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Binomial Theorem

Short Answer Type Questions

Q. 1 Find the term independent of x, where x ≠ 0,

in the expansion of
3

2

1

3

2 15
x

x

−






 .

K Thinking Process

The general term in the expansion of ( )x − a n i.e., T C ar
n

r
n r r

+
−= −1 ( ) ( )x . For the term

independent of x, put n r− = 0, then we get the value of r.

Sol. Given expansion is
3

2

1

3

2
15

x

x
−









 .

Let Tr + 1 term is the general term.

Then, T C
x

x
r r

r r

+

−

=








 −



1

15
2

15
3

2

1

3

= − − −15 15 30 2 153 2C xr
r r r ( )− ⋅ ⋅− −1 3r r rx

= − − − −15 15 2 15 30 31 3 2C xr
r r r r( )

For independent of x,

30 3 0− =r

3 30r = ⇒ r = 10

Q T Tr + += =1 10 1 11th term is independent of x.

∴ T C10 1
15

10
10 15 20 10 151 3 2+

− −= −( )

= − −15
10

5 53 2C

= −15
10

56C ( )

= 





15
10

5
1

6
C
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Q. 2 If the term free from x in the expansion of x

x

−





k
2

10

is 405, then find

the value of k.

Sol. Given expansion is x
k

x
−



2

10

.

Let Tr +1 is the general term.

Then, T C x
k

x
r r

r
r

+
−= −



1

10 10

2
( )

= − ⋅
− −10

1

2
10

2C x k xr

r
r r( ) ( )

( )

= − ⋅
− −10

5
2 2C x k xr

r

r r( )

= −
− −

10
5

2
2

C x kr

r
r

r( )

= −
−

10

10 5

2C x kr

r

r( )

For free from x,
10 5

2
0

− =r

⇒ 10 5 0− =r ⇒ r = 2

Since, T T2 1 3+ = is  free from x.

∴ T C k2 1
10

2
2 405+ = − =( )

⇒ 10 9 8

2 8
4052× ×

×
− =!

! !
( )k

⇒ 45 4052k = ⇒ k2 405

45
9= =

∴ k = ± 3

Q. 3 Find the coefficient of x in the expansion of ( ) ( )1 3 7 12 16− + −x x x .

Sol. Given, expansion = − + −( ) ( )1 3 7 12 16x x x .

= ( )1 3 7 2− +x x (16
0

16 16
1

15 1 16
2

14 21 1 1C C x C x− + +... + 16
16

16C x )

= ( ) ( ...)1 3 7 1 16 1202 2− + − + +x x x x

∴ Coefficient of x = − − = −3 16 19

Q. 4 Find the term independent of x in the expansion of 3
2
2

15

x

x

−





.

K Thinking Process

The general term in the expansion of ( )x − a n i.e., T C ar
n

r
n r r

+
−= −1 ( ) ( )x .

Sol. Given expansion is 3
2

2

15

x
x

−





.

Let Tr + 1 is the general term.

∴ T C x
x

r r
r

r

+
−= −



1

15 15

2
3

2
( ) = −− −15 15 23 2C x xr

r r r( ) ( )

= −− −15 15 15 33 2C xr
r r r( )

For independent of x, 15 3 0− =r ⇒ r = 5
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Since, T T5 1 6+ = is independent of x.

∴ T C5 1
15

5
15 5 53 2+

−= −( )

= − × × × × ×
× × × × ×

⋅ ⋅15 14 13 12 11 10

5 4 3 2 1 10
3 210 5!

!

= − ⋅ ⋅3003 3 210 5

Q. 5 Find the middle term (terms) in the expansion of

(i)
x

xa

a
−





10

(ii) 3
6

3 9

x

x

−










K Thinking Process

In the expansion of ( )a b n+ , if n is even, then this expansion has only one middle term

i.e.,
n

2
1+





th term is the middle term and if n is odd, then this expansion has two middle

terms i.e.,
n +





1

2
th and

n + +





1

2
1 th are two middle terms.

Sol. (i) Given expansion is
x

a

a

x
−





10

.

Here, the power of Binomial i.e., n = 10 is even.

Since, it has one middle term
10

2
1+




th term i.e., 6th term.

∴ T T C
x

a

a

x
6 5 1

10
5

10 5 5

= = 





−



+

−

= − 











10
5

5 5

C
x

a

a

x

= − × × × × ×
× × × × ×













−
10 9 8 7 6 5

5 5 4 3 2 1

5 5
!

!

x

a

x

a

= − × ×9 4 7 = −252

(ii) Given expansion is 3
6

3
9

x
x−









 .

Here, n = 9 [odd]

Since, the Binomial expansion has two middle terms i.e.,
9 1

2

+




th and

9 1

2
1

+ +




th

i.e., 5th term and 6th term.

∴ T T C x
x

5 4 1
9

4
9 4

3
4

3
6

= = −








+

−
( ) ( )

= × × × ×
× × × ×

−9 8 7 6 5

4 3 2 1 5
3 65 5 12 4!

!
x x

= × × ×7 6 3 3

2

1

4

17x = 189

8

17x
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∴ T T C x
x

6 5 1
9

5
9 5

3
5

3
6

= = −








+

−( )

= − × × × ×
× × × ×

9 8 7 6 5

5 4 3 2 1

!

!
⋅ ⋅ ⋅ ⋅ −3 64 4 15 5x x

= − ×
×

21 6

3 2 5

19x = −21

16

19x

Q. 6 Find the coefficient of x
15 in the expansion of ( )x x− 2 10 .

Sol. Given expansion is ( )x x− 2 10.

Let the term Tr + 1 is the general term.

∴ T C x xr r
r r

+
−= −1

10 10 2( )

= − ⋅ ⋅ ⋅−( )1 10 10 2r
r

r rC x x

= − +( )1
10 10r

r
rC x

For the coefficient of x15,

10 15+ =r ⇒ r = 5

T C x5 1
5 10

5
151+ = −( )

∴ Coefficient of x15 1
10 9 8 7 6 5

5 4 3 2 1 5
= − × × × × ×

× × × × ×
!

!

= − × × ×3 2 7 6 = −252

Q. 7 Find the coefficient of
1
17

x

in the expansion of x

x

4
3

15
1

−





.

K Thinking Process

In this type of questions, first of all find the general terms, in the expansion ( )x − y n using

the formula T C yr
n

r
n r r

+
−= −1 x ( ) and then put n r− equal to the required power of x of

which coefficient is to be find out.

Sol. Given expansion is x
x

4

3

15
1−





.

Let the term Tr + 1 contains the coefficient of
1
17x

i.e., x −17.

∴ T C x
x

r r
r

r

+
−= −



1

15 4 15

3

1
( )

= −− −15 60 4 31C x xr
r r r( )

= −−15 60 7 1C xr
r r( )

For the coefficient x −17,

60 7 17− = −r

⇒ 7 77r = ⇒ r = 11

⇒ T C x11 1
15

11
60 77 111+

−= −( )

∴ Coefficient of x −17 = − × × × ×
× × × ×

15 14 13 12 11

11 4 3 2 1

!

!

= − × ×15 7 13 = −1365
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Q. 8 Find the sixth term of the expansion ( ) ,/ /y n1 2 1 3+ x if the Binomial

coefficient of the third term from the end is 45.

Sol. Given expansion is ( )/ /y x n1 2 1 3+ .

The sixth term of this expansion is

T T C y xn n
6 5 1 5

1 2 5 1 3 5= =+
−( ) ( )/ / ...(i)

Now, given that the Binomial coefficient of the third term from the end is 45.

We know that, Binomial coefficient of third term from the end = Binomial coefficient of third
term from the begining = nC2

Q
nC2 45=

⇒ n n n

n

( ) ( )!

!( )!

− −
−

=1 2

2 2
45

⇒ n n( )− =1 90

⇒ n n2 90 0− − =
⇒ n n n2 10 9 90 0− + − =
⇒ n n n( ) ( )− + − =10 9 10 0

⇒ ( ) ( )n n− + =10 9 0

⇒ ( )n + =9 0or ( )n − 10 = 0

∴ n = 10 [Q n ≠ − 9]

From Eq. (i),

T C y x6
10

5
5 2 5 3= / / = ⋅252 5 2 5 3y x/ /

Q. 9 Find the value of r , if the coefficients of ( )2 4r + th and ( )r − 2 th terms in

the expansion of ( )1 18+ x are equal.

K Thinking Process

Coefficient of ( )r +1 th term in the expansion of ( )1 + x
n is n

rC . Use this formula to solve

the above problem.

Sol. Given expansion is ( )1 18+ x .

Now, ( )2 4r + th term i.e., T r2 3 1+ + .

∴ T C xr r
r r

2 3 1
18

2 3
18 2 3 2 31+ + +

− − += ( ) ( )

= +
+18

2 3
2 3C xr

r

Now, ( )r −2 th term i.e., Tr − +3 1.

∴ T C xr r
r

− + −
−=3 1

18
3

3

As, 18
2 3

18
3C Cr r+ −= [Q n

x
n

yC C x y n= ⇒ + = ]

⇒ 2 3 3 18r r+ + − =
⇒ 3 18r =
∴ r = 6

Q. 10 If the coefficient of second, third and fourth terms in the expansion of
( )1 2+ x

n are in AP, then show that 2 9 7 02n n− + = .

K Thinking Process

In the expansion of ( )x + y n, the coefficient of ( )r +1 th term is n
rC . Use this formula to get

the required coefficient. If a, b and c are in AP, then 2b a c= + .
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Sol. Given expansion is ( ) .1 2+ x n

Now, coefficient of 2nd term = 2
1

nC

Coefficient of 3rd term = 2
2

nC

Coefficient of 4th term = 2
3

nC

Given that, 2
1

2
2

2
3

n n nC C C, and are in AP.

Then, 2 2
2

2
1

2
3⋅ = +n n nC C C

⇒ 2
2 2 1 2 2

2 1 2 2

n n n

n

( ) ( )!

( )!

− −
× × −









 = −

−
2 2 1

2 1

n n

n

( )!

( )!
+ − − −

−
2 2 1 2 2 2 3

3 2 3

n n n n

n

( ) ( ) ( )!

! ( )!

⇒ n n n
n n n

( )
( ) ( )

2 1
2 1 2 2

6
− = + − −

⇒ n n n n n n( ) ( )12 6 6 4 4 2 22− = + − − +
⇒ 12 6 4 6 82n n n− = − +( )

⇒ 6 2 1 2 2 3 42( ) ( )n n n− = − +
⇒ 3 2 1 2 3 42( )n n n− = − +
⇒ 2 3 4 6 3 02n n n− + − + =
⇒ 2 9 7 02n n− + =

Q. 11 Find the coefficient of x
4 in the expansion of ( )1 2 3 11+ + +x x x .

Sol. Given, expansion = + + +( )1 2 3 11x x x = + + +[( ) ( )]1 12 11x x x

= + +[( ) ( )]1 1 2 11x x = + ⋅ +( ) ( )1 111 2 11x x

Now, above expansion becomes

= + + + + +( )11
0

11
1

11
2

2 11
3

3 11
4

4C C x C x C x C x K ( )11
0

11
1

2 11
2

4C C x C x+ + + K

= + + + + +( )1 11 55 165 3302 3 4x x x x K ( )1 11 552 4+ + +x x K

∴ Coefficient of x 4 55 605 330= + + = 990

Long Answer Type Questions

Q. 12 If p is a real number and the middle term in the expansion of
p

2
2

8

+





is

1120, then find the value of p.

Sol. Given expansion is
p

2
2

8

+





.

Here, n = 8 [even]

Since, this Binomial expansion has only one middle term i.e.,
8

2
1 5+





=th th term

T T C
p

5 4 1
8

4

8 4
4

2
2= = 





⋅+

−

⇒ 1120 2 28
4

4 4 4= ⋅ −C p

⇒ 1120
8 7 6 5 4

4 4 3 2 1

4= × × × ×
× × × ×

!

!
p
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⇒ 1120 7 2 5 4= × × × p

⇒ p4 1120

70
16= = ⇒ p4 42=

⇒ p2 4= ⇒ p = ± 2

Q. 13 Show that the middle term in the expansion of x

x

−





1
2n

is

1 3 5 2 1
2

× × × × −
× −

K ( )

!
( )

n

n

n .

Sol. Given, expansion is x
x

n

−





1
2

. This Binomial expansion has even power. So, this has one
middle term.

i.e.,
2

2
1

n +




th term = +( )n 1 th term

T C x
x

n
n

n
n n

n

+
−= −



1

2 2 1
( ) = − −2 1n

n
n n nC x x( )

= −2 1n
n

nC ( ) = −( )
( )!

! !
1

2n n

n n
= ⋅ ⋅ ⋅ ⋅ − −1 2 3 4 5 2 1 2

1
... ( ) ( )

! !
( )

n n

n n

n

= ⋅ ⋅ − ⋅ ⋅ ⋅
⋅ ⋅

−1 3 5 2 1 2 4 6 2

12 3
1

K ( ) ...( )

... ( !)
( )

n n

n n

n

= ⋅ ⋅ − ⋅ ⋅ −
⋅ ⋅

1 3 5 2 1 2 1 2 3 1

1 2 3

...( ) . ( ... )( )

( ... ) ( !)

n n

n n

n n

= ⋅ ⋅ − −[ ... ( )]

!
( )

1 3 5 2 1
2

n

n

n Hence proved.

Q. 14 Find n in the Binomial 2
1

3

3
3

+





n

, if the ratio of 7th term from the

beginning to the 7th term from the end is
1

6
.

Sol. Here, the Binomial expansion is 2
1

3

3

3
+





n

.

Now, 7th term from beginning T T Cn n
7 6 1 6

3 6

3

6

2
1

3
= = 



+

−( ) ...(i)

and 7th term from end i.e., T7 from the beginning of
1

3
2

3

3+





n

i.e., T Cn
n

7 6 3

6
3 61

3
2= 





−

( ) ...(ii)

Given that,

n n

n
n

C

C

6
3 6

3

6

6 3

6
3 6

2
1

3

1

3
2

1

6

( )

( )

−

−













= ⇒ 2 3

3 2

1

6

6

3 6 3

6

3 6 3

n

n

−
−

− −







⋅

⋅

=
/

/

⇒ 2 2 3 3 6

6

3

6

3

6

3

6

3 1

n n− − − −
−⋅













⋅












=
( )
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⇒ 2 3 6

6

3

6

3

6

3

6

3 1

n n− − − − −
























=. ⇒ ( )2 3 63
4

1⋅ =
− −

n

⇒ n

3
4 1− = − ⇒ n

3
3=

∴ n = 9

Q. 15 In the expansion of ( )x + a n , if the sum of odd terms is denoted by O

and the sum of even term by E. Then, prove that

(i) O E a n2 2 2 2− = −( )x .

(ii) 4 2 2OE a an n= + − −( ) ( )x x .

Sol. (i) Given expansion is ( )x a n+ .

∴ ( )x a C x an n n+ = 0
0 + + +− − −n n n n n nC x a C x a C x a1

1 1
2

2 2
3

3 3 + +K
n

n
nC a

Now, sum of odd terms

i.e., O C x C x an n n n= + +−
0 2

2 2
K

and sum of even terms

i.e., E C x a C x an n n n= + +− −
1

1
3

3 3
K

Q ( )x a O En+ = + ...(i)

Similarly, ( )x a O En− = − ...(ii)

∴ ( ) ( ) ( ) ( )O E O E x a x an n+ − = + − [on multiplying Eqs. (i) and (ii)]

⇒ O E x a n2 2 2 2− = −( )

(ii) 4 2 2OE O E O E= + − −( ) ( ) = + − −[( ) ] [( ) ]x a x an n2 2 [from Eqs. (i) and (ii)]

= + − −( ) ( )x a x an n2 2 Hence proved.

Q. 16 If x
p occurs in the expansion of x

x

2
2

1
+





n

, then prove that its

coefficient is
2

4

3

2

3

n

n p n p

!

( )!

!

( )!

!

− + .

Sol. Given expansion is x
x

n
2

2
1+





.

Let x p occur in the expansion of x
x

n
2

2
1+





.

T C x
x

r
n

r
n r

r

+
−= 



1

2 2 2 1
( )

= − −2 4 2n
r

n r rC x x = −2 4 3n
r

n rC x

Let 4 3n r p− =
⇒ 3 4r n p= − ⇒ r

n p= −4

3

∴ Coefficient of x Cp n
r= 2 =

−
( )!

! ( )!

2

2

n

r n r
=

−





− −





( )!

! !

2

4

3
2

4

3

n

n p
n

n p

=
−





− +





( )!

! !

2

4

3

6 4

3

n

n p n n p
=

−





+





( )!

! !

2

4

3

2

3

n

n p n p
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Q. 17 Find the term independent of x in the expansion of

( )1 2
3

2

1

3
3 2

9

+ + −



x x x

x

.

Sol. Given expansion is ( )1 2
3

2

1

3

3 2
9

+ + −





x x x
x

.

Now, consider
3

2

1

3

2
9

x
x

−





T C x
x

r r

r r

+

−
= 





−



1

9 2
9

3

2

1

3

= 





− 1





−
− −9

9
18 23

2 3
C x xr

r
r

r
r = 





−





−
−9

9
18 33

2

1

3
C xr

r r
r

Hence, the general term in the expansion of ( )1 2
3

2

1

3

3 2
9

+ + −





x x x
x

= 





−





−
−9

9
18 33

2

1

3
C xr

r r
r + 





−





−
−9

9
19 33

2

1

3
C xr

r r
r + ⋅ 





−





−
−2

3

2

1

3

9
9

21 3C xr

r r
r

For term independent of x, putting 18 3 0− =r , 19 3 0− =r and 21 3 0− =r , we get

r = 6, r = 19 3/ , r = 7

Since, the possible value of r are 6 and 7.

Hence, second term is not independent of x.

∴ The term independent of x is 9
6

9 6 6
3

2

1

3
C

−
−





+ 2
3

2

1

3

9
7

9 7 7

⋅ −





−
C

= × × ×
× ×

⋅ ⋅9 8 7 6

6 3 2

3

2

1

3

3

3 6

!

!
− ⋅ × ×

× ×
⋅ ⋅2

9 8 7

7 2 1

3

2

1

3

2

2 7

!

!

= ⋅ − ⋅84

8

1

3

36

4

2

33 5
= −7

18

2

27
= − =21 4

54

17

54

Objective Type Questions

Q. 18 The total number of terms in the expansion of ( ) ( )x x+ + −a a100 100

after simplification is
(a) 50 (b) 202 (c) 51 (d) None of these

Sol. (c) Here, ( ) ( )x a x a+ + −100 100

Total number of terms is 102 in the expansion of ( ) ( )x a x a+ + −100 100

50 terms of ( )x a+ 100 cancel out 50 terms of ( )x a− 100. 51 terms of ( )x a+ 100 get added

to the 51 terms of ( )x a− 100.

Alternate Method

( ) ( )x a x a+ + −100 100 = + + +100
0

100 100
1

99 100
100

100C x C x a C aK

+ − + +100
0

100 100
1

99 100
100

100C x C x a C aK

= + + +2 100
0

100 100
2

98 2 100
100

100

51

[ ]C x C x a C aK
1 2444

terms
444444 3444444444
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Q. 19 If the integers r > 1, n > 2 and coefficients of ( )3r th and ( )r + 2 nd terms in

the Binomial expansion of ( )1 2+ x
n are equal, then

(a) n r= 2 (b) n r= 3

(c) n r= +2 1 (d) None of these

K Thinking Process

In the expansion of ( )x + y n, the coefficient of ( )r +1 th term is n
rC .

Sol. (a) Given that, r > 1, n > 2 and the coefficients of ( )3r th and ( )r + 2 th term are equal in the
expansion of ( )1 2+ x n.

Then, T T C xr r
n

r
r

3 3 1 1
2

3 1
3 1= =− + −

−

and T T C xr r
n

r
r

+ + + +
+= =2 1 1

2
1

1

Given, 2
3 1

2
1

n
r

n
rC C− += [ ]Q

n
x

n
yC C x y n= ⇒ + =

⇒ 3 1 1 2r r n− + + =

⇒ 4 2r n= ⇒ n
r= 4

2

∴ n r= 2

Q. 20 The two successive terms in the expansion of ( )1 24+ x whose

coefficients are in the ratio 1 : 4 are
(a) 3rd and 4th (b) 4th and 5th

(c) 5th and 6th (d) 6th and 7th

Sol. (c) Let two successive terms in the expansion of ( )1 24+ x are ( )r + 1 th and ( )r + 2 th terms.

∴ T C xr r
r

+ =1
24

and T C xr r
r

+ +
+=2

24
1

1

Given that,
24

24
1

1

4

C

C

r

r +

=

⇒

( )!

!( )!
( )!

( )!( )!

24

24
24

1 24 1

1

4

r r

r r

−

+ − −

=

⇒ ( ) ! ( )!

!( ) ( )!

r r r

r r r

+ −
− −

=1 23

24 23

1

4

⇒ r

r

+
−

=1

24

1

4
⇒ 4 4 24r r+ = −

⇒ 5 20r = ⇒ r = 4

∴ T T4 1 5+ = and T T4 2 6+ =
Hence, 5th and 6th terms.
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Q. 21 The coefficient of x
n in the expansion of ( )1 2+ x

n and ( )1 2 1+ −
x

n are in

the ratio
(a) 1 : 2 (b) 1 : 3

(c) 3 : 1 (d) 2 : 1

Sol. (d) Q Coefficient of x n in the expansion of ( )1 2+ x n = 2n
nC

and coefficient of x n in the expansion of ( )1 2 1+ −x n = −2 1n
nC

Q

2

2 1

2

2 1

1

n
n

n
n

C

C

n

n n
n

n n

−
=

−
−

( )!

! !
( )!

!( )!

= −
−

( ) ! ! ( )!

! ! ( )!

2 1

2 1

n n n

n n n

= − −
− −

2 2 1 1

1 2 1

n n n n

n n n n

( )! !( )!

! ( )! ( )!

= = =2 2

1
2 1

n

n
:

Q. 22 If the coefficients of 2 3nd rd, and the 4th terms in the expansion of

( )1 + x
n are in AP, then the value of n is

(a) 2 (b) 7

(c) 11 (d) 14

Sol. (b) The expansion of ( )1 + x n is n n nC C x C x0 1 2
2+ + + n n

n
nC x C x3

3 + +...

∴ Coefficient of 2nd term = nC1,

Coefficient of 3rd term = nC2,

and coefficient of 4th term = nC3.

Given that, n n nC C C1 2 3, and are in AP.

∴ 2 n n nC C C2 1 3= +

⇒ 2
2 2 1 3 3

( )!

( )! !

( )!

( )!

( )!

!( )!

n

n

n

n

n

n−








 =

−
+

−

⇒ 2 1 2

2 2

⋅ − −
−

n n n

n

( ) ( )!

( )! !
= −

−
+ − − −

⋅ ⋅ −
n n

n

n n n n

n

( )!

( )!

( ) ( ) ( )!

( )!

1

1

1 2 3

3 2 1 3

⇒ n n n
n n n

( )
( ) ( )− = + − −

1
1 2

6

⇒ 6 6 6 3 22n n n− = + − +

⇒ n n2 9 14 0− + =

⇒ n n n2 7 2 14 0− − + =

⇒ n n n( ) ( )− − − =7 2 7 0

⇒ ( ) ( )n n− − =7 2 0

∴ n = 2 or n = 7

Since, n = 2 is not possible.

∴ n = 7
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Q. 23 If A and B are coefficient of x
n in the expansions of ( )1 2+ x

n and

( )1 2 1+ −
x

n respectively, then
A

B
equals to

(a) 1 (b) 2

(c)
1

2
(d)

1

n

Sol. (b) Since, the coefficient of x n in the expansion of ( )1 2+ x n is 2n
nC .

∴ A Cn
n= 2

Now, the coefficient of x n in the expansion of ( )1 2 1+ −x n is 2 1n
nC− .

∴ B Cn
n= −2 1

Now,
A

B

C

C

n
n

n
n

= = =
−

2

2 1

2

1
2

Same as solution No. 21.

Q. 24 If the middle term of
1

10

x

x x+



sin is equal to 7

7

8
, then the value of x is

(a) 2
6

nπ π+ (b) nπ π+
6

(c) n
nπ π+ −( )1

6
(d) n

nπ π+ −( )1
3

Sol. (c) Given expansion is
1 +



x

x xsin .
10

Since, n = 10 is even, so this expansion has only one middle term i.e., 6th term.

∴ T T C
x

x x6 5 1
10

5

10 5
51= = 



+

−
( sin )

⇒ 63

8

10
5

5 5 5= −C x x xsin

⇒ 63

8

10 9 8 7 6 5

5 4 3 2 1 5

5= ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

!

!
sin x

⇒ 63

8
2 9 2 7 5= ⋅ ⋅ ⋅ ⋅sin x

⇒ sin5 1

32
x =

⇒ sin5
5

1

2
x = 





⇒ sinx = 1

2

∴ x n n= + −π π( ) /1 6
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Fillers

Q. 25 The largest coefficient in the expansion of ( )1 30+ x is ......... .

K Thinking Process

In the expansion of ( )1 + x
n, the largest coefficient is n

nC /2 (when n is even).

Sol. Largest coefficient in the expansion of ( )1 30+ x = 30
30 2C / = 30

15C

Q. 26 The number of terms in the expansion of ( )x + +y z n ......... .

Sol. Given expansion is ( ) [ ( )]x y z x y zn n+ + = + + .

[ ( )] ( )x y z C x C x y zn n n n n+ + = + +−
0 1

1

+ + + + +−n n n
n

nC x y z C y z2
2 2( ) ( )K

∴ Number of terms = + + + + + +1 2 3 1... ( )n n

= ( ) ( )n n+ +1 2

2

Q. 27 In the expansion of x

x

2
2

16
1

−





, the value of constant term is ......... .

Sol. Let constant be Tr + 1.

∴ T C x
x

r r
r

r

+
−= −



1

16 2 16

2

1
( )

= −− −16 32 2 21C x xr
r r r( )

= −−16 32 4 1C xr
r r( )

For constant term, 32 4 0− =r ⇒ r = 8

∴ T C8 1
16

8+ =

Q. 28 If the seventh term from the beginning and the end in the expansion of

2
1

3

3
3

+





n

are equal, then n equals to ......... .

Sol. Given expansions is 2
1

3

3

3
+





n

.

∴ T T Cn n
7 6 1 6

3 6

3

6

2
1

3
= = 



+

−( ) ...(i)

Since, T7 from end is same as the T7 from beginning of
1

3
2

3

3+





n

.

Then, T Cn
n

7 6 3

6
3 61

3
2= 





−

( ) ...(ii)

Given that, n

n

n

n

C C6

6

3 6 3
6

6

3 6 32 3 3 2( ) ( ) ( )/

( )

/

−
− − −

=

⇒ ( )
/

2
1

3

12

3
1 3

12n n− −

= 





which is true, when
n − =12

3
0.

⇒ n − =12 0 ⇒ n = 12

154 NCERT Exemplar (Class XI) Solutions

www.dr
ea

mtop
pe

r.in



Q. 29 The coefficient of a b−6 4 in the expansion of
1 2

3

10

a

b
−





is ......... .

K Thinking Process

In the expansion of ( )x − a n, T C ar
n

r
n r r

+
−= −1 x ( )

Sol. Given expansion is
1 2

3

10

a

b−





.

Let Tr + 1 has the coefficient of a b−6 4.

∴ T C
a

b
r r

r r

+

−
= 





−



1

10
10

1 2

3

For coefficient of a b−6 4, 10 6− =r ⇒ r = 4

Coefficient of a b C− = −6 4 10
4

42 3( / )

∴ = ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅10 9 8 7 6

6 4 3 2 1

2

3

4

4

!

!
= 1120

27

Q. 30 Middle term in the expansion of ( )a ba3 28+ is ......... .

Sol. Given expansion is ( )a ba3 28+ .

Q n = 28 [even]

∴ Middle term = +





=28

2
1 15th thterm term

∴ T T15 14 1= +

= −28
14

3 28 14 14C a ba( ) ( )

= 28
14

42 14 14C a b a

= 28
14

56 14C a b

Q. 31 The ratio of the coefficients of x
p and x

q in the expansion of ( )1+ +
x

p q

is ......... .

Sol. Given expansion is ( )1 + +x p q .

∴ Coefficient of x Cp p q
P= +

and coefficient of x Cq p q
q= +

∴
p q

p

p q
q

p q
p

p q
p

C

C

C

C

+

+

+

+= = 1 1:

Q. 32 The position of the term independent of x in the expansion of

x

x3

3

2 2

10

+






 is ......... .

Sol. Given expansion is
x

x3

3

2 2

10

+





 .

Let the constant term be Tr + 1.
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Then, T C
x

x
r r

r r

+

−

= 





 



1

10

10

23

3

2

= ⋅ ⋅ ⋅ ⋅ ⋅
− − +

− −10
10

2

10

2 23 3 2C x xr

r r

r r r

=
− − +

−10

10 5

2

10 3

23 2C xr

r r

r

For constant term, 10 5 0− =r ⇒ r = 2

Hence, third term is independent of x.

Q. 33 If 2515 is divided by 13, then the remainder is ......... .

Sol. Let 25 26 115 15= −( )

= − + −15
0

15 15
1

14 15
1526 26C C CK

= − + − − +15
0

15 15
1

1426 26 1 13 13C C K

= − + − +15
0

15 15
1

1426 26 13 12C C K

It is clear that, when 2515 is divided by 13, then remainder will be 12.

True/False

Q. 34 The sum of the series Σ
r

rC
= 0

10
20 is 2

2
19

20
10+

C
.

Sol. False

Given series =
=
Σ

r
rC

0

10
20 = + + + … +20

0
20

1
20

2
20

10C C C C

= + + … + + +20
0

20
1

20
10

20
11C C C C … − + … +20

20
20

11
20

20C C C( )

= − + … +220 20
11

20
20( )C C

Hence, the given statement is false.

Q. 35 The expression 7 99 7+ is divisible by 64.

Sol. True

Given expression = +7 99 7 = + − −( ) ( )1 8 1 87 9

= + + + +( )7
0

7
1

7
2

2 7
7

78 8 8C C C CK − − + −( )9
0

9
1

9
2

2 9
9

98 8 8C C C CK

= + × + × +( )1 7 8 21 82
K − − × + × + −( )1 9 8 36 8 82 9

K

= × + ×( )7 8 9 8 + × − × +( )21 8 36 82 2
K

= × + − +2 64 21 36 64( ) K

which is divisible by 64.

Hence, the statement is true.

Q. 36 The number of terms in the expansion of [( ) ]2 3 4 7
x + y is 8.

Sol. False

Given expansion is [( ) ]2 3 4 7x y+ = +( )2 3 28x y .

Since, this expansion has 29 terms.

So, the given statement is false.
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Q. 37 The sum of coefficients of the two middle terms in the expansion of
( )1 2 1+ −

x
n is equal to 2 1n

nC− .

Sol. False

Here, the Binomial expansion is ( )1 2 1+ −x n .

Since, this expansion has two middle term i.e.,
2 1 1

2

n − +




th term and

2 1 1

2
1

n − + +




th

term i.e., nth term and ( )n + 1 th term.

∴ Coefficient of nth term = −
−

2 1
1

n
nC

Coefficient of ( )n + 1 th term = −2 1n
nC

Sum of coefficients = +−
−

−2 1
1

2 1n
n

n
nC C

= 2 1 1 2n
n

n
nC C− + = [Q n

r
n

r
n

rC C C+ =−
+

1
1 ]

Q. 38 The last two digits of the numbers 3400 are 01.

Sol. True

Given that, 3 9 10 1400 200 200= = −( )

⇒ ( )10 1 10 10200 200
0

200 200
1

199− = −C C + − +K
200

199
1 200

200
20010 1C C

⇒ ( )10 1 10 200 10200 200 199− = − × + − × +K 10 200 1

So, it is clear that the last two digits are 01.

Q. 39 If the expansion of x

x

−





1
2

2n

contains a term independent of x, then n

is a multiple of 2.

Sol. False

Given Binomial expansion is x
x

n

−





1
2

2

.

Let Tr + 1 term is independent of x.

Then, T C x
x

r
n

r
n r

r

+
−= −



1

2 2

2

1
( )

= −− −2 2 21n
r

n r r rC x x( ) = −−2 2 3 1n
r

n r rC x ( )

For independent of x,

2 3 0n r− =
∴ r

n= 2

3
,

which is not a integer.

So, the given expansion is not possible.

Q. 40 The number of terms in the expansion of ( )a b n+ , where n N∈ , is one

less than the power n.

Sol. False
We know that, the number of terms in the expansion of ( )a b n+ , where n N∈ , is one more
than the power n.
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