(Chapter 9)(Coordination compounds) XII

Intext Questions

Question 9.1:

Write the formulas for the following coordination compounds:

- (i) Tetraamminediaquacobalt(III) chloride
- (ii) Potassium tetracyanonickelate(II)
- (iii) Tris(ethane-1,2-diamine) chromium(III) chloride
- (iv) Amminebromidochloridonitrito-N-platinate(II)
- (v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
- (vi) Iron(III) hexacyanoferrate(II)

Answer

(i)
$$\left[CO(H_2O)_2(NH_3)_4 \right] CI_3$$

(ii)
$$K_2[Ni(CN)_4]$$

(iii)
$$\left[\operatorname{Cr}(\operatorname{en})_{3}\right]\operatorname{Cl}_{3}$$

(vi)
$$\left[Pt(NH)_3 BrCl(NO_2) \right]$$

(v)
$$\left[\text{PtCl}_2(\text{en})_2\right](\text{NO}_3)_2$$

(vi)
$$\operatorname{Fe}_{4}\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]_{3}$$

Question 9.2:

Write the IUPAC names of the following coordination compounds:

- (i) $[Co(NH_3)_6]Cl_3$
- (ii) [Co(NH₃)₅Cl]Cl₂
- (iii) K₃[Fe(CN)₆]
- (iv) $K_3[Fe(C_2O_4)_3]$
- (v) K₂[PdCl₄]
- (vi) [Pt(NH₃)₂Cl(NH₂CH₃)]Cl

Answer

- (i) Hexaamminecobalt(III) chloride
- (ii) Pentaamminechloridocobalt(III) chloride
- (iii) Potassium hexacyanoferrate(III)
- (iv) Potassium trioxalatoferrate(III)
- (v) Potassium tetrachloridopalladate(II)
- (vi) Diamminechlorido(methylamine)platinum(II) chloride Question 9.3:

Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers:

- i. $K[Cr(H_2O)_2(C_2O_4)_2$
- ii. [Co(en)₃]Cl₃
- iii. $[Co(NH_3)_5(NO_2)](NO_3)_2$ iv. $[Pt(NH_3)(H_2O)Cl_2]$

Answer

i. Both geometrical (cis-, trans-) isomers for $K[Cr(H_2O)_2(C_2O_4)_2]$ can exist. Also, optical isomers for cis-isomer exist.

Trans-isomer is optically inactive. On the other hand, *cis*-isomer is optically active.

(ii) Two optical isomers for $\left[CO(en)_{_3} \right] CI_{_3}$

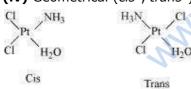
exist.

Two optical isomers are possible for this structure.

 $[CO(NH_3)_5(NO_2)](NO_3)_2$

A pair of optical isomers:

It can also show linkage isomerism.


$$[CO(NH_3)_5(NO_2)](NO_3)_2$$
 and $[CO(NH_3)_5(ONO)](NO_3)_2$

It can also show ionization isomerism.

$$[Co(NH_3)_5(NO_2)](NO_3)_2$$
 $[CO(NH_3)_5(NO_3)](NO_3)(NO_2)$

(iv) Geometrical (cis-, trans-) isomers of $[Pt(NH_3)(H_2O)Cl_2]$

can exist.

Question 9.4:

Give evidence that $[Co(NH_3)_5CI]SO_4$ and $[Co(NH_3)_5SO_4]CI$ are ionization isomers.

Answer

When ionization isomers are dissolved in water, they ionize to give different ions. These ions then react differently with different reagents to give different products.

$$\begin{bmatrix} \text{CO(NH}_3)_5 \text{ CI]} \text{SO}_4 + \text{Ba}^{2+} \longrightarrow \text{BaSO}_4 \downarrow \\ \text{White precipitate} \\ \begin{bmatrix} \text{CO(NH}_3)_5 \text{ CI]} \text{SO}_4 + \text{Ag}^+ \longrightarrow \text{No reaction} \\ \end{bmatrix} \\ \begin{bmatrix} \text{CO(NH}_3)_5 \text{ SO}_4 \end{bmatrix} \text{CI} + \text{Ba}^{2+} \longrightarrow \text{No reaction} \\ \end{bmatrix} \\ \begin{bmatrix} \text{CO(NH}_3)_5 \text{ SO}_4 \end{bmatrix} \text{CI} + \text{Ag}^+ \longrightarrow \text{AgCI} \downarrow \\ \end{bmatrix} \\ \text{White precipitate}$$

Question 9.5:

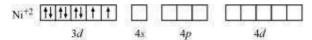
Explain on the basis of valence bond theory that $[Ni(CN)_4]^{2-}$ ion with square planar structure is diamagnetic and the $[NiCl_4]^{2-}$ ion with tetrahedral geometry is paramagnetic.

Answer

Ni is in the +2 oxidation state i.e., in d^8 configuration.

There are 4 CN^- ions. Thus, it can either have a tetrahedral geometry or square planar geometry. Since CN^- ion is a strong field ligand, it causes the pairing of unpaired 3d electrons.

It now undergoes dsp^2 hybridization. Since all electrons are paired, it is diamagnetic. In case of $[NiCl_4]^{2-}$, Cl^- ion is a weak field ligand. Therefore, it does not lead to the pairing of unpaired 3d electrons. Therefore, it undergoes sp^3 hybridization.


Since there are 2 unpaired electrons in this case, it is paramagnetic in nature.

Question 9.6:

 $[NiCl_4]^{2-}$ is paramagnetic while $[Ni(CO)_4]$ is diamagnetic though both are tetrahedral. Why?

Answer

Though both $[NiCl_4]^{2-}$ and $[Ni(CO)_4]$ are tetrahedral, their magnetic characters are different. This is due to a difference in the nature of ligands. Cl^- is a weak field ligand and it does not cause the pairing of unpaired 3d electrons. Hence, $[NiCl_4]^{2-}$ is paramagnetic.

In Ni(CO)₄, Ni is in the zero oxidation state i.e., it has a configuration of $3d^8 4s^2$.

But CO is a strong field ligand. Therefore, it causes the pairing of unpaired 3d electrons. Also, it causes the 4s electrons to shift to the 3d orbital, thereby giving rise to sp^3 hybridization. Since no unpaired electrons are present in this case, $[Ni(CO)_4]$ is diamagnetic.

Ouestion 9.7:

 $[Fe(H_2O)_6]^{3+}$ is strongly paramagnetic whereas $[Fe(CN)_6]^{3-}$ is weakly paramagnetic. Explain.

Answer

In both $\left[\mathrm{Fe(H_2O)_6}\right]^{3+}$ and $\left[\mathrm{Fe(CN)_6}\right]^{3-}$, Fe exists in the +3 oxidation state i.e., in d^5 configuration.

Since CN^- is a strong field ligand, it causes the pairing of unpaired electrons. Therefore, there is only one unpaired electron left in the d-orbital.

11 11 1

Therefore,

$$\mu = \sqrt{n(n+2)}$$

$$= \sqrt{1(1+2)}$$

$$= \sqrt{3}$$

$$= 1.732 \text{ BM}$$

On the other hand, H_2O is a weak field ligand. Therefore, it cannot cause the pairing of electrons. This means that the number of unpaired electrons is 5.

Therefore,

$$\mu = \sqrt{n(n+2)}$$

$$= \sqrt{5(5+2)}$$

$$= \sqrt{35}$$

$$\approx 6 \text{ BM}$$

Thus, it is evident that $\left[Fe(H_2O)_6 \right]^{3+}$ is strongly paramagnetic, while $\left[Fe(CN)_6 \right]^{3-}$ is weakly paramagnetic.

Question 9.8:

Explain $[Co(NH_3)_6]^{3+}$ is an inner orbital complex whereas $[Ni(NH_3)_6]^{2+}$ is an outer orbital complex.

Answer

$\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]^{3+}$	$\left[Ni(NH_3)_6\right]^{2+}$
Oxidation state of cobalt = +3	Oxidation state of Ni = +2
Electronic configuration of cobalt = d^6	Electronic configuration of nickel = d^8

$3d$ $4s$ $4p$ $4d$ NH ₃ being a strong field ligand causes the pairing. Therefore, Ni can undergo d^2sp^3 hybridization. $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	If NH ₃ causes the pairing, then only one $3d$ orbital is empty. Thus, it cannot undergo d^2sp^3 hybridization. Therefore, it undergoes sp^3d^2 hybridization. It is a $4s$ $4p$ $4d$ $4d$ $4d$ $4d$ $4d$ $4d$ $4d$ $4d$
--	--

Question 9.9:

Predict the number of unpaired electrons in the square planar $[Pt(CN)_4]^{2-}$ ion.

Answer

$$\left[Pt(CN)_{4} \right]^{2-}$$

In this complex, Pt is in the +2 state. It forms a square planar structure. This means that it undergoes dsp^2 hybridization. Now, the electronic configuration of Pd(+2) is $5d^8$.

CN⁻ being a strong field ligand causes the pairing of unpaired electrons. Hence, there are no unpaired electrons in $\left[Pt(CN)_4 \right]^{2^-}$.

Question 9.10:

The hexaquo manganese(II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using Crystal Field Theory. Answer

$$\left[Mn(H_2O)_6\right]^{2+}$$
 $\left[Mn(CN)_6\right]^{4-}$

Mn is in the +2 oxidation state.

Mn is in the +2 oxidation state.

The electronic configuration is d^{5} .

The electronic configuration is d⁵.

The crystal field is octahedral. Cyanide is

The crystal field is octahedral. Cyanide is

The crystal field is octahedral. Water is a a strong field ligand. Therefore, the weak field ligand. Therefore, the arrangement of the electrons in arrangement of the electrons in

$$\left[Mn \left(H_2O \right)_6 \right]^{2+} \\ \text{is t2g3eg2.} \\$$

T2g5eg0.

Hence, hexaaquo manganese (II) ion has five unpaired electrons, while hexacyano ion has only one unpaired electron.

Question 9.11:

Calculate the overall complex dissociation equilibrium constant for the Cu(NH₃)₄²⁺ ion, given that β_4 for this complex is 2.1×10^{13} . Answer

$$\beta_4 = 2.1 \times 10^{13}$$

The overall complex dissociation equilibrium constant is the reciprocal of the overall stability constant, β_4 .

$$\frac{1}{\beta_4} = \frac{1}{2.1 \times 10^{13}}$$

$$\therefore = 4.7 \times 10^{-14}$$