4}(x-1) d x$
$=\left[x-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4}=1-\frac{1}{2}+\frac{(4)^{2}}{2}-4-\frac{1}{2}+1$
$=1-\frac{1}{2}+8-4-\frac{1}{2}+1$
$=5$

Question 19:

Show that $\int_{0}^{a} f(x) g(x) d x=2 \int_{0}^{a} f(x) d x$ if f and g are defined as $f(x)=f(a-x)$ and $g(x)=(a-x)=4$

Solution:

Let

$$
\begin{align*}
& I=\int_{0}^{a} f(x) g(x) d x \ldots(1) \tag{1}\\
& \Rightarrow \int_{0}^{a} f(a-x) g(a-x) d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right) \\
& \Rightarrow \int_{0}^{a} f(x) g(a-x) d x \tag{2}
\end{align*}
$$

Adding (1) and (2), we get
$2 I=\int_{0}^{a}\{f(x) g(x)+f(x) g(a-x)\} d x$
$\Rightarrow 2 I=\int_{0}^{a} f(x)\{g(x)+g(a-x)\} d x$
$\Rightarrow 2 I=\int_{0}^{a} f(x) \times 4 d x \quad[g(x)+g(a-x)=4]$
$\Rightarrow I=2 \int_{0}^{a} f(x) d x$

Question 20:
The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$ is
A. 0
B. 2
C. π
D. 1

Solution:
Consider, $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$
$\Rightarrow I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{3} d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan ^{5} x d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 . d x$
For $f(x)$ an even function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
If $f(x)$ is an odd function, then $\int_{-a}^{a} f(x) d x$
And
$I=0+0+0+2 \int_{0}^{\frac{\pi}{2}} 1 . d x$
$=2[x]_{0}^{\frac{\pi}{2}}$
$=\frac{2 \pi}{2}$
$=\pi$
Thus, the correct is option C.

Question 21:

The value of $\int_{0}^{\frac{\pi}{2}}\left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$ is
A. 2
B. $\frac{3}{4}$
C. 0
D. -2

Solution:

Let $I=\int_{0}^{\frac{\pi}{2}}\left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$
$\Rightarrow I=I=\int_{0}^{\frac{\pi}{2}}\left(\frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right) d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right)$
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}}\left\{\log \left(\frac{4+3 \sin x}{4+3 \cos x}\right)+\log \left(\frac{4+3 \cos x}{4+3 \sin x}\right)\right\} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}}\left(\frac{4+3 \sin x}{4+3 \cos x} \times \frac{4+3 \cos x}{4+3 \sin x}\right) d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \log 1 d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 0 d x$
$\Rightarrow I=0$
Thus, the correct option is C.

MISCELLANEOUS EXERCISE

Integrate the functions in Exercises 1 to 24.

Question 1:

$\frac{1}{x-x^{3}}$

Solution:

$\frac{1}{x-x^{3}}=\frac{1}{x\left(1-x^{2}\right)}=\frac{1}{x(1-x)(1+x)}$
Let $\frac{1}{x(1-x)(1+x)}=\frac{A}{x}+\frac{B}{(1-x)}+\frac{C}{(1+x)}$
$\Rightarrow 1=A\left(1-x^{2}\right)+B x(1+x)+C x(1-x)$
$\Rightarrow 1=A-A x^{2}+B x+B x^{2}+C x-C x^{2}$
Equating the coefficients of x^{2}, x and constant terms, we get
$-A+B-C=0$
$B+C=0$
$A=1$
On solving these equations, we get
$A=1$
$B=\frac{1}{2}$
$C=-\frac{1}{2}$
From equation (1), we get

$$
\begin{aligned}
& \frac{1}{x(1-x)(1+x)}=\frac{1}{x}+\frac{1}{2(1-x)}-\frac{1}{2(1+x)} \\
& \Rightarrow \int \frac{1}{x(1-x)(1+x)} d x=\int \frac{1}{x} d x+\frac{1}{2} \int \frac{1}{(1-x)} d x-\frac{1}{2} \int \frac{1}{(1+x)} d x \\
& =\log |x|-\frac{1}{2} \log |(1-x)|-\frac{1}{2} \log |(1+x)| \\
& =\log |x|-\log \left|(1-x)^{\frac{1}{2}}\right|-\log \left|(1+x)^{\frac{1}{2}}\right|=\log \left|\frac{x}{(1-x)^{\frac{1}{2}}(1+x)^{\frac{1}{2}}}\right|+C \\
& =\log \left|\left(\frac{x^{2}}{1-x^{2}}\right)^{\frac{1}{2}}\right|+C=\frac{1}{2} \log \left|\frac{x^{2}}{1-x^{2}}\right|+C
\end{aligned}
$$

Question 2:
$\frac{1}{\sqrt{x+a}+\sqrt{x+b}}$

Solution:
$\frac{1}{\sqrt{x+a}+\sqrt{x+b}}=\frac{1}{\sqrt{x+a}+\sqrt{x+b}} \times \frac{\sqrt{x+a}-\sqrt{x+b}}{\sqrt{x+a}-\sqrt{x+b}}$
$=\frac{\sqrt{x+a}-\sqrt{x+b}}{(x+a)-(x+b)}=\frac{(\sqrt{x+a}-\sqrt{x+b})}{a-b}$
$\Rightarrow \int \frac{1}{\sqrt{x+a}+\sqrt{x+b}} d x=\frac{1}{a-b} \int(\sqrt{x+a}-\sqrt{x+b}) d x$
$=\frac{1}{(a-b)}\left[\frac{(x+a)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(x+b)^{\frac{3}{2}}}{\frac{3}{2}}\right]=\frac{2}{3(a-b)}\left[(x+a)^{\frac{3}{2}}-(x+b)^{\frac{3}{2}}\right]+C$
Question 3:
$\frac{1}{x \sqrt{a x-x^{2}}} \quad\left[\right.$ Hint: $\left.x=\frac{a}{t}\right]$

Solution:
$\frac{1}{x \sqrt{a x-x^{2}}}$
Let $x=\frac{a}{t} \Rightarrow d x=-\frac{a}{t^{2}} d t$
$\Rightarrow \int \frac{1}{x \sqrt{a x-x^{2}}} d x=\int \frac{1}{\frac{a}{t} \sqrt{a \cdot \frac{a}{t}-\left(\frac{a}{t}\right)^{2}}}\left(-\frac{a}{t^{2}} d t\right)$
$=-\int \frac{1}{a t} \frac{1}{\sqrt{\frac{1}{t}-\frac{1}{t^{2}}}} d t=-\frac{1}{a} \int \frac{1}{\sqrt{\frac{t^{2}}{t}-\frac{t^{2}}{t^{2}}}} d t$
$=-\frac{1}{a} \int \frac{1}{\sqrt{t-1}} d t$
$=-\frac{1}{a}[2 \sqrt{t-1}]+C$
$=-\frac{1}{a}\left[2 \sqrt{\frac{a}{x}-1}\right]+C$
$=-\frac{2}{a}\left(\sqrt{\frac{a-x}{x}}\right)+C$

Question 4:
$\frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}$

Solution:
$\frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}$
Multiplying and dividing by x^{-3}, we get
$\frac{x^{-3}}{x^{2} x^{-3}\left(x^{4}+1\right)^{\frac{3}{4}}}=\frac{x^{-3}\left(x^{4}+1\right)^{\frac{-3}{4}}}{x^{2} x^{-3}}$
$=\frac{\left(x^{4}+1\right)^{\frac{-3}{4}}}{x^{5}\left(x^{4}\right)^{-\frac{3}{4}}}=\frac{1}{x^{5}}\left(\frac{x^{4}+1}{x^{4}}\right)^{-\frac{3}{4}}$
$=\frac{1}{x^{5}}\left(1+\frac{1}{x^{4}}\right)^{-\frac{3}{4}}$
Let
$\frac{1}{x^{4}}=t \Rightarrow-\frac{4}{x^{5}} d x=d t \Rightarrow \frac{1}{x^{5}} d x=-\frac{d t}{4}$
$\therefore \int \frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}} d x=\int \frac{1}{x^{5}}\left(1+\frac{1}{x^{4}}\right)^{-\frac{3}{4}} d x=-\frac{1}{4} \int(1+t)^{-\frac{3}{4}} d t$
$=-\frac{1}{4}\left[\frac{(1+t)^{\frac{1}{4}}}{\frac{1}{4}}\right]+C=-\frac{1}{4} \frac{\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}}{\frac{1}{4}}+C$
$=-\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}+C$

Question 5:
$\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}\left[\right.$ Hint: $\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)}$ put $\left.x=t^{6}\right]$
Solution:
$\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)}$
Let $x=t^{6} \Rightarrow d x=6 t^{5} d t$
$\therefore \int \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}} d x=\int \frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)} d x=\int \frac{6 t^{5}}{t^{2}(1+t)} d t$
$=6 \int \frac{t^{3}}{(1+t)} d t$
Adding and Substracting 1 in Numerator

$$
\begin{aligned}
& =6 \int \frac{t^{3}+1-1}{1+t} d t \\
& =6 \int\left(\frac{t^{3}+1}{1+t}-\frac{1}{1+t}\right) d t
\end{aligned}
$$

Using $a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$

$$
\begin{aligned}
& =6 \int\left\{\frac{(1+t)\left(t^{2}+1^{2}-1 \times t\right)}{1+t}-\frac{1}{1+t}\right\} d t \\
& =6 \int\left\{\left(t^{2}-t+1\right)-\frac{1}{1+t}\right\} d t \\
& =6\left[\left(\frac{t^{3}}{3}\right)-\left(\frac{t^{2}}{2}\right)+t-\log |1+t|\right] \\
& =2 x^{\frac{1}{2}}-3 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}-6 \log \left(1+x^{\frac{1}{6}}\right)+C \\
& =2 \sqrt{x}-3 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}-6 \log \left(1+x^{\frac{1}{6}}\right)+C
\end{aligned}
$$

Question 6:
$\frac{5 x}{(x+1)\left(x^{2}+9\right)}$

Solution:

Consider, $\frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^{2}+9\right)}$
$\Rightarrow 5 x=A\left(x^{2}+9\right)+(B x+C)(x+1)$
$\Rightarrow 5 x=A x^{2}+9 A+B x^{2}+B x+C x+C$
Equating the coefficients of x^{2}, x and constant term, we get
$A+B=0$
$B+C=5$
$9 A+C=0$
On solving these equations, we get
$A=-\frac{1}{2}$
$B=\frac{1}{2}$
$C=\frac{9}{2}$
From equation (1), we get
$\frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{-1}{2(x+1)}+\frac{\frac{x}{2}+\frac{9}{2}}{\left(x^{2}+9\right)}$
$\int \frac{5 x}{(x+1)\left(x^{2}+9\right)} d x=\int\left\{\frac{-1}{2(x+1)}+\frac{(x+9)}{2\left(x^{2}+9\right)}\right\} d x$
$=-\frac{1}{2} \log |x+1|+\frac{1}{2} \int \frac{x}{x^{2}+9} d x+\frac{9}{2} \int \frac{1}{x^{2}+9} d x=-\frac{1}{2} \log |x+1|+\frac{1}{4} \int \frac{2 x}{x^{2}+9} d x+\frac{9}{2} \int \frac{1}{x^{2}+9} d x$
$=-\frac{1}{2} \log |x+1|+\frac{1}{4} \log \left|x^{2}+9\right|+\frac{9}{2} \cdot \frac{1}{3} \tan ^{-1} \frac{x}{3}+C$
$=-\frac{1}{2} \log |x+1|+\frac{1}{4} \log \left(x^{2}+9\right)+\frac{3}{2} \tan ^{-1} \frac{x}{3}+C$

Question 7:
$\frac{\sin x}{\sin (x-a)}$

Solution:
$\frac{\sin x}{\sin (x-a)}$
Put, $x-a=t \Rightarrow d x=d t$
$\int \frac{\sin x}{\sin (x-a)} d x=\int \frac{\sin (t+a)}{\sin t} d t$
$=\int \frac{\sin t \cos a+\cos t \sin a}{\sin t} d t=\int(\cos a+\cot t \sin a) d t$
$=t \cos a+\sin a \log |\sin t|+C_{1}$
$=(x-a) \cos a+\sin a \log |\sin (x-a)|+C_{1}$
$=x \cos a+\sin a \log |\sin (x-a)|-a \cos a+C_{1}$
$=\sin a \log |\sin (x-a)|+x \cos a+C$

Question 8:
$\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}$

Solution:
$\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}=\frac{e^{4 \log x}\left(e^{\log x}-1\right)}{e^{2 \log x}\left(e^{\log x}-1\right)}$
$=e^{2 \log x}$
$=e^{\log x^{2}}$
$=x^{2}$
$\therefore \int \frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}} d x=\int x^{2} d x=\frac{x^{3}}{3}+C$

Question 9:
$\frac{\cos x}{\sqrt{4-\sin ^{2} x}}$

Solution:

$\frac{\cos x}{\sqrt{4-\sin ^{2} x}}$
Put, $\sin x=t \Rightarrow \cos x d x=d t$
$\Rightarrow \int \frac{\cos x}{\sqrt{4-\sin ^{2} x}} d x=\int \frac{d t}{\sqrt{(2)^{2}-(t)^{2}}}$
$=\sin ^{-1}\left(\frac{t}{2}\right)+C$
$=\sin ^{-1}\left(\frac{\sin x}{2}\right)+C$
$=\frac{x}{2}+C$

Question 10:

$$
\frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x}
$$

Solution:

$$
\begin{aligned}
& \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x}=\frac{\left(\sin ^{4} x-\cos ^{4} x\right)\left(\sin ^{4} x+\cos ^{4} x\right)}{\sin ^{2} x+\cos ^{2} x-\sin ^{2} x \cos ^{2} x-\sin ^{2} x \cos ^{2} x} \\
& =\frac{\left(\sin ^{4} x+\cos ^{4} x\right)\left(\sin ^{2} x-\cos ^{2} x\right)\left(\sin ^{2} x+\cos ^{2} x\right)}{\left(\sin ^{2} x-\sin ^{2} x \cos ^{2} x\right)+\left(\cos ^{2} x-\sin ^{2} x \cos ^{2} x\right)} \\
& =\frac{\left(\sin ^{4} x+\cos ^{4} x\right)\left(\sin ^{2} x-\cos ^{2} x\right)}{\sin ^{2} x\left(1-\cos ^{2} x\right)+\cos ^{2} x\left(1-\sin ^{2} x\right)} \\
& =\frac{-\left(\sin ^{4} x+\cos ^{4} x\right)\left(\cos ^{2} x-\sin ^{2} x\right)}{\left(\sin ^{4} x+\cos ^{4} x\right)} \\
& =-\cos 2 x \\
& \therefore \int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x=\int-\cos 2 x d x=-\frac{\sin 2 x}{2}+C
\end{aligned}
$$

Question 11:
$\frac{1}{\cos (x+a) \cos (x+b)}$

Solution:

$\frac{1}{\cos (x+a) \cos (x+b)}$
Multiplying and dividing by $\sin (a-b)$, we get

$$
\begin{aligned}
& \frac{1}{\sin (a-b)}\left[\frac{\sin (a-b)}{\cos (x+a) \cos (x+b)}\right] \\
& =\frac{1}{\sin (a-b)}\left[\frac{\sin [(x+a)-(x+b)]}{\cos (x+a) \cos (x+b)}\right] \\
& =\frac{1}{\sin (a-b)}\left[\frac{\sin (x+a) \cos (x+b)-\cos (x+a) \sin (x+b)}{\cos (x+a) \cos (x+b)}\right] \\
& =\frac{1}{\sin (a-b)}\left[\frac{\sin (x+a)}{\cos (x+a)}-\frac{\sin (x+b)}{\cos (x+b)}\right] \\
& =\frac{1}{\sin (a-b)}[\tan (x+a)-\tan (x+b)] \\
& \int \frac{1}{\cos (x+a) \cos (x+b)} d x=\frac{1}{\sin (a-b)} \int[\tan (x+a)-\tan (x+b)] d x \\
& =\frac{1}{\sin (a-b)}[-\log |\cos (x+a)|+\log |\cos (x+b)|]+C \\
& =\frac{1}{\sin (a-b)} \log \left|\frac{\cos (x+b)}{\cos (x+a)}\right|+C
\end{aligned}
$$

Question 12:

$\frac{x^{3}}{\sqrt{1-x^{8}}}$

Solution:

$\frac{x^{3}}{\sqrt{1-x^{8}}}$
Put, $x^{4}=t \Rightarrow 4 x^{3} d x=d t$

$$
\begin{aligned}
& \Rightarrow \int \frac{x^{3}}{\sqrt{1-x^{8}}} d x=\frac{1}{4} \int \frac{d t}{\sqrt{1-t^{2}}} \\
& =\frac{1}{4} \sin ^{-1} t+C \\
& =\frac{1}{4} \sin ^{-1}\left(x^{4}\right)+C
\end{aligned}
$$

Question 13:
$\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}$

Solution:

$\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}$
Put $e^{x}=t \Rightarrow e^{x} d x=d t$
$\Rightarrow \int \frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)} d x=\int \frac{d t}{(t+1)(t+2)}$
$=\int\left[\frac{1}{(t+1)}-\frac{1}{(t+2)}\right] d t$
$=\log |t+1|-\log |t+2|+C$
$=\log \left|\frac{t+1}{t+2}\right|+C$
$=\log \left|\frac{1+e^{x}}{2+e^{x}}\right|+C$

Question 14:

$\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$

Solution:

$\therefore \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(x^{2}+4\right)}$
$\Rightarrow 1=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+1\right)$
$\Rightarrow 1=A x^{3}+4 A x+B x^{2}+4 B+C x^{3}+C x+D x^{2}+D$
Equating the coefficients of x^{3}, x^{2}, x and constant term, we get
$A+C=0$
$B+D=0$
$4 A+C=0$
$4 B+D=1$
On solving these equations, we get
$A=0$
$B=\frac{1}{3}$
$C=0$
$D=-\frac{1}{3}$
From equation (1), we get
$\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{1}{3\left(x^{2}+1\right)}-\frac{1}{3\left(x^{2}+4\right)}$
$\int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{1}{3} \int \frac{1}{x^{2}+1} d x-\frac{1}{3} \int \frac{1}{x^{2}+4} d x$
$=\frac{1}{3} \tan ^{-1} x-\frac{1}{3} \cdot \frac{1}{2} \tan ^{-1} \frac{x}{2}+C$
$=\frac{1}{3} \tan ^{-1} x-\frac{1}{6} \tan ^{-1} \frac{x}{2}+C$

Question 15:
$\cos ^{3} x e^{\log \sin x}$

Solution:
$\cos ^{3} x e^{\log \sin x}=\cos ^{3} x \times \sin x$
Let $\cos x=t \Rightarrow-\sin x d x=d t$
$\Rightarrow \int \cos ^{3} x e^{\log \sin x} d x=\int \cos ^{3} x \sin x d x$
$=-\int t^{3} d t$
$=-\frac{t^{4}}{4}+C$
$=-\frac{\cos ^{4} x}{4}+C$

Question 16:
$e^{3 \log x}\left(x^{4}+1\right)^{-1}$

Solution:

$e^{3 \log x}\left(x^{4}+1\right)^{-1}=e^{\log x^{3}}\left(x^{4}+1\right)^{-1}=\frac{x^{3}}{\left(x^{4}+1\right)}$
Let $x^{4}+1=t \Rightarrow 4 x^{3} d x=d t$
$\Rightarrow \int e^{3 \log x}\left(x^{4}+1\right)^{-1} d x=\int \frac{x^{3}}{\left(x^{4}+1\right)} d x$
$=\frac{1}{4} \int \frac{d t}{t}$
$=\frac{1}{4} \log |t|+C$
$=\frac{1}{4} \log \left|x^{4}+1\right|+C$
$=\frac{1}{4} \log \left(x^{4}+1\right)+C$

Question 17:

$f^{\prime}(a x+b)[f(a x+b)]^{n}$

Solution:

$f^{\prime}(a x+b)[f(a x+b)]^{n}$
Put, $f(a x+b)=t \Rightarrow a f^{\prime}(a x+b) d x=d t$
$\Rightarrow \int f^{\prime}(a x+b)[f(a x+b)]^{n} d x=\frac{1}{a} \int t^{n} d t$
$=\frac{1}{a}\left[\frac{t^{n+1}}{n+1}\right]=\frac{1}{a(n+1)}(f(a x+b))^{n+1}+C$

Question 18:
$\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}$

Solution:

$\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}=\frac{1}{\sqrt{\sin ^{3} x(\sin x \cos \alpha+\cos x \sin \alpha)}}$
$=\frac{1}{\sqrt{\sin ^{4} x \cos \alpha+\sin ^{3} x \cos x \sin \alpha}}$
$=\frac{1}{\sin ^{2} x \sqrt{\cos \alpha+\cot x \sin \alpha}}=\frac{\operatorname{cosec}^{2} x}{\sqrt{\cos \alpha+\cot x \sin \alpha}}$

Put, $\cos \alpha+\cot x \sin \alpha=t \Rightarrow-\operatorname{cosec}^{2} x \sin \alpha d x=d t$
$\therefore \int \frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}} d x=\int \frac{\operatorname{cosec}^{2} x}{\sqrt{\cos \alpha+\cot x \sin \alpha}} d x$
$=\frac{-1}{\sin \alpha} \int \frac{d t}{\sqrt{t}}$
$=\frac{-1}{\sin \alpha}[2 \sqrt{t}]+C$
$=\frac{-1}{\sin \alpha}[2 \sqrt{\cos \alpha+\cot x \sin \alpha}]+C$
$=\frac{-2}{\sin \alpha} \sqrt{\cos \alpha+\frac{\cos x \sin \alpha}{\sin x}}+C$
$=\frac{-2}{\sin \alpha} \sqrt{\frac{\sin x \cos \alpha+\cos x \sin \alpha}{\sin x}}+C=\frac{-2}{\sin \alpha} \sqrt{\frac{\sin (x+\alpha)}{\sin x}}+C$

Question 19:
$\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}, x \in[0,1]$

Solution:

Let $I=\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}} d x$
As we know that, $\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}=\frac{\pi}{2}$
$\Rightarrow I=\int \frac{\left(\frac{\pi}{2}-\cos ^{-1} \sqrt{x}\right)-\cos ^{-1} \sqrt{x}}{\frac{\pi}{2}} d x$
$=\frac{2}{\pi} \int\left(\frac{\pi}{2}-2 \cos ^{-1} \sqrt{x}\right) d x$
$=\frac{2}{\pi} \cdot \frac{\pi}{2} \int 1 \cdot d x-\frac{4}{\pi} \int \cos ^{-1} \sqrt{x} d x$
$=x-\frac{4}{\pi} \int \cos ^{-1} \sqrt{x} d x$
Let $I_{1}=\int \cos ^{-1} \sqrt{x} d x$
Also, let $\sqrt{x}=t \Rightarrow d x=2 t d t$

$$
\begin{aligned}
& \Rightarrow I_{1}=2 \int \cos ^{-1} t \cdot t d t \\
& =2\left[\cos ^{-1} t \cdot \frac{t^{2}}{2}-\int \frac{-1}{\sqrt{1-t^{2}}} \cdot \frac{t^{2}}{2} d t\right] \\
& =t^{2} \cos ^{-1} t+\int \frac{t^{2}}{\sqrt{1-t^{2}}} d t \\
& =t^{2} \cos ^{-1} t-\int \frac{1-t^{2}-1}{\sqrt{1-t^{2}}} d t \\
& =t^{2} \cos ^{-1} t-\int \sqrt{1-t^{2}} d t+\int \frac{1}{\sqrt{1-t^{2}}} d t \\
& =t^{2} \cos ^{-1} t-\frac{1}{2} \sqrt{1-t^{2}}-\frac{1}{2} \sin ^{-1} t+\sin ^{-1} t \\
& =t^{2} \cos ^{-1} t-\frac{1}{2} \sqrt{1-t^{2}}+\frac{1}{2} \sin ^{-1} t
\end{aligned}
$$

From equation (1), we get
$I=x-\frac{4}{\pi}\left[t^{2} \cos ^{-1} t-\frac{t}{2} \sqrt{1-t^{2}}+\frac{1}{2} \sin ^{-1} t\right]$
$=x-\frac{4}{\pi}\left[x \cos ^{-1} \sqrt{x}-\frac{\sqrt{x}}{2} \sqrt{1-x}+\frac{1}{2} \sin ^{-1} \sqrt{x}\right]$
$x-\frac{4}{\pi}\left[x\left(\frac{\pi}{2}-\sin ^{-1} \sqrt{x}\right)-\frac{\sqrt{x-x^{2}}}{2}+\frac{\pi}{2} \sin ^{-1} \sqrt{x}\right]$
$=x-2 x+\frac{4 x}{\pi} \sin ^{-1} \sqrt{x}+\frac{2}{\pi} \sqrt{x-x^{2}}-\frac{2}{\pi} \sin ^{-1} \sqrt{x}$
$-x+\frac{2}{\pi}\left[(2 x-1) \sin ^{-1} \sqrt{x}\right]+\frac{2}{\pi} \sqrt{x-x^{2}}+C$
$=\frac{2(2 x-1)}{\pi} \sin ^{-} \sqrt{x}+\frac{2}{\pi} \sqrt{x-x^{2}}-x+C$

Question 20:
$\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$

Solution:

$I=\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$
Put, $x=\cos ^{2} \theta \Rightarrow d x=-2 \sin \theta \cos \theta d \theta$

$$
\begin{aligned}
& I=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-2 \sin \theta \cos \theta) d \theta=-\int \sqrt{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}} \sin 2 \theta d \theta} \\
& =-2 \int \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right) \cos \theta d \theta \\
& =-4 \int \sin ^{2} \frac{\theta}{2} \cos \theta d \theta \\
& =-4 \int \sin ^{2} \frac{\theta}{2}\left(2 \cos ^{2} \frac{\theta}{2}-1\right) d \theta \\
& =-4 \int\left(2 \sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right) d \theta \\
& =-8 \int \sin ^{2} \frac{\theta}{2} \cdot \cos ^{2} \frac{\theta}{2} d \theta+4 \int \sin ^{2} \frac{\theta}{2} d \theta \\
& =-2 \int \sin ^{2} \frac{\theta}{2} d \theta+4 \int \sin \frac{\theta}{2} d \theta \\
& =-2 \int\left(\frac{1-\cos ^{2} 2 \theta}{2}\right) d \theta+4 \int \frac{1-\cos \theta}{2} d \theta \\
& =-2\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]+4\left[\frac{\theta}{2}-\frac{\sin \theta}{2}\right]+C \\
& =-\theta+\frac{\sin 2 \theta}{2}+2 \theta-2 \sin \theta+C \\
& =\theta+\frac{\sin 2 \theta}{2}+2 \sin \theta+C \\
& =\theta+\frac{2 \sin \theta \cos ^{2} \theta}{2}-2 \sin \theta+C \\
& =\theta+\sqrt{1-\cos 2} \theta \cdot \cos \theta-2 \sqrt{1-\cos 2}+C \\
& =\cos -1 \sqrt{x}+\sqrt{1-x} \cdot \sqrt{x}-2 \sqrt{1-x}+C \\
& =-2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{x(1-x)}+C \\
& =-2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{x-x^{2}}+C \\
&
\end{aligned}
$$

Question 21:
$\frac{2+\sin 2 x}{1+\cos 2 x} e^{x}$

Solution:

$I=\int\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) e^{x}$
$=\int\left(\frac{2+2 \sin x \cos x}{2 \cos ^{2} x}\right) e^{x}$
$=\int\left(\frac{1+\sin x \cos x}{\cos ^{2} x}\right) e^{x}$
$=\int\left(\sec ^{2} x+\tan x\right) e^{x}$
Let $f(x)=\tan x \Rightarrow f^{\prime}(x)=\sec ^{2} x$
$\therefore I=\int\left(f(x)+f^{\prime}(x)\right) e^{x} d x$
$=e^{x} f(x)+C$
$=e^{x} \tan x+C$

Question 22:

$\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}$

Solution:

Let $\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)}$
$\Rightarrow x^{2}+x+1=A(x+1)(x+2)+B(x+2)+C\left(x^{2}+2 x+1\right)$
$\Rightarrow x^{2}+x+1=A\left(x^{2}+3 x+2\right)+B(x+2)+C\left(x^{2}+2 x+1\right)$
$\Rightarrow x^{2}+x+1=(A+C) x^{2}+(3 A+B+2 C) x+(2 A+2 B+C)$
Equating the coefficients of x^{2}, x and constant term, we get
$A+C=1$
$3 A+B+2 C=1$
$2 A+2 B+C=1$
On solving these equations, we get
$A=-2$
$B=1$
$C=3$
From equation (1), we get
$\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{-2}{(x+1)}+\frac{3}{(x+2)}+\frac{1}{(x+1)^{2}}$
$\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=-2 \int \frac{1}{x+1} d x+3 \int \frac{1}{(x+2)} d x+\int \frac{1}{(x+1)^{2}} d x$
$=-2 \log |x+1|+3 \log |x+2|-\frac{1}{(x+1)}+C$

Question 23:
$\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$

Solution:
$I=\tan ^{-1} \sqrt{\frac{1-x}{1+x}} d x$
Let $x=\cos \theta \Rightarrow d x=-\sin \theta d \theta$

$$
\begin{aligned}
& I=\int \tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-\sin \theta) d \theta \\
& =-\int \tan ^{-1} \sqrt{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}} \sin \theta d \theta}=-\int \tan ^{-1} \tan \frac{\theta}{2} \sin \theta d \theta
\end{aligned}
$$

$=-\frac{1}{2} \int \theta \cdot \sin \theta d \theta=-\frac{1}{2}\left[\theta \cdot(-\cos \theta)-\int 1 \cdot(-\cos \theta) d \theta\right]$
$=-\frac{1}{2}[-\theta \cos \theta+\sin \theta]$
$=\frac{1}{2} \theta \cos \theta-\frac{1}{2} \sin \theta$
$=\frac{1}{2} \cos ^{-1} x \cdot x-\frac{1}{2} \sqrt{1-x^{2}}+C=\frac{x}{2} \cos ^{-1} x-\frac{1}{2} \sqrt{1-x^{2}}+C$
$=\frac{1}{2}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)+C$

Question 24:
$\frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}}$
Solution:
$\frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}}=\frac{\sqrt{x^{2}+1}}{x^{4}}\left[\log \left(x^{2}+1\right)-\log x^{2}\right]$
$=\frac{\sqrt{x^{2}+1}}{x^{4}}\left[\log \left(\frac{x^{2}+1}{x^{2}}\right)\right]$
$=\frac{\sqrt{x^{2}+1}}{x^{4}} \log \left(1+\frac{1}{x^{2}}\right)$
$=\frac{1}{x^{3}} \sqrt{\frac{x^{2}+1}{x^{2}}} \log \left(1+\frac{1}{x^{2}}\right)$
$=\frac{1}{x^{3}} \sqrt{1+\frac{1}{x^{2}}} \log \left(1+\frac{1}{x^{2}}\right)$
Let $1+\frac{1}{x^{2}}=t \Rightarrow \frac{-2}{x^{3}} d x=d t$
$\therefore I=\int \frac{1}{x^{3}} \sqrt{1+\frac{1}{x^{2}}} \log \left(1+\frac{1}{x^{2}}\right) d x$
$=-\frac{1}{2} \int \sqrt{t} \log t d t=-\frac{1}{2} \int t^{\frac{1}{2}} \log t d t$
Using integration by parts, we get

$$
\begin{aligned}
I & =-\frac{1}{2}\left[\log t \cdot \int t^{\frac{1}{2}} d t-\left\{\left(\frac{d}{d t} \log t\right) \int t^{\frac{1}{2}} d t\right\} d t\right] \\
& =-\frac{1}{2}\left[\log t \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\int \frac{1}{t} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} d t\right] \\
& =-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\frac{2}{3} \int t^{\frac{1}{2}} d t\right] \\
& =-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\frac{4}{9} t^{\frac{3}{2}}\right] \\
& =-\frac{1}{3} t^{\frac{3}{2}} \log t+\frac{2}{9} t^{\frac{3}{2}} \\
& =-\frac{1}{3} t^{\frac{3}{2}}\left[\log t-\frac{2}{3}\right] \\
& =-\frac{1}{3}\left(1+\frac{1}{x^{2}}\right)^{\frac{3}{2}}\left[\log \left(1+\frac{1}{x^{2}}\right)-\frac{2}{3}\right]+C
\end{aligned}
$$

Question 25:
$\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$

Solution:

$I=\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$
$=\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{1-2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin ^{2} \frac{x}{2}}\right) d x=\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{\operatorname{cosec}^{2} \frac{x}{2}}{2}-\cot \frac{x}{2}\right) d x$
Let $f(x)=-\cot \frac{x}{2}$
$\Rightarrow f^{\prime}(x)=-\left(\frac{1}{2} \operatorname{cosec} \frac{x}{2}\right)=\frac{1}{2} \operatorname{cosec}^{2} \frac{x}{2}$
$\therefore I=\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(f(x)+f^{\prime}(x)\right) d x$
$=\left[e^{x} f(x) d x\right]_{\frac{\pi}{2}}^{\pi}$
$=-\left[e^{x} \cot \frac{x}{2}\right]_{\frac{\pi}{2}}^{\pi}$
$=-\left[e^{x} \times \cot \frac{\pi}{2}-e^{\frac{\pi}{2}} \times \cot \frac{\pi}{4}\right]$
$=-\left[e^{\pi} \times 0-e^{\frac{\pi}{2}} \times 1\right]$
$=e^{\frac{\pi}{2}}$

Question 26:
$\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \frac{\frac{(\sin x \cos x)}{\cos ^{4} x}}{\frac{\left(\cos ^{4} x+\sin ^{4} x\right)}{\cos ^{4} x}} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \frac{\tan x \sec ^{2} x}{1+\tan ^{4} x} d x$
Put, $\tan ^{2} x=t \Rightarrow 2 \tan x \sec ^{2} x d x=d t$
When $x=0, t=0$ and when $x=\frac{\pi}{4}, t=1$
$\therefore I=\frac{1}{2} \int_{0}^{1} \frac{d t}{1+t^{2}}=\frac{1}{2}\left[\tan ^{-1} t\right]_{0}^{1}$
$=\frac{1}{2}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]$
$=\frac{1}{2}\left[\frac{\pi}{4}\right]$
$=\frac{\pi}{8}$

Question 27:
$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} d x$

Solution:

Consider, $I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4\left(1-\cos ^{2} x\right)} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4-4 \cos ^{2} x} d x$
$\Rightarrow I=\frac{-1}{3} \int_{0}^{\frac{\pi}{2}} \frac{-3 \cos ^{2} x}{4-3 \cos ^{2} x} d x$
$\Rightarrow I=\frac{-1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4-3 \cos ^{2} x-4}{4-3 \cos ^{2} x} d x$
$\Rightarrow I=\frac{-1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4-3 \cos ^{2} x}{4-3 \cos ^{2} x} d x+\frac{1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4}{4-3 \cos ^{2} x} d x$
$\Rightarrow I=\frac{-1}{3} \int_{0}^{\frac{\pi}{2}} 1 d x+\frac{1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} x}{4 \sec ^{2} x-3} d x$
$\Rightarrow I=-\frac{1}{3}[x]_{0}^{\frac{\pi}{2}}+\frac{1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} x}{4\left(1+\tan ^{2} x\right)-3} d x$
$\Rightarrow I=-\frac{\pi}{6}+\frac{2}{3} \int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} x}{1+4 \tan ^{2} x} d x$
Consider, $\int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} x}{1+4 \tan ^{2} x} d x$
Put, $2 \tan x=t \Rightarrow 2 \sec ^{2} x d x=d t$
When $x=0, t=0$ and when $x=\frac{\pi}{2}, t=\infty$
$\Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} x}{1+4 \tan ^{2} x} d x=\int_{0}^{\infty} \frac{d t}{1+t^{2}}$
$=\left[\tan ^{-1} t\right]_{0}^{\infty}$
$=\left[\tan ^{-1}(\infty)-\tan ^{-1}(0)\right]$
$=\frac{\pi}{2}$
Therefore, from (1), we get
$I=-\frac{\pi}{6}+\frac{2}{3}\left[\frac{\pi}{2}\right]=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}$

Question 28:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x
$$

Solution:

Consider, $I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$
$\Rightarrow I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{-(-\sin 2 x)}} d x \Rightarrow I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{-(-1+1-2 \sin \cos x)}} d x$
$\Rightarrow I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{1-(\sin x-\cos x)^{2}}} d x$
Let $(\sin x-\cos x)=t \Rightarrow(\sin x+\cos x) d x=d t$
When $x=\frac{\pi}{6}, t=\left(\frac{1-\sqrt{3}}{2}\right)$ and when $x=\frac{\pi}{3}, t=\left(\frac{\sqrt{3}-1}{2}\right)$
$I=\int_{\frac{1-\sqrt{3}}{2}}^{\frac{\sqrt{3}-1}{2}} \frac{d t}{\sqrt{1-t^{2}}}$
$\Rightarrow I=\int_{-\left(\frac{1+\sqrt{3}}{2}\right)}^{\frac{\sqrt{3}-1}{2}} \frac{d t}{\sqrt{1-t^{2}}}$
As $\frac{1}{\sqrt{1-(-t)^{2}}}=\frac{1}{\sqrt{1-t^{2}}}$, therefore, $\frac{1}{\sqrt{1-t^{2}}}$ is an even function
$\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
We know that if $f(x)$ is an even function, then

$$
\begin{aligned}
& \Rightarrow I=2 \int_{0}^{\frac{\sqrt{3}-1}{0}} \frac{d t}{\sqrt{1-t^{2}}} \\
& =\left[2 \sin ^{-1} t\right]_{0}^{\frac{\sqrt{3}-1}{2}} \\
& =2 \sin ^{-1}\left(\frac{\sqrt{3}-1}{2}\right)
\end{aligned}
$$

Question 29:
$\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}$

Solution:

Consider, $I=\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}$
$I=\int_{0}^{1} \frac{1}{(\sqrt{1+x}-\sqrt{x})} \times \frac{(\sqrt{1+x}+\sqrt{x})}{(\sqrt{1+x}+\sqrt{x})} d x$
$=\int_{0}^{1} \frac{(\sqrt{1+x}+\sqrt{x})}{1+x-x} d x$
$=\int_{0}^{1} \sqrt{1+x} d x+\int_{0}^{1} \sqrt{x} d x$
$=\left[\frac{2}{3}(1+x)^{\frac{3}{2}}\right]_{0}^{1}+\left[\frac{2}{3}(x)^{\frac{3}{2}}\right]_{0}^{1}$
$=\frac{2}{3}\left[(2)^{\frac{3}{2}}-1\right]+\frac{2}{3}[1]$
$=\frac{2}{3}(2)^{\frac{3}{2}}=\frac{2.2 \sqrt{2}}{3}$
$=\frac{4 \sqrt{2}}{3}$

Question 30:
$\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x$

Solution:

Consider, $I=\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x$
Put, $\sin x-\cos x=t \Rightarrow(\cos x+\sin x) d x=d t$
When $x=0, t=-1$ and when $x=\frac{\pi}{4}, t=0$
$\Rightarrow(\sin x-\cos x)^{2}=t^{2}$
$\Rightarrow \sin ^{2} x+\cos ^{2} x-2 \sin x \cos x=t^{2}$
$\Rightarrow 1-\sin 2 x=t^{2}$
$\Rightarrow \sin 2 x=1-t^{2}$
$\therefore I=\int_{-1}^{0} \frac{d t}{9+16\left(1-t^{2}\right)}$
$=\int_{-1}^{0} \frac{d t}{9+16-16 t^{2}}$
$=\int_{-1}^{0} \frac{d t}{25-16 t^{2}}=\int_{-1}^{0} \frac{d t}{(5)^{2}-(4 t)^{2}}$
$=\frac{1}{4}\left[\frac{1}{2(5)} \log \left|\frac{5+4 t}{5-4 t}\right|\right]_{-1}^{0}$
$=\frac{1}{40}\left[\log (1)-\log \left|\frac{1}{9}\right|\right]$
$=\frac{1}{40} \log 9$

Question 31:

$\int_{0}^{\frac{\pi}{2}} \sin 2 x \tan ^{-1}(\sin x) d x$

Solution:

Consider, $I=\int_{0}^{\frac{\pi}{2}} \sin 2 x \tan ^{-1}(\sin x) d x=\int_{0}^{\frac{\pi}{2}} 2 \sin x \cos x \tan ^{-1}(\sin x) d x$
Put, $\sin x=t \Rightarrow \cos x d x=d t$
When $x=0, t=0$ and when $x=\frac{\pi}{2}, t=1$
$\Rightarrow I=2 \int_{0}^{1} t \tan ^{-1}(t) d t$
Consider $\int t \cdot \tan ^{-1} t d t=\tan ^{-1} t \int t d t-\int\left\{\frac{d}{d t}\left(\tan ^{-1} t\right) \int t d t\right\} d t$
$=\tan ^{-1} t \cdot \frac{t^{2}}{2}-\int \frac{1}{1+t^{2}} \cdot \frac{t^{2}}{2} d t$
$=\frac{t^{2} \tan ^{-1} t}{2}-\frac{1}{2} \int \frac{t^{2}+1-1}{1+t^{2}} d t$
$=\frac{t^{2} \tan ^{-1} t}{2}-\frac{1}{2} \int 1 . d t+\frac{1}{2} \int \frac{1}{1+t^{2}} d t$
$=\frac{t^{2} \tan ^{-1} t}{2}-\frac{1}{2} t+\frac{1}{2} \tan ^{-1} t$

From equation (1), we get
$\Rightarrow 2 \int_{0}^{1} t \cdot \tan ^{-1} t d t=2\left[\frac{t^{2} \tan ^{-1} t}{2}-\frac{t}{2}+\frac{1}{2} \tan ^{-1} t\right]_{0}^{1}$
$=\left[\frac{\pi}{4}-1+\frac{\pi}{4}\right]=\frac{\pi}{2}-1$

Question 32:
$\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$

Solution:

Let $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$
$I=\int_{0}^{\pi}\left\{\frac{(\pi-x) \tan (\pi-x)}{\sec (\pi-x)+\tan (\pi-x)}\right\} d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\pi}\left\{\frac{-(\pi-x) \tan x}{-(\sec x+\tan x)}\right\} d x$
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{(\sec x+\tan x)} d x$
Adding (1) and (2), we get

$$
\begin{aligned}
& 2 I=\int_{0}^{\pi} \frac{\pi \tan x}{\sec x+\tan x} d x \Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}+\frac{\sin x}{\cos x}} d x \\
& \Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{\sin x+1-1}{1+\sin x} d x \\
& \Rightarrow 2 I=\pi \int_{0}^{\pi} 1 \cdot d x-\pi \int_{0}^{\pi} \frac{1}{1+\sin x} d x \\
& \Rightarrow 2 I=\pi \int_{0}^{\pi} 1 \cdot d x-\pi \int_{0}^{\pi} \frac{(1-\sin x)}{(1+\sin x)(1-\sin x)} d x \\
& \Rightarrow 2 I=\pi[x]_{0}^{\pi}-\pi \int_{0}^{\pi} \frac{1-\sin x}{\cos ^{2} x} d x \\
& \Rightarrow 2 I=\pi^{2}-\pi \int_{0}^{\pi}\left(\sec ^{2} x-\tan x \sec x\right) d x \\
& \Rightarrow 2 I=\pi^{2}-\pi[\tan x-\sec x]_{0}^{\pi} \\
& \Rightarrow 2 I=\pi^{2}-\pi[\tan \pi-\sec \pi-\tan 0+\sec 0] \\
& \Rightarrow 2 I=\pi^{2}-\pi[0-(-1)-0+1] \\
& \Rightarrow 2 I=\pi^{2}-2 \pi \\
& \Rightarrow 2 I=\pi(\pi-2) \\
& I=\frac{\pi}{2}(\pi-2)
\end{aligned}
$$

Question 33:

$\int_{1}^{4}[|x-1|+|x-2|+|x-3|] d x$

Solution:

Consider, $I=\int_{1}^{4}[|x-1|+|x-2|+|x-3|] d x$
$\Rightarrow I=\int_{1}^{4}|x-1| d x+\int_{1}^{4}|x+2| d x+\int_{1}^{4}|x+3| d x$
$I=I_{1}+I_{2}+I_{3}$
Where, $I_{1}=\int_{1}^{4}|x-1| d x, I_{2}=\int_{1}^{4}|x+2| d x$ and $I_{3}=\int_{1}^{4}|x+3| d x$
$I_{1}=\int_{1}^{4}|x-1| d x$
$(x-1) \geq 0$ for $1 \leq x \leq 4$
$\therefore I_{1}=\int_{1}^{4}(x-1) d x$
$\Rightarrow I_{1}=\left[\frac{x^{2}}{2}-x\right]_{1}^{4}$
$\Rightarrow I_{1}=\left\lceil 8-4-\frac{1}{2}+1\right\rceil=\frac{9}{2}$
$I_{2}=\int_{1}^{4}|x-2| d x$
$x-2 \geq 0$ for $2 \leq x \leq 4$ and $x-2 \leq 0$ for $1 \leq x \leq 2$
$\therefore I_{2}=\int_{1}^{2}(2-x) d x+\int_{2}^{4}(x-2) d x$
$\Rightarrow I_{2}=\left[2 x-\frac{x^{2}}{2}\right]_{1}^{2}+\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4} \Rightarrow I_{2}=\left[4-2-2+\frac{1}{2}\right]+[8-8-2+4]$
$\Rightarrow I_{2}=\frac{1}{2}+2=\frac{5}{2}$
$\Rightarrow I_{3}=\int_{1}^{4}|x-3| d x$
$x-3 \geq 0$ for $3 \leq x \leq 4$ and $x-3 \leq 0$ for $1 \leq x \leq 2$
$\therefore I_{3}=\int_{1}^{3}(3-x) d x+\int_{3}^{4}(x-3) d x$
$\Rightarrow I_{3}=\left[3-\frac{x^{2}}{2}\right]_{1}^{3}+\left[\frac{x^{2}}{2}-3 x\right]_{3}^{4}$
$\Rightarrow I_{3}=\left[9-\frac{9}{2}-3+\frac{1}{2}\right]+\left[8-12-\frac{9}{2}+9\right]$
$\Rightarrow I_{3}=[6-4]+\left[\frac{1}{2}\right]=\frac{5}{2}$
From equations (1), (2), (3) and (4), we get
$I=\frac{9}{2}+\frac{5}{2}+\frac{5}{2}=\frac{19}{2}$

Question 34:
$\int_{1}^{3} \frac{d x}{x^{2}(x+1)}=\frac{2}{3}+\log \frac{2}{3}$

Solution:

Consider, $\int_{1}^{3} \frac{d x}{x^{2}(x+1)}$
Let, $\frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}$
$\Rightarrow 1=A x(x+1)+B(x+1)+C\left(x^{2}\right)$
$\Rightarrow 1=A x^{2}+A x+B x+B+C x^{2}$
Equating the coefficients of x^{2}, x and constant terms, we get
$A+C=0$
$A+B=0$
$B=1$
On solving these equations, we get
$A=-1$
$C=1$
$B=1$
$\therefore \frac{1}{x^{2}(x+1)}=\frac{-1}{x}+\frac{1}{x^{2}}+\frac{1}{(x+1)}$
$\Rightarrow I=\int_{1}^{3}\left\{-\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{(x+1)}\right\} d x=\left[-\log x-\frac{1}{x}+\log (x+1)\right]_{1}^{3}$
$=\left[\log \left(\frac{x+1}{x}\right)-\frac{1}{x}\right]_{1}^{3}=\log \left(\frac{4}{3}\right)-\frac{1}{3}-\log \left(\frac{2}{1}\right)+1$
$=\log 4-\log 3-\log 2+\frac{2}{3}$
$=\log 2-\log 3+\frac{2}{3}$
$=\log \left(\frac{2}{3}\right)+\frac{2}{3}$
Hence proved.

Question 35:
$\int_{0}^{1} x e^{x} d x=1$

Solution:

Let $I=\int_{0}^{1} x e^{x} d x$
Using integration by parts, we get

$$
\begin{aligned}
& I=x \int_{0}^{1} e^{x} d x-\int_{0}^{1}\left\{\left(\frac{d}{d x}(x)\right) \int e^{x} d x\right\} d x \\
& =\left[x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x \\
& =\left[x e^{x}\right]_{0}^{1}-\left[e^{x}\right]_{0}^{1} \\
& =e-e+1 \\
& =1 \\
& \text { Hence proved. }
\end{aligned}
$$

Question 36:
$\int_{-1}^{1} x^{17} \cos ^{4} x d x=0$

Solution:

Consider, $I=\int_{-1}^{1} x^{17} \cos ^{4} x d x$
Let $f(x)=x^{17} \cos ^{4} x$
$\Rightarrow f(-x)=(-x)^{17} \cos ^{4}(-x)=-x^{17} \cos ^{4} x=-f(x)$
$f(x)$ is an odd function.
We know that if $f(x)$ is an odd function, then $\int_{-a}^{a} f(x) d x=0$
$\therefore I=\int_{-1}^{1} x^{17} \cos ^{4} x d x=0$
Hence proved.

Question 37:
$\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x=\frac{2}{3}$

Solution:

Consider, $I=\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x$
$I=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cdot \sin x d x$
$=\int_{0}^{\frac{\pi}{2}}\left(1-\cos ^{2} x\right) \sin x d x$
$=\int_{0}^{\frac{\pi}{2}} \sin x d x-\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \cdot \sin x d x$
$=[-\cos x]_{0}^{\frac{\pi}{2}}+\left[\frac{\cos ^{3} x}{3}\right]_{0}^{\frac{\pi}{2}}$
$=1+\frac{1}{3}[-1]=1-\frac{1}{3}=\frac{2}{3}$
Hence proved.

Question 38:
$\int_{0}^{\frac{\pi}{4}} 2 \tan ^{3} x d x=1-\log 2$

Solution:

Consider, $I=\int_{0}^{\frac{\pi}{4}} 2 \tan ^{3} x d x$
$I=\int_{0}^{\frac{\pi}{4}} 2 \tan ^{2} x \cdot \tan x d x=2 \int_{0}^{\frac{\pi}{4}}\left(\sec ^{2}-1\right) \tan x d x$
$=2 \int_{0}^{\frac{\pi}{4}} \sec ^{2} x \tan x d x-2 \int_{0}^{\frac{\pi}{4}} \tan x d x$
$=2\left[\frac{\tan ^{2} x}{2}\right]_{0}^{\frac{\pi}{4}}+2[\log \cos x]_{0}^{\frac{\pi}{4}}=1+2\left[\log \cos \frac{\pi}{4}-\log \cos 0\right]$
$=1+2\left[\log \frac{1}{\sqrt{2}}-\log 1\right]=1-\log 2-\log 1=1-\log 2$
Hence proved.
Question 39:
$\int_{0}^{1} \sin ^{-1} x d x=\frac{\pi}{2}-1$

Solution:

Let $\int_{0}^{1} \sin ^{-1} x d x$
$\Rightarrow I=\int_{0}^{1} \sin ^{-1} x .1 . d x$
Using integration by parts, we get
$I=\left[\sin ^{-1} x . x\right]_{0}^{1}-\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} x d x$
$=\left[x \sin ^{-1} x\right]_{0}^{1}+\frac{1}{2} \int_{0}^{1} \frac{(-2 x)}{\sqrt{1-x^{2}}} d x$
Put, $1-x^{2}=t \Rightarrow-2 x d x=d t$
When $x=0, t=1$ and when $x=1, t=0$
$I=\left[x \sin ^{-1} x\right]_{0}^{1}+\frac{1}{2} \int_{0}^{1} \frac{d t}{\sqrt{t}}$
$=\left[x \sin ^{-1} x\right]_{0}^{1}+\frac{1}{2}[2 \sqrt{t}]_{1}^{0}$
$=\sin ^{-1}(1)+[-\sqrt{1}]$
$=\frac{\pi}{2}-1$
Hence proved.

Question 40:

Evaluate $\int_{0}^{1} e^{2-3 x} d x$ as a limit of a sum.

Solution:

Let $I=\int_{0}^{1} e^{2-3 x} d x$
We know that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)]$
Where, $h=\frac{b-a}{n}$
Here, $a=0, b=1$ and $f(x)=e^{2-3 x}$
$\Rightarrow h=\frac{1-0}{n}=\frac{1}{n}$
$\therefore \int_{0}^{1} e^{2-3 x} d x=(1-0) \lim _{n \rightarrow \infty} \frac{1}{n}[f(0)+f(0+h)+\ldots+f(0+(n-1) h)]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}+e^{2-3 x}+\ldots+e^{2-3(n-1) h}\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}\left\{1+e^{-3 h}+e^{-6 h}+e^{-9 h}+\ldots+e^{-3(n-1) h}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}\left\{\frac{1-\left(e^{-3 h}\right)^{n}}{1-\left(e^{-3 h}\right)}\right\}\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}\left\{\frac{1-e^{-\frac{3}{n} n}}{\left.1-e^{-\frac{3}{n}}\right\}}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{e^{2}\left(1-e^{-3}\right)}{1-e^{-\frac{3}{n}}}\right]=e^{2}\left(e^{-3}-1\right) \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{e^{-\frac{3}{n}}-1}\right]$
$=e^{2}\left(e^{-3}-1\right) \lim _{n \rightarrow \infty}\left(-\frac{1}{3}\right)\left[\frac{-\frac{3}{n}}{e^{-\frac{3}{n}}-1}\right]=\frac{e^{2}\left(e^{-3}-1\right)}{3} \lim _{n \rightarrow \infty}\left[\frac{\frac{-3}{n}}{e^{-\frac{3}{n}}-1}\right]$
$=\frac{-e^{2}\left(e^{-3}-1\right)}{3}(1)$
$=\frac{-e^{-1}+e^{2}}{3}$
$=\frac{1}{3}\left(e^{2}-\frac{1}{e}\right)$

Question 41:

$\int \frac{d x}{e^{x}+e^{-x}}$ is equal to
A. $\tan ^{-1}\left(e^{x}\right)+C$
B. $\tan ^{-1}\left(e^{-x}\right)+C$
C. $\log \left(e^{x}-e^{-x}\right)+C$
D. $\log \left(e^{x}+e^{-x}\right)+C$

Solution:

Consider, $I=\int \frac{d x}{e^{x}+e^{-x}} d x=\int \frac{e^{x}}{e^{2 x}+1} d x$
Put, $e^{x}=t \Rightarrow e^{x} d x=d t$
$\therefore I=\int \frac{d t}{1+t^{2}}$
$=\tan ^{-1} t+C$
$=\tan ^{-1}\left(e^{x}\right)+C$
Thus, the correct option is A.

Question 42:
$\int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x$ is
A. $\frac{-1}{\sin x+\cos x}+C$
B. $\log |\sin x+\cos x|+C$
C. $\log |\sin x-\cos x|+C$
D. $\frac{1}{(\sin x+\cos x)^{2}}+C$

Equals to

Solution:

Consider, $I=\int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x \Rightarrow I=\int \frac{\cos ^{2} x-\sin ^{2} x}{(\sin x+\cos x)} d x$
$=\int \frac{(\cos x+\sin x)(\cos x-\sin x)}{(\sin x+\cos x)^{2}} d x=\int \frac{\cos x-\sin x}{\cos x+\sin x} d x$
Let $\cos x+\sin x=t \Rightarrow(\cos x-\sin x) d x=d t$
$\therefore I=\int \frac{d t}{t}$
$=\log |t|+C$
$=\log |\cos x+\sin x|+C$
Thus, the correct option is B.

Question 43:

If $f(a+b-x)=f(x)$, then $\int_{a}^{b} x f(x) d x$ is equal to
A. $\frac{a+b}{2} \int_{a}^{b} f(b-x) d x$
B. $\frac{a+b}{2} \int_{a}^{b} f(b+x) d x$
C. $\frac{b-a}{2} \int_{a}^{b} f(x) d x$
D. $\frac{a+b}{2} \int_{a}^{b} f(x) d x$

Solution:

Consider, $I=\int_{a}^{b} x f(x) d x$
$I=\int_{a}^{b}(a+b-x) f(a+b-x) d x$
$\left(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right)$
$\Rightarrow I=\int_{a}^{b}(a+b-x) f(x) d x$
$\Rightarrow I=(a+b) \int_{a}^{b} f(x) d x-I \ldots \ldots$. (Using equation ())
$\Rightarrow I+I=(a+b) \int_{a}^{b} f(x) d x$
$\Rightarrow 2 I=(a+b) \int_{a}^{b} f(x) d x$
$\Rightarrow I=\left(\frac{a+b}{2}\right) \int_{a}^{b} f(x) d x$
Thus, the correct option is D .

Question 44:

The value of $\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x$ is
A. 1
B. 0
C. -1
D. $\frac{\pi}{4}$

Solution:

Consider, $I=\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x$
$\Rightarrow I=\int_{0}^{1} \tan ^{-1}\left(\frac{x-(1-x)}{1+x(1-x)}\right) d x$
$\Rightarrow I=\int_{0}^{1}\left[\tan ^{-1} x-\tan ^{-1}(1-x)\right] d x$
$\Rightarrow I=\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(1-1+x)\right] d x$
$\Rightarrow I=\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1} x\right] d x$
$\Rightarrow I=\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(x)\right] d x$
Adding (1) and (2), we get
$\Rightarrow 2 I=\int_{0}^{1}\left(\tan ^{-1} x-\tan ^{-1}(1-x)-\tan ^{-1}(1-x)-\tan ^{-1} x\right) d x$
$\Rightarrow 2 I=0$
$\Rightarrow I=0$
Thus, the correct option is B.

