Short Answer Type Questions

 $\frac{1}{3x}$

Q. 1 Find the term independent of
$$x$$
, where $x \neq 0$, in the expansion of $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^{15}$.

• Thinking Process

The general term in the expansion of $(x-a)^n$ i.e., $T_{r+1} = {}^nC_r(x)^{n-r}(-a)^r$. For the term independent of x, put n - r = 0, then we get the value of r.

Sol. Given expansion is
$$\left(\frac{3x^2}{2}\right)$$

Let T_{r+1} term is the general term

Then,

÷ *.*..

$$T_{r+1} = {}^{15}C_r \left(\frac{3x^2}{2}\right)^{15-r} \left(-\frac{1}{3x}\right)^r$$

= ${}^{15}C_r \; 3^{15-r} \; x^{30-2r} \; 2^{r-15} \; (-1)^r \cdot 3^{-r} \cdot x^{-r}$
= ${}^{15}C_r \; (-1)^r \; 3^{15-2r} 2^{r-15} x^{30-3r}$

For independent of x,

$$\begin{aligned} 30 - 3r &= 0\\ 3r &= 30 \implies r = 10\\ T_{r+1} &= T_{10+1} = 11\text{th term is independent of } x.\\ T_{10+1} &= {}^{15}C_{10}(-1)^{10} \; 3^{15-20} \; 2^{10-15}\\ &= {}^{15}C_{10} \; 3^{-5} \; 2^{-5}\\ &= {}^{15}C_{10}(6)^{-5}\\ &= {}^{15}C_{10} \left(\frac{1}{6}\right)^5 \end{aligned}$$

Q. 2 If the term free from x in the expansion of $\left(\sqrt{x} - \frac{k}{r^2}\right)^{10}$ is 405, then find the value of k.

Sol. Given expansion is $\left(\sqrt{x} - \frac{k}{x^2}\right)^{10}$.

Let T_{r+1} is the general term

Then,

 $T_{r+1} = {}^{10}C_r (\sqrt{x})^{10-r} \left(\frac{-k}{x^2}\right)^r$ $= {}^{10}C_r(x)^{\frac{1}{2}(10-r)}(-k)^r \cdot x^{-2r}$ $= {}^{10}C_r x^{5-\frac{r}{2}} (-k)^r \cdot x^{-2r}$ $= {}^{10}C_r x^{5-\frac{r}{2}-2r} (-k)^r$ $= {}^{10}C_r x {}^{\frac{10-5r}{2}} (-k)^r$ $\frac{10-5r}{2} = 0$ For free from x, $\begin{array}{c} 2 \\ \Rightarrow \\ \text{Since, } T_{2+1} = T_3 \text{ is free from } x. \\ \therefore \\ T_{2+1} = {}^{10}C_2(-k)^2 = 405 \end{array}$ $\frac{10 \times 9 \times 8!}{2! \times 8!} (-k)^2 = 405$ ⇒ $45k^2 = 405 \implies k^2 = \frac{405}{45} = 9$ \Rightarrow $k = \pm 3$ ÷.

Q. 3 Find the coefficient of x in the expansion of $(1 - 3x + 7x^2)(1 - x)^{16}$. expansion = $(1 - 3x + 7x^2)(1 - x)^{16}$. Sol. Given, $=(1-3x+7x^2)({}^{16}C_01{}^{16}-{}^{16}C_11{}^{15}x^1+{}^{16}C_01{}^{14}x^2+...+{}^{16}C_{16}x{}^{16})$ $=(1-3x+7x^2)(1-16x+120x^2+...)$ Coefficient of x = -3 - 16 = -19*.*..

Q. 4 Find the term independent of x in the expansion of $\left(3x - \frac{2}{x^2}\right)^{13}$.

• Thinking Process

The general term in the expansion of $(x-a)^n$ i.e., $T_{r+1} = {}^nC_r(x)^{n-r}(-a)^r$.

Sol. Given expansion is $\left(3x - \frac{2}{x^2}\right)^{15}$. Let T_{r+1} is the general term. $T_{r+1} = {}^{15}C_r (3x)^{15-r} \left(\frac{-2}{r^2}\right)^r = {}^{15}C_r (3x)^{15-r} (-2)^r x^{-2r}$ *:*.. $= {}^{15}C_r 3^{15-r} x^{15-3r} (-2)^r$

For independent of x, $15 - 3r = 0 \implies r = 5$ Since, $T_{5+1} = T_6$ is independent of x.

$$T_{5+1} = {}^{15}C_5 \; 3^{15-5} (-2)^5$$
$$= -\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10!}{5 \times 4 \times 3 \times 2 \times 1 \times 10!} \cdot 3^{10} \cdot 2^5$$
$$= -3003 \cdot 3^{10} \cdot 2^5$$

Q. 5 Find the middle term (terms) in the expansion of

(i)
$$\left(\frac{x}{a} - \frac{a}{x}\right)^{10}$$
 (ii) $\left(3x - \frac{x^3}{6}\right)^9$

Thinking Process

In the expansion of $(a + b)^n$, if n is even, then this expansion has only one middle term $i.e., \left(\frac{n}{2}+1\right)$ th term is the middle term and if n is odd, then this expansion has two middle terms $i.e., \left(\frac{n+1}{2}\right)$ th and $\left(\frac{n+1}{2}+1\right)$ th are two middle terms. **Sol. (i)** Given expansion is $\left(\frac{x}{a} - \frac{a}{x}\right)^{10}$. Here, the power of Binomial *i.e.*, n = 10 is even. Since, it has one middle term $\left(\frac{10}{2}+1\right)$ th term *i.e.*, 6th term. \therefore $T_6 = T_{5+1} = {}^{10}C_5 \left(\frac{x}{a}\right)^{10-5} \left(\frac{-a}{x}\right)^5$ $= {}^{-10}C_5 \left(\frac{x}{a}\right)^5 \left(\frac{a}{x}\right)^5$ $= {}^{-10}C_5 \left(\frac{x}{a}\right)^5 \left(\frac{a}{x}\right)^5$

(ii) Given expansion is $\left(3x - \frac{x^3}{6}\right)^9$.

Here, n = 9

[odd]

Since, the Binomial expansion has two middle terms *i.e.*, $\left(\frac{9+1}{2}\right)$ th and $\left(\frac{9+1}{2}+1\right)$ th *i.e.*, 5th term and 6th term.

$$T_5 = T_{(4+1)} = {}^9C_4 (3x)^{9-4} \left(-\frac{x^3}{6} \right)^4$$
$$= \frac{9 \times 8 \times 7 \times 6 \times 5!}{4 \times 3 \times 2 \times 1 \times 5!} \ 3^5 \ x^5 \ x^{12} \ 6^{-4}$$
$$= \frac{7 \times 6 \times 3 \times 3^1}{2^4} \ x^{17} = \frac{189}{8} \ x^{17}$$

$$T_{6} = T_{5+1} = {}^{9}C_{5}(3x)^{9-5} \left(-\frac{x^{3}}{6}\right)^{5}$$
$$= -\frac{9 \times 8 \times 7 \times 6 \times 5!}{5! \times 4 \times 3 \times 2 \times 1} \cdot 3^{4} \cdot x^{4} \cdot x^{15} \cdot 6^{-5}$$
$$= \frac{-21 \times 6}{3 \times 2^{-5}} x^{19} = \frac{-21}{16} x^{19}$$

Q. 6 Find the coefficient of x^{15} in the expansion of $(x - x^2)^{10}$.

Sol. Given expansion is $(x - x^2)^{10}$. Let the term T_{r+1} is the general term. $T_{r+1} = {}^{10}C_r x^{10-r} (-x^2)^r$ *:*.. $= (-1)^r \cdot {}^{10} C_r \cdot x^{10-r} \cdot x^{2r}$ $= (-1)^{r^{10}} C_r x^{10+r}$ For the coefficient of x^{15} , , $10 + r = 15 \implies r = 5$ $T_{5+1} = (-1)^{5} {}^{10}C_5 x^{15}$ Coefficient of $x^{15} = -1 \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5 \times 4 \times 3 \times 2 \times 1 \times 5!}$

...

$$= -3 \times 2 \times 7 \times 6 = -252$$
Q. 7 Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^4 - \frac{1}{x^3}\right)^{15}$.

Thinking Process

In this type of questions, first of all find the general terms, in the expansion $(x - y)^n$ using the formula $T_{r+1} = {}^{n}C_{r} x^{n-r} (-y)^{r}$ and then put n-r equal to the required power of x of which coefficient is to be find out.

Sol. Given expansion is
$$\left(x^4 - \frac{1}{x^3}\right)^{15}$$

Let the term T_{r+1} contains the coefficient of $\frac{1}{x^{17}}$ *i.e.*, x^{-17} .

...

$$T_{r+1} = {}^{15}C_r (x^4)^{15-r} \left(-\frac{1}{x^3}\right)^r$$
$$= {}^{15}C_r x^{60-4r} (-1)^r x^{-3r}$$
$$= {}^{15}C_r x^{60-7r} (-1)^r$$

For the coefficient
$$x^{-17}$$
,
 $60 - 7r = -17$
 $\Rightarrow 7r = 77 \Rightarrow r = 11$
 $\Rightarrow 7_{11+1} = {}^{15}C_{11} x^{60-77} (-1)^{11}$
 $\therefore Coefficient of $x^{-17} = \frac{-15 \times 14 \times 13 \times 12 \times 11!}{11! \times 4 \times 3 \times 2 \times 1}$
 $= -15 \times 7 \times 13 = -1365$$

Q. 8 Find the sixth term of the expansion $(y^{1/2} + x^{1/3})^n$, if the Binomial coefficient of the third term from the end is 45.

Sol. Given expansion is $(y^{1/2} + x^{1/3})^n$.

$$T_6 = T_{5+1} = {}^n C_5 (y^{1/2})^{n-5} (x^{1/3})^5 \qquad \dots (i)$$

Now, given that the Binomial coefficient of the third term from the end is 45. We know that, Binomial coefficient of third term from the end = Binomial coefficient of third term from the begining = ${}^{n}C_{2}$

 ${}^{n}C_{2} = 45$... $\frac{n(n-1)(n-2)!}{2!(n-2)!} = 45$ \Rightarrow n(n-1) = 90 $n^2 - n - 90 = 0$ \Rightarrow \Rightarrow $n^2 - 10n + 9n - 90 = 0$ \Rightarrow n(n-10) + 9(n-10) = 0 \Rightarrow (n - 10) (n + 9) = 0 (n - 10) (n + 9) = 0 or (n - 10) = 0 n = 10 $T_{6} = {}^{10}C_{5} y^{5/2} x^{5/3} = 252y^{5/2} \cdot x^{5/3}$ \Rightarrow \Rightarrow [:: *n* ≠ – 9] *.*.. From Eq. (i),

Q. 9 Find the value of *r*, if the coefficients of (2r + 4)th and (r - 2)th terms in the expansion of $(1 + x)^{18}$ are equal.

Thinking Process

Coefficient of (r + 1)th term in the expansion of $(1 + x)^n$ is nC_r . Use this formula to solve the above problem.

Sol. Given expansion is $(1 + x)^{18}$.

...

Now, (2r + 4)th term *i.e.*, $T_{2r + 3 + 1}$.

$$T_{2r+3+1} = {}^{18}C_{2r+3}(1)^{18-2r-3}(x)^{2r+3}$$
$$= {}^{18}C_{2r+3}x^{2r+3}$$

Now, (r-2)th term *i.e.*, T_{r-3+1} . \therefore $T_{r-3+1} = {}^{18}C_{r-3} x^{r-3}$ As, ${}^{18}C_{2r+3} = {}^{18}C_{r-3}$ $[\because {}^{n}C_x = {}^{n}C_y \Rightarrow x + y = n]$ \Rightarrow 2r + 3 + r - 3 = 18 \Rightarrow 3r = 18 \therefore r = 6

Q. 10 If the coefficient of second, third and fourth terms in the expansion of $(1 + x)^{2n}$ are in AP, then show that $2n^2 - 9n + 7 = 0$.

Thinking Process

In the expansion of $(x + y)^n$, the coefficient of (r + 1)th term is nC_r . Use this formula to get the required coefficient. If a, b and c are in AP, then 2b = a + c.

Sol. Given expansion is (1 + x)²ⁿ.
Now, coefficient of 2nd term = ²ⁿC₁
Coefficient of 3rd term = ²ⁿC₂
Coefficient of 4th term = ²ⁿC₃
Given that, ²ⁿC₁, ²ⁿC₂ and ²ⁿC₃ are in AP.
Then,
$$2 \cdot {}^{2n}C_2 = {}^{2n}C_1 + {}^{2n}C_3$$

 $\Rightarrow 2\left[\frac{2n(2n-1)(2n-2)!}{2 \times 1 \times (2n-2)!}\right] = \frac{2n(2n-1)!}{(2n-1)!} + \frac{2n(2n-1)(2n-2)(2n-3)!}{3!(2n-3)!}$
 $\Rightarrow n(2n-1) = n + \frac{n(2n-1)(2n-2)}{6}$
 $\Rightarrow n(12n-6) = n(6 + 4n^2 - 4n - 2n + 2)$
 $\Rightarrow 12n-6 = (4n^2 - 6n + 8)$
 $\Rightarrow 6(2n-1) = 2(2n^2 - 3n + 4)$
 $\Rightarrow 2n^2 - 3n + 4 - 6n + 3 = 0$
 $\Rightarrow 2n^2 - 9n + 7 = 0$
Q. 11 Find the coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$.
Sol. Given, expansion = $(1 + x + x^2 + x^3)^{11} = [(1 + x)^{11} \cdot (1 + x^2)^{11}$
 $= [(1 + x)(1 + x^2)]^{11} = [(1 + x)^{11} \cdot (1 + x^2)^{11}$
Now, above expansion becomes
 $= ({}^{(1}C_0 + {}^{(1)}C_1x + {}^{(1)}C_2x^2 + {}^{(1)}C_3x^3 + {}^{(1)}C_4x^4 + ...)({}^{(1)}C_0 + {}^{(1)}C_1x^2 + {}^{(1)}C_2x^4 + ...)$
 $= (1 + 11x + 55x^2 + 165x^3 + 330x^4 + ...)(1 + 11x^2 + 55x^4 + ...)$
 \therefore Coefficient of $x^4 = 55 + 605 + 330 = 990$

Long Answer Type Questions

Q. 12 If *p* is a real number and the middle term in the expansion of $\left(\frac{p}{2}+2\right)^8$ is 1120, then find the value of *p*. **Sol.** Given expansion is $\left(\frac{p}{2}+2\right)^8$. Here, n = 8 [even] Since, this Binomial expansion has only one middle term *i.e.*, $\left(\frac{8}{2}+1\right)$ th = 5th term

$$T_5 = T_{4+1} = {}^8C_4 \left(\frac{p}{2}\right)^{6-4} \cdot 2^4$$

$$\Rightarrow \qquad 1120 = {}^8C_4 \ p^4 \cdot 2^{-4} \ 2^4$$

$$\Rightarrow \qquad 1120 = \frac{8 \times 7 \times 6 \times 5 \times 4!}{4! \times 4 \times 3 \times 2 \times 1} p^4$$

NCERT Exemplar (Class XI) Solutions

$$\Rightarrow \qquad 1120 = 7 \times 2 \times 5 \times p^{4}$$

$$\Rightarrow \qquad p^{4} = \frac{1120}{70} = 16 \Rightarrow p^{4} = 2^{4}$$

$$\Rightarrow \qquad p^{2} = 4 \Rightarrow p = \pm 2$$

Q. 13 Show that the middle term in the expansion of $\left(x - \frac{1}{x}\right)^{2n}$ is

 $\frac{1 \times 3 \times 5 \times \ldots \times (2n-1)}{n!} \times (-2)^n.$ **Sol.** Given, expansion is $\left(x - \frac{1}{x}\right)^{2n}$. This Binomial expansion has even power. So, this has one middle term.

i.e.,
$$\begin{pmatrix} \frac{2n}{2} + 1 \end{pmatrix} \text{th term} = (n+1)\text{th term}$$

$$T_{n+1} = {}^{2n}C_n(x)^{2n-n} \left(-\frac{1}{x}\right)^n = {}^{2n}C_n x^n(-1)^n x^{-n}$$

$$= {}^{2n}C_n(-1)^n = (-1)^n \frac{(2n)!}{n!n!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \dots (2n-1)(2n)}{n!n!} (-1)^n$$

$$= \frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 2 \cdot 4 \cdot 6 \dots (2n)}{12 \cdot 3 \dots n(n!)} (-1)^n$$

$$= \frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 2^n (1 \cdot 2 \cdot 3 \dots n)(-1)^n}{(1 \cdot 2 \cdot 3 \dots n)(n!)}$$

$$= \frac{[1 \cdot 3 \cdot 5 \dots (2n-1)]}{n!} (-2)^n$$
Hence proved.

- **Q.** 14 Find *n* in the Binomial $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$, if the ratio of 7th term from the beginning to the 7th term from the end is $\frac{1}{6}$.
- **Sol.** Here, the Binomial expansion is $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$. Now, 7th term from beginning $T_7 = T_{6+1} = {}^nC_6(\sqrt[3]{2})^{n-6} \left(\frac{1}{\sqrt[3]{3}}\right)^6$...(i) and 7th term from end *i.e.*, T_7 from the beginning of $\left(\frac{1}{\sqrt[3]{3}} + \sqrt[3]{2}\right)''$ $T_7 = {}^n C_6 \left(\frac{1}{\sqrt[3]{3}}\right)^{n-6} (\sqrt[3]{2})^6$ i.e., ...(ii) $2 = 10^{6}$

Given that,

$$\frac{{}^{n}C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)}{{}^{n}C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6}} = \frac{1}{6} \implies \frac{2^{\frac{n-6}{3}} \cdot 3^{-6/3}}{3^{-\left(\frac{n-6}{3}\right)} \cdot 2^{-6/3}} = \frac{1}{6}$$

$$\Rightarrow \left(2^{\frac{n-6}{3}} \cdot 2^{\frac{-6}{3}}\right) \left(3^{\frac{-6}{3}} \cdot 3^{\frac{(n-6)}{3}}\right) = 6^{-1}$$

$$\Rightarrow \left(2^{n-6} - 6 \\ 2^{n-3} - 3 \\ \right) \cdot \left(3^{n-6} - 6 \\ 3^{n-3} - 3 \\ - 8 \\ - n = 9 \\ \mathbf{Q}. 15 \text{ In the expansion of } (x + a)^{n}, \text{ if the sum of odd terms is denoted by 0 and the sum of even term by E. Then, prove that (i) $0^{2} - E^{2} = (x^{2} - a^{2})^{n}.$
(ii) $40E = (x + a)^{2n} - (x - a)^{2n}.$
Sol. (i) Given expansion is $(x + a)^{n}$
 $\therefore (x + a)^{n} = n^{n}C_{0}x^{n}a^{4} + n^{n}C_{3}x^{n-1}a^{1} + n^{n}C_{2}x^{n-2}a^{2} + n^{n}C_{3}x^{n-3}a^{3} + ... + n^{n}C_{n}a^{n}$
Now, sum of odd terms
i.e., $C = n^{n}C_{0}x^{n} + n^{n}C_{2}x^{n-2}a^{2} + ...$
and sum of even terms
i.e., $C = n^{n}C_{0}x^{n-1}a + n^{n}C_{3}x^{n-3}a^{3} + ... + n^{n}C_{n}a^{n}$
Now, sum of odd terms
i.e., $C = n^{n}C_{0}x^{n-1}a + n^{n}C_{3}x^{n-3}a^{3} + ... + n^{n}C_{n}a^{n}$
Similarly, $(x - a)^{n} = 0 - E$...(i)
Similarly, $(x - a)^{n} = 0 - E$...(ii)
 $\therefore (0 + E)(0 - E) = (x + a)^{n}(x - a)^{n}$ [on multiplying Eqs. (i) and (ii)]
 $= (x + a)^{2n} - (x - a)^{2n}$ Hence proved.
Q. 16 If x^{p} occurs in the expansion of $\left(x^{2} + \frac{1}{x}\right)^{2n}$, then prove that its coefficient is $\frac{2n!}{(4n - p)!(2n + p)!}$.
Is $3!$ $3!$
Sol. Given expansion is $\left(x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(\frac{x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(\frac{x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(\frac{x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(\frac{x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(\frac{x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(\frac{x^{2} + \frac{1}{x}\right)^{2n}$.
Let x^{p} occur in the expansion of $\left(\frac{x^{2} - \frac{1}{3}}{\frac{1}{(2n - n)^{2}}} = \frac{(2n)!}{(2n - \frac{1}{3})!}$.
 $\sum Coefficient of x^{p} = 2^{n}C_{r} = \frac{(2n)!}{(2n - n)} = \frac{(2n)!}{(\frac{4n - p}{3})!} \frac{(2n - \frac{1}{3})!}{(2n - \frac{1}{3})!}$.$$

Q. 17 Find the term independent of *x* in the expansion of

$$(1 + x + 2x^{3}) \left(\frac{3}{2}x^{2} - \frac{1}{3x}\right)^{9}.$$
Sol. Given expansion is $(1 + x + 2x^{3}) \left(\frac{3}{2}x^{2} - \frac{1}{3x}\right)^{9}.$
Now, consider $\left(\frac{3}{2}x^{2} - \frac{1}{3x}\right)^{9}$
 $T_{r+1} = {}^{9}C_{r} \left(\frac{3}{2}x^{2}\right)^{9-r} \left(-\frac{1}{3x}\right)^{r}$
 $= {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} x^{18-2r} \left(-\frac{1}{3}\right)^{r} x^{-r} = {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{18-3r}$
Hence, the general term in the expansion of $(1 + x + 2x^{3}) \left(\frac{3}{2}x^{2} - \frac{1}{3x}\right)^{9}$
 $= {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{18-3r} + {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{19-3r} + 2 \cdot {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{21-3r}$
For term independent of x , putting $18 - 3r = 0$, $19 - 3r = 0$ and $21 - 3r = 0$, we get $r = 6, r = 19/3, r = 7$
Since, the possible value of r are 6 and 7.
Hence, second term is not independent of x .

$$\therefore \text{ The term independent of } x \text{ is } {}^{9}C_{6}\frac{3}{2}^{9^{-6}}\left(-\frac{1}{3}\right)^{6} + 2 \cdot {}^{9}C_{7}\frac{3}{2}^{9^{-7}}\left(-\frac{1}{3}\right)^{7}$$
$$= \frac{9 \times 8 \times 7 \times 6!}{6! \times 3 \times 2} \cdot \frac{3^{3}}{2^{3}} \cdot \frac{1}{3^{6}} - 2 \cdot \frac{9 \times 8 \times 7!}{7! \times 2 \times 1} \cdot \frac{3^{2}}{2^{2}} \cdot \frac{1}{3^{7}}$$
$$= \frac{84}{8} \cdot \frac{1}{3^{3}} - \frac{36}{4} \cdot \frac{2}{3^{5}} = \frac{7}{18} - \frac{2}{27} = \frac{21 - 4}{54} = \frac{17}{54}$$

Objective Type Questions

Q. 18 The total number of terms in the expansion of $(x + a)^{100} + (x - a)^{100}$ after simplification is

(a) 50 (b) 202 (c) 51 (d) None of these

Sol. (c) Here, $(x + a)^{100} + (x - a)^{100}$

Total number of terms is 102 in the expansion of $(x + a)^{100} + (x - a)^{100}$ 50 terms of $(x + a)^{100}$ cancel out 50 terms of $(x - a)^{100}$. 51 terms of $(x + a)^{100}$ get added to the 51 terms of $(x - a)^{100}$.

Alternate Method

$$(x+a)^{100} + (x-a)^{100} = {}^{100}C_0 x^{100} + {}^{100}C_1 x^{99}a + \dots + {}^{100}C_{100} a^{100} + {}^{100}C_0 x^{100} - {}^{100}C_1 x^{99}a + \dots + {}^{100}C_{100} a^{100}$$
$$= 2 \left[\underbrace{{}^{100}C_0 x^{100} + {}^{100}C_2 x^{98} a^2 + \dots + {}^{100}C_{100} a^{100}}_{51 \text{ terms}} \right]$$

Q. 19 If the integers r > 1, n > 2 and coefficients of (3r)th and (r + 2)nd terms in the Binomial expansion of $(1 + x)^{2n}$ are equal, then

(a) $n = 2r$	(b) $n = 3r$
(c) $n = 2r + 1$	(d) None of these

• Thinking Process

In the expansion of $(x + y)^n$, the coefficient of (r + 1)th term is nC_r .

Sol. (a) Given that, r > 1, n > 2 and the coefficients of (3r)th and (r + 2)th term are equal in the expansion of $(1 + x)^{2n}$.

Then,	$T_{3r} = T_{3r-1+1} = {}^{2n}C_{3r-1} x^{3n}$	r – 1
and	$T_{r+2} = T_{r+1+1} = {}^{2n}C_{r+1} x^{r+1}$	1
Given,	${}^{2n}C_{3r-1} = {}^{2n}C_{r+1}$	$[:: {}^{n}C_{x} = {}^{n}C_{y} \Longrightarrow x + y = n]$
\Rightarrow	3r - 1 + r + 1 = 2n	
\Rightarrow	$4r = 2n \implies n = \frac{4r}{2}$	211
·.	n = 2r	of

- **Q.** 20 The two successive terms in the expansion of $(1 + x)^{24}$ whose coefficients are in the ratio 1 : 4 are
 - (a) 3rd and 4th (c) 5th and 6th (d) 6th and 7th
- **Sol.** (c) Let two successive terms in the expansion of $(1 + x)^{24}$ are (r + 1)th and (r + 2)th terms.

Hence, 5th and 6th terms.

Q. 21 The coefficient of x^n in the expansion of $(1 + x)^{2n}$ and $(1 + x)^{2n-1}$ are in the ratio

(a) 1 : 2 (b) 1 : 3 (c) 3 : 1 (d) 2 : 1

Sol. (d) :: Coefficient of x^n in the expansion of $(1 + x)^{2n} = {}^{2n}C_n$ and coefficient of x^n in the expansion of $(1 + x)^{2n-1} = {}^{2n-1}C_n$

..

$$\frac{\frac{2n}{2n-1}C_n}{\frac{2n-1}C_n} = \frac{\frac{(2n)!}{n!n!}}{\frac{(2n-1)!}{n!(n-1)!}}$$
$$= \frac{(2n)!n!(n-1)!}{n!n!(2n-1)!}$$
$$= \frac{2n(2n-1)!n!(n-1)!}{n!n(n-1)!(2n-1)!}$$
$$= \frac{2n}{n} = \frac{2}{1} = 2:1$$

Q. 22 If the coefficients of 2nd, 3rd and the 4th terms in the expansion of $(1 + x)^n$ are in AP, then the value of *n* is

(b) 7 (d) 14 (a) 2 (c) 11 The expansion of $(1 + x)^n$ is ${}^nC_0 + {}^nC_1x + {}^nC_2x^2 + {}^nC_3x^3 + ... + {}^nC_nx^n$ **Sol.** (b) Coefficient of 2nd term = ${}^{n}C_{1}$, *:*.. Coefficient of 3rd term = ${}^{n}C_{2}$, and coefficient of 4th term = ${}^{n}C_{3}$. Given that, ${}^{n}C_{1}$, ${}^{n}C_{2}$ and ${}^{n}C_{3}$ are in AP. $2 {}^{n}C_{2} = {}^{n}C_{1} + {}^{n}C_{3}$ $2 \left[\frac{(n)!}{(n-2)!2!} \right] = \frac{(n)!}{(n-1)!} + \frac{(n)!}{3!(n-3)!}$ *.*.. \Rightarrow $\frac{2 \cdot n (n-1) (n-2)!}{(n-2)! 2!} = \frac{n (n-1)!}{(n-1)!} + \frac{n(n-1) (n-2) (n-3)!}{3 \cdot 2 \cdot 1 (n-3)!}$ $n(n-1) = n + \frac{n(n-1) (n-2)}{6}$ \Rightarrow \Rightarrow $6n - 6 = 6 + n^2 - 3n + 2$ \Rightarrow $n^2 - 9n + 14 = 0$ \Rightarrow $n^2 - 7n - 2n + 14 = 0$ \Rightarrow n(n-7) - 2(n-7) = 0 \Rightarrow (n-7)(n-2) = 0 \Rightarrow n = 2 or n = 7*.*.. Since, n = 2 is not possible. *.*.. n = 7

Q.23 If A and B are coefficient of x^n in the expansions of $(1 + x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then $\frac{A}{B}$ equals to (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) <u>1</u> **Sol.** (b) Since, the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is ${}^{2n}C_n$. $A = {}^{2n}C_n$... Now, the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$ is $x^{2n-1}C_n$. $B = {}^{2n-1}C_n$ *.*.. $\frac{A}{B} = \frac{{}^{2n}C_n}{{}^{2n-1}C} = \frac{2}{1} = 2$ Now, Same as solution No. 21. **Q.** 24 If the middle term of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is equal to $7\frac{7}{8}$, then the value of x is (b) $n\pi + \frac{\pi}{6}$ (d) $n\pi + (-1)^n \frac{\pi}{3}$ (a) $2n\pi + \frac{\pi}{6}$ (c) $n\pi + (-1)^n \frac{\pi}{6}$ **Sol.** (c) Given expansion is $\left(\frac{1}{x} + x \sin x\right)^{10}$. Since, n = 10 is even, so this expansion has only one middle term *i.e.*, 6th term. $T_6 = T_{5+1} = {}^{10}C_5 \left(\frac{1}{x}\right)^{10-5} (x \sin x)^5$ $\frac{63}{8} = {}^{10}C_5 x^{-5} x^5 \sin^5 x$ *.*.. \Rightarrow $\frac{63}{8} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5!} \sin^5 x$ $\frac{63}{8} = 2 \cdot 9 \cdot 2 \cdot 7 \cdot \sin^5 x$ \Rightarrow \Rightarrow $\sin^5 x = \frac{1}{32}$ \Rightarrow $\sin^5 x = \left(\frac{1}{2}\right)^5$ \Rightarrow $\sin x = \frac{1}{2}$ \Rightarrow $x = n\pi + (-1)^n \pi / 6$ *.*..

Fillers

Q. 29 The coefficient of $a^{-6}b^4$ in the expansion of $\left(\frac{1}{a} - \frac{2b}{3}\right)^{10}$ is

Thinking Process

In the expansion of $(x-a)^n$, $T_{r+1} = {}^nC_r x^{n-r}(-a)^r$

Sol. Given expansion is $\left(\frac{1}{a} - \frac{2b}{3}\right)^{10}$. Let T_{r+1} has the coefficient of $a^{-6}b^4$.

> $T_{r+1} = {}^{10}C_r \left(\frac{1}{a}\right)^{10-r} \left(-\frac{2b}{3}\right)^r$ For coefficient of $a^{-6}b^4$, $10-r=6 \Rightarrow r=4$ Coefficient of $a^{-6}b^4 = {}^{10}C_4(-2/3)^4$ $= \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6! \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{2^4}{3^4} = \frac{1120}{27}$

Q. 30 Middle term in the expansion of $(a^3 + ba)^{28}$ is

Sol. Given expansion is $(a^3 + ba)^{28}$. \therefore n = 28 \therefore Middle term = $\left(\frac{28}{2} + 1\right)$ th term = 15th term \therefore $T_{15} = T_{14+1}$ $= {}^{28}C_{14}(a^3)^{28-14}(ba)^{14}$ $= {}^{28}C_{14} a^{42}b^{14}a^{14}$ $= {}^{28}C_{14} a^{56}b^{14}$

[even]

- **Q. 31** The ratio of the coefficients of x^p and x^q in the expansion of $(1 + x)^{p+q}$ is
- **Sol.** Given expansion is $(1 + x)^{p+q}$. \therefore Coefficient of $x^p = {}^{p+q}C_p$ and coefficient of $x^q = {}^{p+q}C_q$ \therefore $\frac{{}^{p+q}C_p}{{}^{p+q}C_q} = \frac{{}^{p+q}C_p}{{}^{p+q}C_p} = 1:1$

Q. 32 The position of the term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$ is

Sol. Given expansion is $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$. Let the constant term be T_{r+1} .

NCERT Exemplar (Class XI) Solutions

Then,

$$T_{r+1} = {}^{10}C_r \left(\sqrt{\frac{x}{3}}\right)^{10-r} \left(\frac{3}{2x^2}\right)^r$$

= ${}^{10}C_r \cdot x^{\frac{10-r}{2}} \cdot 3^{\frac{-10+r}{2}} \cdot 3^r \cdot 2^{-r} \cdot x^{-2r}$
= ${}^{10}C_r \cdot x^{\frac{10-5r}{2}} 3^{\frac{-10+3r}{2}} 2^{-r}$

For constant term, $10 - 5r = 0 \Rightarrow r = 2$ Hence, third term is independent of *x*.

Q. 33 If 25¹⁵ is divided by 13, then the remainder is Sol. Let $25^{15} = (26 - 1)^{15}$ $= {}^{15}C_0 \ 26^{15} - {}^{15}C_1 26^{14} + \dots - {}^{15}C_{15}$ $= {}^{15}C_0 26^{15} - {}^{15}C_1 26^{14} + \dots - 1 - 13 + 13$ $= {}^{15}C_0 \ 26^{15} - {}^{15}C_1 26^{14} + \dots - 13 + 12$

It is clear that, when 25¹⁵ is divided by 13, then remainder will be 12.

True/False

Q. 34 The sum of the series $\sum_{r=0}^{10} {}^{20}C_r$ is $2^{19} + \frac{{}^{20}C_r}{2}$

Sol. False

Given series

$$= \sum_{r=0}^{10} {}^{20}C_r = {}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_{10}$$

= ${}^{20}C_0 + {}^{20}C_1 + \dots + {}^{20}C_{10} + {}^{20}C_{11} + \dots {}^{20}C_{20} - ({}^{20}C_{11} + \dots + {}^{20}C_{20})$
= ${}^{20}C_0 - ({}^{20}C_{11} + \dots + {}^{20}C_{20})$

Hence, the given statement is false.

Q. 35 The expression $7^9 + 9^7$ is divisible by 64.

Sol. True

Given expression = $7^9 + 9^7 = (1 + 8)^7 - (1 - 8)^9$ = $({}^7C_0 + {}^7C_18 + {}^7C_28^2 + \dots + {}^7C_78^7) - ({}^9C_0 - {}^9C_18 + {}^9C_28^2 \dots - {}^9C_98^9)$ = $(1 + 7 \times 8 + 21 \times 8^2 + \dots) - (1 - 9 \times 8 + 36 \times 8^2 + \dots - 8^9)$ = $(7 \times 8 + 9 \times 8) + (21 \times 8^2 - 36 \times 8^2) + \dots$ = $2 \times 64 + (21 - 36)64 + \dots$ which is divisible by 64. Hence, the statement is true.

Q. 36 The number of terms in the expansion of $[(2x + y^3)^4]^7$ is 8.

Sol. False

Given expansion is $[(2x + y^3)^4]^7 = (2x + y^3)^{28}$. Since, this expansion has 29 terms. So, the given statement is false.

Q. 37 The sum of coefficients of the two middle terms in the expansion of $(1+x)^{2n-1}$ is equal to ${}^{2n-1}C_n$.

Sol. False

Here, the Binomial expansion is $(1 + x)^{2n-1}$. Since, this expansion has two middle term *i.e.*, $\left(\frac{2n-1+1}{2}\right)$ th term and $\left(\frac{2n-1+1}{2}+1\right)$ th term *i.e.*, nth term and (n + 1)th term. Coefficient of *n*th term = ${}^{2n-1}C_{n-1}$ *.*.. Coefficient of (n + 1)th term = ${}^{2n-1}C_n$ Sum of coefficients = ${}^{2n-1}C_{n-1} + {}^{2n-1}C_n$ $= {}^{2n-1+1}C_n = {}^{2n}C_n \qquad [:: {}^{n}C_r + {}^{n}C_{r-1} = {}^{n+1}C_r]$

Q. 38 The last two digits of the numbers 3⁴⁰⁰ are 01.

Sol. True

Given that, $3^{400} = 9^{200} = (10 - 1)^{200}$ $(10 - 1)^{200} = {}^{200}C_0 10^{200} - {}^{200}C_1 10^{199} + ... + {}^{200}C_{199} 10^1 + {}^{200}C_{200} 1^{200}$ \Rightarrow $(10-1)^{200} = 10^{200} - 200 \times 10^{199} + \dots - 10 \times 200 + 10^{199}$ \Rightarrow

So, it is clear that the last two digits are 01.

Q. 39 If the expansion of $\left(x - \frac{1}{x^2}\right)^{2n}$ contains a term independent of x, then n

is a multiple of 2.

Sol. False

Given Binomial expansion is
$$\left(x - \frac{1}{x^2}\right)^{2t}$$

Let T_{r+1} term is independent of x.

Then,

$$T_{r+1} = {}^{2n}C_r(x)^{2n-r} \left(-\frac{1}{x^2}\right)^r$$

= ${}^{2n}C_r x^{2n-r} (-1)^r x^{-2r} = {}^{2n}C_r x^{2n-3r} (-1)^r$

For independent of x,

$$2n - 3r = 0$$
$$r = \frac{2n}{3},$$

which is not a integer.

So, the given expansion is not possible.

Q. 40 The number of terms in the expansion of $(a + b)^n$, where $n \in N$, is one less than the power *n*.

Sol. False

...

We know that, the number of terms in the expansion of $(a + b)^n$, where $n \in N$, is one more than the power n.