8

Binomial Theorem

Short Answer Type Questions

Q. 1 Find the term independent of x, where $x \neq 0$,
in the expansion of $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{15}$.

- Thinking Process

The general term in the expansion of $(x-a)^{n}$ i.e., $T_{r+1}={ }^{n} C_{r}(x)^{n-r}(-a)^{r}$. For the term independent of x, put $n-r=0$, then we get the value of r.
Sol. Given expansion is $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{15}$.
Let T_{r+1} term is the general term.
Then,

$$
\begin{aligned}
T_{r+1} & ={ }^{15} C_{r}\left(\frac{3 x^{2}}{2}\right)^{15-r}\left(-\frac{1}{3 x}\right)^{r} \\
& ={ }^{15} C_{r} 3^{15-r} x^{30-2 r} 2^{r-15}(-1)^{r} \cdot 3^{-r} \cdot x^{-r} \\
& ={ }^{15} C_{r}(-1)^{r} 3^{15-2 r} 2^{r-15} x^{30-3 r}
\end{aligned}
$$

For independent of x,

$$
\begin{aligned}
30-3 r & =0 \\
3 r & =30 \Rightarrow r=10 \\
T_{r+1} & =T_{10+1}=11 \text { th term is independent of } x . \\
T_{10+1} & ={ }^{15} C_{10}(-1)^{10} 3^{15-20} 2^{10-15} \\
& ={ }^{15} C_{10} 3^{-5} 2^{-5} \\
& ={ }^{15} C_{10}(6)^{-5} \\
& ={ }^{15} C_{10}\left(\frac{1}{6}\right)^{5}
\end{aligned}
$$

Q. 2 If the term free from x in the expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is 405 , then find the value of k.
Sol. Given expansion is $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$.
Let T_{r+1} is the general term.
Then,

$$
\begin{aligned}
T_{r+1} & ={ }^{10} C_{r}(\sqrt{x})^{10-r}\left(\frac{-k}{x^{2}}\right)^{r} \\
& ={ }^{10} C_{r}(x)^{\frac{1}{2}(10-r)}(-k)^{r} \cdot x^{-2 r} \\
& ={ }^{10} C_{r} x^{5-\frac{r}{2}}(-k)^{r} \cdot x^{-2 r} \\
& ={ }^{10} C_{r} x^{5-\frac{r}{2}-2 r}(-k)^{r} \\
& ={ }^{10} C_{r} x^{\frac{10-5 r}{2}}(-k)^{r}
\end{aligned}
$$

For free from $x, \quad \frac{10-5 r}{2}=0$
$\Rightarrow \quad 10-5 r=0 \Rightarrow r=2$
Since, $T_{2+1}=T_{3}$ is free from x.
$\therefore \quad T_{2+1}={ }^{10} C_{2}(-k)^{2}=405$
$\Rightarrow \quad \frac{10 \times 9 \times 8!}{2!\times 8!}(-k)^{2}=405$
$\Rightarrow \quad 45 k^{2}=405 \Rightarrow k^{2}=\frac{405}{45}=9$
$\therefore \quad k= \pm 3$
Q. 3 Find the coefficient of x in the expansion of $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$.

Sol. Given, expansion $=\left(1-3 x+7 x^{2}\right)(1-x)^{16}$.

$$
=\left(1-3 x+7 x^{2}\right)\left({ }^{16} C_{0} 1^{16}-{ }^{16} C_{1} 1^{15} x^{1}+{ }^{16} C_{2} 1^{14} x^{2}+\ldots+{ }^{16} C_{16} x^{16}\right)
$$

$$
=\left(1-3 x+7 x^{2}\right)\left(1-16 x+120 x^{2}+\ldots\right)
$$

$\therefore \quad$ Coefficient of $x=-3-16=-19$
Q. 4 Find the term independent of x in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15}$.

- Thinking Process

The general term in the expansion of $(x-a)^{n}$ i.e., $T_{r+1}={ }^{n} C_{r}(x)^{n-r}(-a)^{r}$.
Sol. Given expansion is $\left(3 x-\frac{2}{x^{2}}\right)^{15}$.
Let T_{r+1} is the general term.

$$
\begin{aligned}
& \therefore \quad T_{r+1}={ }^{15} C_{r}(3 x)^{15-r}\left(\frac{-2}{x^{2}}\right)^{r}={ }^{15} C_{r}(3 x)^{15-r}(-2)^{r} x^{-2 r} \\
& ={ }^{15} C_{r} 3^{15-r} x^{15-3 r}(-2)^{r} \\
& \text { For independent of } x, \quad 15-3 r=0 \Rightarrow r=5
\end{aligned}
$$

Since, $T_{5+1}=T_{6}$ is independent of x.

$$
\begin{aligned}
& \therefore \\
& T_{5+1}={ }^{15} C_{5} 3^{15-5}(-2)^{5} \\
&=-\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10!}{5 \times 4 \times 3 \times 2 \times 1 \times 10!} \cdot 3^{10} \cdot 2^{5} \\
&=-3003 \cdot 3^{10} \cdot 2^{5}
\end{aligned}
$$

Q. 5 Find the middle term (terms) in the expansion of

(i) $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$
(ii) $\left(3 x-\frac{x^{3}}{6}\right)^{9}$

- Thinking Process

In the expansion of $(a+b)^{n}$, if n is even, then this expansion has only one middle term i.e., $\left(\frac{n}{2}+1\right)$ th term is the middle term and if n is odd, then this expansion has two middle terms i.e., $\left(\frac{n+1}{2}\right)$ th and $\left(\frac{n+1}{2}+1\right)$ th are two middle terms.
Sol. (i) Given expansion is $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$.
Here, the power of Binomial i.e., $n=10$ is even
Since, it has one middle term $\left(\frac{10}{2}+1\right)$ th term i.e., 6th term.

$$
\begin{aligned}
\therefore \quad T_{6} & =T_{5+1}={ }^{10} C_{5}\left(\frac{x}{a}\right)^{10-5}\left(\frac{-a}{x}\right)^{5} \\
& ={ }^{10} C_{5}\left(\frac{x}{a}\right)^{5}\left(\frac{a}{x}\right)^{5} \\
& =-\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times 5 \times 4 \times 3 \times 2 \times 1}\left(\frac{x}{a}\right)^{5}\left(\frac{x}{a}\right)^{-5} \\
& =-9 \times 4 \times 7=-252
\end{aligned}
$$

(ii) Given expansion is $\left(3 x-\frac{x^{3}}{6}\right)^{9}$.

Here, $n=9$
[odd]
Since, the Binomial expansion has two middle terms i.e., $\left(\frac{9+1}{2}\right)$ th and $\left(\frac{9+1}{2}+1\right)$ th i.e., 5th term and 6th term.

$$
\begin{aligned}
\therefore \quad T_{5} & =T_{(4+1)}={ }^{9} C_{4}(3 x)^{9-4}\left(-\frac{x^{3}}{6}\right)^{4} \\
& =\frac{9 \times 8 \times 7 \times 6 \times 5!}{4 \times 3 \times 2 \times 1 \times 5!} 3^{5} x^{5} x^{12} 6^{-4} \\
& =\frac{7 \times 6 \times 3 \times 3^{1}}{2^{4}} x^{17}=\frac{189}{8} x^{17}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad T_{6} & =T_{5+1}={ }^{9} C_{5}(3 x)^{9-5}\left(-\frac{x^{3}}{6}\right)^{5} \\
& =-\frac{9 \times 8 \times 7 \times 6 \times 5!}{5!\times 4 \times 3 \times 2 \times 1} \cdot 3^{4} \cdot x^{4} \cdot x^{15} \cdot 6^{-5} \\
& =\frac{-21 \times 6}{3 \times 2^{5}} x^{19}=\frac{-21}{16} x^{19}
\end{aligned}
$$

Q. 6 Find the coefficient of x^{15} in the expansion of $\left(x-x^{2}\right)^{10}$.

Sol. Given expansion is $\left(x-x^{2}\right)^{10}$.
Let the term T_{r+1} is the general term.

$$
\begin{aligned}
\therefore \quad T_{r+1} & ={ }^{10} C_{r} x^{10-r}\left(-x^{2}\right)^{r} \\
& =(-1)^{r}{ }^{10} C_{r} \cdot x^{10-r} \cdot x^{2 r} \\
& =(-1)^{10} C_{r} x^{10+r}
\end{aligned}
$$

For the coefficient of x^{15},

$$
\begin{aligned}
10+r & =15 \Rightarrow r=5 \\
T_{5+1} & =(-1)^{5}{ }^{10} C_{5} x^{15} \\
\therefore \quad \text { Coefficient of } x^{15} & =-1 \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5 \times 4 \times 3 \times 2 \times 1 \times 5!} \\
& =-3 \times 2 \times 7 \times 6=-252
\end{aligned}
$$

Q. 7 Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$.

- Thinking Process

In this type of questions, first of all find the general terms, in the expansion $(x-y)^{n}$ using the formula $T_{r+1}={ }^{n} C_{r} x^{n-r}(-y)^{r}$ and then put $n-r e q u a l ~ t o ~ t h e ~ r e q u i r e d ~ p o w e r ~ o f ~ x ~ o f ~$ which coefficient is to be find out.
Sol. Given expansion is $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$.
Let the term T_{r+1} contains the coefficient of $\frac{1}{x^{17}}$ i.e., x^{-17}.

$$
\begin{aligned}
\therefore \quad T_{r+1} & ={ }^{15} C_{r}\left(x^{4}\right)^{15-r}\left(-\frac{1}{x^{3}}\right)^{r} \\
& ={ }^{15} C_{r} x^{60-4 r}(-1)^{r} x^{-3 r} \\
& ={ }^{15} C_{r} x^{60-7 r}(-1)^{r}
\end{aligned}
$$

For the coefficient x^{-17},

$$
\begin{array}{rlrl}
& & 60-7 r & =-17 \\
\Rightarrow & & 7 r & =77 \Rightarrow r=11 \\
\Rightarrow & T_{11+1} & ={ }^{15} C_{11} x^{60-77}(-1)^{11} \\
& \therefore & & \text { Coefficient of } x^{-17}
\end{array}=\frac{-15 \times 14 \times 13 \times 12 \times 11!}{11!\times 4 \times 3 \times 2 \times 1}, ~=-15 \times 7 \times 13=-1365
$$

Q. 8 Find the sixth term of the expansion $\left(y^{1 / 2}+x^{1 / 3}\right)^{n}$, if the Binomial coefficient of the third term from the end is 45 .
Sol. Given expansion is $\left(y^{1 / 2}+x^{1 / 3}\right)^{n}$.
The sixth term of this expansion is

$$
\begin{equation*}
T_{6}=T_{5+1}={ }^{n} C_{5}\left(y^{1 / 2}\right)^{n-5}\left(x^{1 / 3}\right)^{5} \tag{i}
\end{equation*}
$$

Now, given that the Binomial coefficient of the third term from the end is 45 .
We know that, Binomial coefficient of third term from the end = Binomial coefficient of third term from the begining $={ }^{n} C_{2}$
\because
${ }^{n} C_{2}=45$
$\Rightarrow \quad \frac{n(n-1)(n-2)!}{2!(n-2)!}=45$
$\Rightarrow \quad n(n-1)=90$
$\Rightarrow \quad n^{2}-n-90=0$
$\Rightarrow \quad n^{2}-10 n+9 n-90=0$
$\Rightarrow \quad n(n-10)+9(n-10)=0$
$\Rightarrow \quad(n-10)(n+9)=0$
$\Rightarrow \quad(n+9)=0$ or $(n-10)=0$
$\therefore \quad n=10 \quad[\because n \neq-9]$
From Eq. (i),

$$
T_{6}={ }^{10} C_{5} y^{5 / 2} x^{5 / 3}=252 y^{5 / 2} \cdot x^{5 / 3}
$$

Q. 9 Find the value of r, if the coefficients of $(2 r+4)$ th and $(r-2)$ th terms in the expansion of $(1+x)^{18}$ are equal.

- Thinking Process

Coefficient of $(r+1)$ th term in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{r}$. Use this formula to solve the above problem.
Sol. Given expansion is $(1+x)^{18}$.
Now, $(2 r+4)$ th term i.e., $T_{2 r+3+1}$.

$$
\begin{aligned}
\therefore \quad T_{2 r+3+1} & ={ }^{18} C_{2 r+3}(1)^{18-2 r-3}(x)^{2 r+3} \\
& ={ }^{18} C_{2 r+3} x^{2 r+3}
\end{aligned}
$$

Now, $(r-2)$ th term i.e., T_{r-3+1}.
$\therefore \quad T_{r-3+1}={ }^{18} C_{r-3} x^{r-3}$
As, $\quad{ }^{18} C_{2 r+3}={ }^{18} C_{r-3} \quad\left[\because{ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x+y=n\right]$
$\Rightarrow \quad 2 r+3+r-3=18$
$\Rightarrow \quad 3 r=18$
$\therefore \quad r=6$
Q. 10 If the coefficient of second, third and fourth terms in the expansion of $(1+x)^{2 n}$ are in AP, then show that $2 n^{2}-9 n+7=0$.

$\stackrel{\text { - Thinking Process }}{ }$

In the expansion of $(x+y)^{n}$, the coefficient of $(r+1)$ th term is ${ }^{n} C_{r}$. Use this formula to get the required coefficient. If a, b and c are in $A P$, then $2 b=a+c$.

Binomial Theorem

Sol. Given expansion is $(1+x)^{2 n}$.
Now, coefficient of 2nd term $={ }^{2 n} C_{1}$
Coefficient of 3rd term $={ }^{2 n} \mathrm{C}_{2}$
Coefficient of 4th term $={ }^{2 n} \mathrm{C}_{3}$
Given that, ${ }^{2 n} C_{1},{ }^{2 n} C_{2}$ and ${ }^{2 n} C_{3}$ are in AP.
Then, $\quad 2 \cdot{ }^{2 n} C_{2}={ }^{2 n} C_{1}+{ }^{2 n} C_{3}$
$\Rightarrow \quad 2\left[\frac{2 n(2 n-1)(2 n-2)!}{2 \times 1 \times(2 n-2)!}\right]=\frac{2 n(2 n-1)!}{(2 n-1)!}+\frac{2 n(2 n-1)(2 n-2)(2 n-3)!}{3!(2 n-3)!}$
$\Rightarrow \quad n(2 n-1)=n+\frac{n(2 n-1)(2 n-2)}{6}$
$\Rightarrow \quad n(12 n-6)=n\left(6+4 n^{2}-4 n-2 n+2\right)$
$\Rightarrow \quad 12 n-6=\left(4 n^{2}-6 n+8\right)$
$\Rightarrow \quad 6(2 n-1)=2\left(2 n^{2}-3 n+4\right)$
$\Rightarrow \quad 3(2 n-1)=2 n^{2}-3 n+4$
$\Rightarrow \quad 2 n^{2}-3 n+4-6 n+3=0$
$\Rightarrow \quad 2 n^{2}-9 n+7=0$
Q. 11 Find the coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$.

Sol. Given, expansion $=\left(1+x+x^{2}+x^{3}\right)^{11}=\left[(1+x)+x^{2}(1+x)\right]^{11}$

$$
=\left[(1+x)\left(1+x^{2}\right)\right]^{11}=(1+x)^{11} \cdot\left(1+x^{2}\right)^{11}
$$

Now, above expansion becomes

$$
\begin{aligned}
& =\left({ }^{11} C_{0}+{ }^{11} C_{1} x+{ }^{11} C_{2} x^{2}+{ }^{11} C_{3} x^{3}+{ }^{11} C_{4} x^{4}+\ldots\right)\left({ }^{11} C_{0}+{ }^{11} C_{1} x^{2}+{ }^{11} C_{2} x^{4}+\ldots\right) \\
& =\left(1+11 x+55 x^{2}+165 x^{3}+330 x^{4}+\ldots\right)\left(1+11 x^{2}+55 x^{4}+\ldots\right)
\end{aligned}
$$

\therefore Coefficient of $x^{4}=55+605+330=990$

Long Answer Type Questions

Q. 12 If p is a real number and the middle term in the expansion of $\left(\frac{p}{2}+2\right)^{8}$ is 1120 , then find the value of p.
Sol. Given expansion is $\left(\frac{p}{2}+2\right)^{8}$.
Here, $n=8$
Since, this Binomial expansion has only one middle term i.e., $\left(\frac{8}{2}+1\right)$ th $=5$ th term

$$
\begin{aligned}
& T_{5} & =T_{4+1}={ }^{8} C_{4}\left(\frac{p}{2}\right)^{8-4} \cdot 2^{4} \\
\Rightarrow & 1120 & ={ }^{8} C_{4} p^{4} \cdot 2^{-4} 2^{4} \\
\Rightarrow & 1120 & =\frac{8 \times 7 \times 6 \times 5 \times 4!}{4!\times 4 \times 3 \times 2 \times 1} p^{4}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & 1120=7 \times 2 \times 5 \times p^{4} \\
\Rightarrow & p^{4}=\frac{1120}{70}=16 \Rightarrow p^{4}=2^{4} \\
\Rightarrow & p^{2}=4 \Rightarrow p= \pm 2
\end{array}
$$

Q. 13 Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is

$$
\frac{1 \times 3 \times 5 \times \ldots \times(2 n-1)}{n!} \times(-2)^{n}
$$

Sol. Given, expansion is $\left(x-\frac{1}{x}\right)^{2 n}$. This Binomial expansion has even power. So, this has one
middle term.
i.e., $\quad\left(\frac{2 n}{2}+1\right)$ th term $=(n+1)$ th term

$$
\begin{aligned}
T_{n+1} & ={ }^{2 n} C_{n}(x)^{2 n-n}\left(-\frac{1}{x}\right)^{n}={ }^{2 n} C_{n} x^{n}(-1)^{n} x^{-n} \\
& ={ }^{2 n} C_{n}(-1)^{n}=(-1)^{n} \frac{(2 n)!}{n!n!}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \ldots(2 n-1)(2 n)}{n!n!}(-1)^{n} \\
& =\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1) \cdot 2 \cdot 4 \cdot 6 \ldots(2 n)}{12 \cdot 3 \cdot \ldots n(n!)}(-1)^{n} \\
& =\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1) \cdot 2^{n}(1 \cdot 2 \cdot 3 \ldots n)(-1)^{n}}{(1 \cdot 2 \cdot 3 \ldots n)(n!)}
\end{aligned}
$$

$$
=\frac{[1 \cdot 3 \cdot 5 \ldots(2 n-1)]}{n!}(-2)^{n}
$$

Q. 14 Find n in the Binomial $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$, if the ratio of 7 th term from the beginning to the 7 th term from the end is $\frac{1}{6}$.
Sol. Here, the Binomial expansion is $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$.
Now, 7th term from beginning $T_{7}=T_{6+1}={ }^{n} C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^{6}$
and 7 th term from end i.e., T_{7} from the beginning of $\left(\frac{1}{\sqrt[3]{3}}+\sqrt[3]{2}\right)^{n}$
i.e., $\quad T_{7}={ }^{n} C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6}$

Given that, $\frac{{ }^{n} C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^{6}}{{ }^{n} C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6}}=\frac{1}{6} \Rightarrow \frac{2^{\frac{n-6}{3} \cdot 3^{-6 / 3}}}{3^{-\left(\frac{n-6}{3}\right)} \cdot 2^{6 / 3}}=\frac{1}{6}$
$\Rightarrow\left(2^{\frac{n-6}{3}} \cdot 2^{\frac{-6}{3}}\right)\left(3^{\frac{-6}{3}} \cdot 3^{\frac{(n-6)}{3}}\right)=6^{-1}$

$$
\begin{aligned}
\Rightarrow & \left(2^{\frac{n-6}{3}-\frac{6}{3}}\right) \cdot\left(3^{\frac{n-6}{3}-\frac{6}{3}}\right) & =6^{-1} \Rightarrow(2 \cdot 3)^{\frac{n}{3}-4}=6^{-1} \\
\Rightarrow & \frac{n}{3}-4 & =-1 \Rightarrow \frac{n}{3}=3 \\
\therefore & n & =9
\end{aligned}
$$

Q. 15 In the expansion of $(x+a)^{n}$, if the sum of odd terms is denoted by 0 and the sum of even term by E. Then, prove that
(i) $O^{2}-E^{2}=\left(x^{2}-a^{2}\right)^{n}$.
(ii) $40 E=(x+a)^{2 n}-(x-a)^{2 n}$.

Sol. (i) Given expansion is $(x+a)^{n}$.

$$
\therefore(x+a)^{n}={ }^{n} C_{0} x^{n} a^{0}+{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots+{ }^{n} C_{n} a^{n}
$$

Now, sum of odd terms
i.e., $\quad O={ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots$
and sum of even terms
i.e.,

$$
\begin{equation*}
E={ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots \tag{ii}
\end{equation*}
$$

$\because \quad(x+a)^{n}=O+E$
Similarly,

$$
\begin{equation*}
(x-a)^{n}=O-E \tag{i}
\end{equation*}
$$

$\therefore \quad(O+E)(O-E)=(x+a)^{n}(x-a)^{n} \quad$ [on multiplying Eqs. (i) and (ii)]
$\Rightarrow \quad O^{2}-E^{2}=\left(x^{2}-a^{2}\right)^{n}$
(ii) $4 O E=(O+E)^{2}-(O-E)^{2}=\left[(x+a)^{n}\right]^{2}-\left[(x-a)^{n}\right]^{2} \quad$ [from Eqs. (i) and (ii)]

$$
=(x+a)^{2 n}-(x-a)^{2 n}
$$

Hence proved.
Q. 16 If x^{p} occurs in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$, then prove that its coefficient is

$2 n$!

$$
\frac{(4 n-p)!}{3!} \frac{(2 n+p)!}{3!}
$$

Sol. Given expansion is $\left(x^{2}+\frac{1}{x}\right)^{2 n}$.
Let x^{p} occur in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$.

$$
\begin{array}{ll}
& \left.\begin{array}{rl}
T_{r+1} & ={ }^{2 n} C_{r}\left(x^{2}\right)^{2 n-r}\left(\frac{1}{x}\right)^{r} \\
& ={ }^{2 n} C_{r} x^{4 n-2 r} x^{-r}={ }^{2 n} C_{r} x^{4 n-3 r} \\
& \text { Let } \quad 4 n-3 r
\end{array}\right)=p \\
\therefore \quad 3 r & =4 n-p \Rightarrow r=\frac{4 n-p}{3} \\
\therefore \quad \text { Coefficient of } x^{p} & ={ }^{2 n} C_{r}=\frac{(2 n)!}{r!(2 n-r)!}=\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(2 n-\frac{4 n-p}{3}\right)!} \\
& =\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{6 n-4 n+p}{3}\right)!}=\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{2 n+p}{3}\right)!}
\end{array}
$$

Q. 17 Find the term independent of x in the expansion of

$$
\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}
$$

Sol. Given expansion is $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$.
Now, consider $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$

$$
\begin{aligned}
T_{r+1} & ={ }^{9} C_{r}\left(\frac{3}{2} x^{2}\right)^{9-r}\left(-\frac{1}{3 x}\right)^{r} \\
& ={ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r} x^{18-2 r}\left(-\frac{1}{3}\right)^{r} x^{-r}={ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{18-3 r}
\end{aligned}
$$

Hence, the general term in the expansion of $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$

$$
={ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{18-3 r}+{ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{19-3 r^{\circ}}+2 \cdot{ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{21-3 r}
$$

For term independent of x, putting $18-3 r=0,19-3 r=0$ and $21-3 r=0$, we get

$$
r=6, r=19 / 3, r=7
$$

Since, the possible value of r are 6 and 7 .
Hence, second term is not independent of x.
\therefore The term independent of x is ${ }^{9} \mathrm{C}_{6} \frac{3^{9-6}}{2}\left(-\frac{1}{3}\right)^{6}+2 \cdot{ }^{9} \mathrm{C}_{7} \frac{3^{9-7}}{2}\left(-\frac{1}{3}\right)^{7}$

$$
\begin{aligned}
& =\frac{9 \times 8 \times 7 \times 6!}{6!\times 3 \times 2} \cdot \frac{3^{3}}{2^{3}} \cdot \frac{1}{3^{6}}-2 \cdot \frac{9 \times 8 \times 7!}{7!\times 2 \times 1} \cdot \frac{3^{2}}{2^{2}} \cdot \frac{1}{3^{7}} \\
& =\frac{84}{8} \cdot \frac{1}{3^{3}}-\frac{36}{4} \cdot \frac{2}{3^{5}}=\frac{7}{18}-\frac{2}{27}=\frac{21-4}{54}=\frac{17}{54}
\end{aligned}
$$

Objective Type Questions

Q. 18 The total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$ after simplification is
(a) 50
(b) 202
(c) 51
(d) None of these

Sol. (c) Here, $(x+a)^{100}+(x-a)^{100}$
Total number of terms is 102 in the expansion of $(x+a)^{100}+(x-a)^{100}$
50 terms of $(x+a)^{100}$ cancel out 50 terms of $(x-a)^{100}$. 51 terms of $(x+a)^{100}$ get added to the 51 terms of $(x-a)^{100}$.

Alternate Method

$$
\begin{aligned}
(x+a)^{100}+(x-a)^{100}= & { }^{100} C_{0} x^{100}+{ }^{100} C_{1} x^{99} a+\ldots+{ }^{100} C_{100} a^{100} \\
& +{ }^{100} C_{0} x^{100}-{ }^{100} C_{1} x^{99} a+\ldots+{ }^{100} C_{100} a^{100} \\
& =2 \underbrace{\left[{ }^{100} C_{0} x^{100}+{ }^{100} C_{2} x^{98} a^{2}+\ldots+{ }^{100} C_{100} \mathrm{a}^{100}\right.}_{51 \text { terms }}]
\end{aligned}
$$

Q. 19 If the integers $r>1, n>2$ and coefficients of (3r)th and $(r+2)$ nd terms in the Binomial expansion of $(1+x)^{2 n}$ are equal, then
(a) $n=2 r$
(b) $n=3 r$
(c) $n=2 r+1$
(d) None of these

- Thinking Process

In the expansion of $(x+y)^{n}$, the coefficient of $(r+1)$ th term is ${ }^{n} C_{r}$.
Sol. (a) Given that, $r>1, n>2$ and the coefficients of $(3 r)$ th and $(r+2)$ th term are equal in the expansion of $(1+x)^{2 n}$.
Then,

$$
T_{3 r}=T_{3 r-1+1}={ }^{2 n} C_{3 r-1} x^{3 r-1}
$$

and

$$
T_{r+2}=T_{r+1+1}={ }^{2 n} C_{r+1} x^{r+1}
$$

Given,

$$
{ }^{2 n} C_{3 r-1}={ }^{2 n} C_{r+1}
$$

$$
\left[\because{ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x+y=n\right]
$$

$\Rightarrow \quad 3 r-1+r+1=2 n$
$\Rightarrow \quad 4 r=2 n \Rightarrow n=\frac{4 r}{2}$
$\therefore \quad n=2 r$
Q. 20 The two successive terms in the expansion of $(1+x)^{24}$ whose coefficients are in the ratio 1:4 are
(a) 3rd and 4th
(b) 4th and 5th
(c) 5th and 6th
(d) 6th and 7th

Sol. (c) Let two successive terms in the expansion of $(1+x)^{24}$ are $(r+1)$ th and $(r+2)$ th terms.
$\therefore \quad T_{r+1}={ }^{24} C_{r} x^{r}$
and

$$
T_{r+2}={ }^{24} C_{r+1} x^{r+1}
$$

Given that,

$$
\frac{{ }^{24} C_{r}}{{ }^{24} C_{r+1}}=\frac{1}{4}
$$

$\Rightarrow \quad \frac{\frac{(24)!}{r!(24-r)!}}{\frac{(24)!}{(r+1)!(24-r-1)!}}=\frac{1}{4}$
$\Rightarrow \quad \frac{(r+1) r!(23-r)!}{r!(24-r)(23-r)!}=\frac{1}{4}$
$\Rightarrow \quad \frac{r+1}{24-r}=\frac{1}{4} \Rightarrow 4 r+4=24-r$
$\Rightarrow \quad 5 r=20 \Rightarrow r=4$
$\therefore \quad T_{4+1}=T_{5}$ and $T_{4+2}=T_{6}$
Hence, 5th and 6th terms.
Q. 21 The coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ are in the ratio
(a) $1: 2$
(b) $1: 3$
(c) $3: 1$
(d) $2: 1$

Sol. (d) \because Coefficient of x^{n} in the expansion of $(1+x)^{2 n}={ }^{2 n} C_{n}$
and coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}={ }^{2 n-1} C_{n}$

$$
\begin{aligned}
\because \quad \frac{{ }^{2 n} C_{n}}{2 n-1} C_{n} & =\frac{\frac{(2 n)!}{n!n!}}{\frac{(2 n-1)!}{n!(n-1)!}} \\
& =\frac{(2 n)!n!(n-1)!}{n!n!(2 n-1)!} \\
& =\frac{2 n(2 n-1)!n!(n-1)!}{n!n(n-1)!(2 n-1)!} \\
& =\frac{2 n}{n}=\frac{2}{1}=2: 1
\end{aligned}
$$

Q. 22 If the coefficients of $2 n d$, 3 rd and the 4 th terms in the expansion of $(1+x)^{n}$ are in AP, then the value of n is
(a) 2
(b) 7
(c) 11
(d) 14

Sol. (b) The expansion of $(1+x)^{n}$ is ${ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+{ }^{n} C_{3} x^{3}+\ldots+{ }^{n} C_{n} x^{n}$
$\therefore \quad$ Coefficient of 2 nd term $={ }^{n} C_{1}$,
Coefficient of 3rd term $={ }^{n} \mathrm{C}_{2}$,
and coefficient of 4 th term $={ }^{n} C_{3}$.
Given that, ${ }^{n} C_{1},{ }^{n} C_{2}$ and ${ }^{n} C_{3}$ are in AP.
$\therefore \quad 2{ }^{n} C_{2}={ }^{n} C_{1}+{ }^{n} C_{3}$
$\Rightarrow \quad 2\left[\frac{(n)!}{(n-2)!2!}\right]=\frac{(n)!}{(n-1)!}+\frac{(n)!}{3!(n-3)!}$
$\Rightarrow \quad \frac{2 \cdot n(n-1)(n-2)!}{(n-2)!2!}=\frac{n(n-1)!}{(n-1)!}+\frac{n(n-1)(n-2)(n-3)!}{3 \cdot 2 \cdot 1(n-3)!}$
$\Rightarrow \quad n(n-1)=n+\frac{n(n-1)(n-2)}{6}$
$\Rightarrow \quad 6 n-6=6+n^{2}-3 n+2$
$\Rightarrow \quad n^{2}-9 n+14=0$
$\Rightarrow \quad n^{2}-7 n-2 n+14=0$
$\Rightarrow \quad n(n-7)-2(n-7)=0$
$\Rightarrow \quad(n-7)(n-2)=0$
$\therefore \quad n=2$ or $n=7$
Since, $n=2$ is not possible.
$\therefore \quad n=7$
Q. 23 If A and B are coefficient of x^{n} in the expansions of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ respectively, then $\frac{A}{B}$ equals to
(a) 1
(b) 2
(c) $\frac{1}{2}$
(d) $\frac{1}{n}$

Sol. (b) Since, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is ${ }^{2 n} C_{n}$.
$\therefore \quad A={ }^{2 n} C_{n}$
Now, the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$ is ${ }^{2 n-1} C_{n}$.

$$
\begin{array}{ll}
\therefore & B={ }^{2 n-1} C_{n} \\
\text { Now, } & \frac{A}{B}=\frac{{ }^{2 n} C_{n}}{{ }^{2 n-1} C_{n}}=\frac{2}{1}=2
\end{array}
$$

Same as solution No. 21.
Q. 24 If the middle term of $\left(\frac{1}{x}+x \sin x\right)^{10}$ is equal to $7 \frac{7}{8}$, then the value of x is
(a) $2 n \pi+\frac{\pi}{6}$
(b) $n \pi+\frac{\pi}{6}$
(c) $n \pi+(-1)^{n} \frac{\pi}{6}$
(d) $n \pi+(-1)^{n} \frac{\pi}{3}$

Sol. (c) Given expansion is $\left(\frac{1}{x}+x \sin x\right)^{10}$
Since, $n=10$ is even, so this expansion has only one middle term i.e., 6th term.
$\therefore \quad T_{6}=T_{5+1}={ }^{10} C_{5}\left(\frac{1}{x}\right)^{10-5}(x \sin x)^{5}$
$\Rightarrow \quad \frac{63}{8}={ }^{10} C_{5} x^{-5} x^{5} \sin ^{5} x$
$\Rightarrow \quad \frac{63}{8}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5!} \sin ^{5} x$
$\Rightarrow \quad \frac{63}{8}=2 \cdot 9 \cdot 2 \cdot 7 \cdot \sin ^{5} x$
$\Rightarrow \quad \sin ^{5} x=\frac{1}{32}$
$\Rightarrow \quad \sin ^{5} x=\left(\frac{1}{2}\right)^{5}$
$\Rightarrow \quad \sin x=\frac{1}{2}$
$\therefore \quad x=n \pi+(-1)^{n} \pi / 6$

Fillers

Q. 25 The largest coefficient in the expansion of $(1+x)^{30}$ is \qquad . .

- Thinking Process

In the expansion of $(1+x)^{n}$, the largest coefficient is ${ }^{n} C_{n / 2}$ (when n is even).
Sol. Largest coefficient in the expansion of $(1+x)^{30}={ }^{30} C_{30 / 2}={ }^{30} C_{15}$
Q. 26 The number of terms in the expansion of $(x+y+z)^{n}$.......... .

Sol. Given expansion is $(x+y+z)^{n}=[x+(y+z)]^{n}$.

$$
\begin{aligned}
{[x+(y+z)]^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} } & (y+z) \\
& +{ }^{n} C_{2} x^{n-2}(y+z)^{2}+\ldots+{ }^{n} C_{n}(y+z)^{n}
\end{aligned}
$$

\therefore Number of terms $=1+2+3+\ldots+n+(n+1)$

$$
=\frac{(n+1)(n+2)}{2}
$$

Q. 27 In the expansion of $\left(x^{2}-\frac{1}{x^{2}}\right)^{16}$, the value of constant term is \qquad
Sol. Let constant be T_{r+1}.

$$
\begin{array}{lrl}
\therefore & T_{r+1} & ={ }^{16} C_{r}\left(x^{2}\right)^{16-r}\left(-\frac{1}{x^{2}}\right)^{r} \\
& ={ }^{16} C_{r} x^{32-2 r}(-1)^{r} x^{-2 r} \\
& ={ }^{16} C_{r} x^{32-4 r}(-1)^{r} \\
& \text { For constant term, } \quad 32-4 r & =0 \Rightarrow r=8 \\
\therefore \quad & T_{8+1} & ={ }^{16} C_{8}
\end{array}
$$

Q. 28 If the seventh term from the beginning and the end in the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$ are equal, then n equals to \qquad
Sol. Given expansions is $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$.

$$
\begin{equation*}
\therefore \quad T_{7}=T_{6+1}={ }^{n} C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^{6} \tag{i}
\end{equation*}
$$

Since, T_{7} from end is same as the T_{7} from beginning of $\left(\frac{1}{\sqrt[3]{3}}+\sqrt[3]{2}\right)^{n}$.
Then,

$$
T_{7}={ }^{n} C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6}
$$

Given that, $\quad{ }^{n} C_{6}(2)^{\frac{n-6}{3}}(3)^{-6 / 3}={ }^{n} C_{6}(3)^{-\frac{(n-6)}{3}} 2^{6 / 3}$

$$
\Rightarrow \quad(2)^{\frac{n-12}{3}}=\left(\frac{1}{3^{1 / 3}}\right)^{n-12}
$$

which is true, when $\frac{n-12}{3}=0$.
$\Rightarrow \quad n-12=0 \Rightarrow n=12$

Binomial Theorem

Q. 29 The coefficient of $a^{-6} b^{4}$ in the expansion of $\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}$ is

- Thinking Process

In the expansion of $(x-a)^{n}, T_{r+1}={ }^{n} C_{r} x^{n-r}(-a)^{r}$
Sol. Given expansion is $\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}$.
Let T_{r+1} has the coefficient of $a^{-6} b^{4}$.
$\therefore \quad T_{r+1}={ }^{10} C_{r}\left(\frac{1}{a}\right)^{10-r}\left(-\frac{2 b}{3}\right)^{r}$
For coefficient of $a^{-6} b^{4}, \quad 10-r=6 \Rightarrow r=4$
Coefficient of $a^{-6} b^{4}={ }^{10} C_{4}(-2 / 3)^{4}$
$\therefore \quad=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6!\cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{2^{4}}{3^{4}}=\frac{1120}{27}$
Q. 30 Middle term in the expansion of $\left(a^{3}+b a\right)^{28}$ is

Sol. Given expansion is $\left(a^{3}+b a\right)^{28}$.
$\because \quad n=28$
$\therefore \quad$ Middle term $=\left(\frac{28}{2}+1\right)$ th term $=15$ th term

$$
\begin{aligned}
T_{15} & =T_{14}+1 \\
& ={ }^{28} C_{14}\left(a^{3}\right)^{28-14}(b a)^{14} \\
& ={ }^{28} C_{14} a^{42} b^{14} a^{14} \\
& ={ }^{28} C_{14} a^{56} b^{14}
\end{aligned}
$$

Q. 31 The ratio of the coefficients of x^{p} and x^{q} in the expansion of $(1+x)^{p+q}$ is \qquad .
Sol. Given expansion is $(1+x)^{p+q}$.
$\therefore \quad$ Coefficient of $x^{p}={ }^{p+q} C_{p}$
and coefficient of $x^{q}={ }^{p+q} C_{q}$
$\therefore \quad \frac{{ }^{p+q} C_{p}}{{ }^{p+q} C_{q}}=\frac{{ }^{p+q} C_{p}}{{ }^{p+q} C_{p}}=1: 1$
Q. 32 The position of the term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$ is \qquad
Sol. Given expansion is $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$.
Let the constant term be T_{r+1}.

Then,

$$
\begin{aligned}
T_{r+1} & ={ }^{10} C_{r}\left(\sqrt{\frac{x}{3}}\right)^{10-r}\left(\frac{3}{2 x^{2}}\right)^{r} \\
& ={ }^{10} C_{r} \cdot x^{\frac{10-r}{2} \cdot 3^{\frac{-10+r}{2}} \cdot 3^{r} \cdot 2^{-r} \cdot x^{-2 r}} \\
& ={ }^{10} C_{r} x^{\frac{10-5 r}{2}} 3^{\frac{-10+3 r}{2}} 2^{-r}
\end{aligned}
$$

For constant term, $10-5 r=0 \Rightarrow r=2$
Hence, third term is independent of x.
Q. 33 If 25^{15} is divided by 13 , then the remainder is \qquad .
Sol. Let

$$
\begin{aligned}
25^{15} & =(26-1)^{15} \\
& ={ }^{15} C_{0} 26^{15}-{ }^{15} C_{1} 26^{14}+\ldots-{ }^{15} C_{15} \\
& ={ }^{15} C_{0} 26^{15}-{ }^{15} C_{1} 26^{14}+\ldots-1-13+13 \\
& ={ }^{15} C_{0} 26^{15}-{ }^{15} C_{1} 26^{14}+\ldots-13+12
\end{aligned}
$$

It is clear that, when 25^{15} is divided by 13 , then remainder will be 12 .

True/False

Q. 34 The sum of the series $\sum_{r=0}^{10}{ }^{20} C_{r}$ is $2^{19}+\frac{{ }^{20} C_{10}}{2}$.

Sol. False

Given series $\quad=\sum_{r=0}^{10}{ }^{20} C_{r}={ }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}+\ldots+{ }^{20} \mathrm{C}_{10}$

$$
\begin{aligned}
& ={ }^{20} C_{0}+{ }^{20} C_{1}+\ldots+{ }^{20} C_{10}+{ }^{20} C_{11}+\ldots{ }^{20} C_{20}-\left({ }^{20} C_{11}+\ldots+{ }^{20} C_{20}\right) \\
& =2^{20}-\left({ }^{20} C_{11}+\ldots+{ }^{20} C_{20}\right)
\end{aligned}
$$

Hence, the given statement is false.
Q. 35 The expression $7^{9}+9^{7}$ is divisible by 64 .

Sol. True
Given expression $=7^{9}+9^{7}=(1+8)^{7}-(1-8)^{9}$

$$
\begin{aligned}
& =\left({ }^{7} C_{0}+{ }^{7} C_{1} 8+{ }^{7} C_{2} 8^{2}+\ldots+{ }^{7} C_{7} 8^{7}\right)-\left({ }^{9} C_{0}-{ }^{9} C_{1} 8+{ }^{9} C_{2} 8^{2} \ldots-{ }^{9} C_{9} 8^{9}\right) \\
& =\left(1+7 \times 8+21 \times 8^{2}+\ldots\right)-\left(1-9 \times 8+36 \times 8^{2}+\ldots-8^{9}\right) \\
& =(7 \times 8+9 \times 8)+\left(21 \times 8^{2}-36 \times 8^{2}\right)+\ldots \\
& =2 \times 64+(21-36) 64+\ldots
\end{aligned}
$$

which is divisible by 64 .
Hence, the statement is true.
Q. 36 The number of terms in the expansion of $\left[\left(2 x+y^{3}\right)^{4}\right]^{7}$ is 8 .

Sol. False

Given expansion is $\left[\left(2 x+y^{3}\right)^{4}\right]^{7}=\left(2 x+y^{3}\right)^{28}$.
Since, this expansion has 29 terms.
So, the given statement is false.
Q. 37 The sum of coefficients of the two middle terms in the expansion of $(1+x)^{2 n-1}$ is equal to ${ }^{2 n-1} C_{n}$.
Sol. False
Here, the Binomial expansion is $(1+x)^{2 n-1}$.
Since, this expansion has two middle term i.e., $\left(\frac{2 n-1+1}{2}\right)$ th term and $\left(\frac{2 n-1+1}{2}+1\right)$ th term i.e., nth term and $(n+1)$ th term.

$$
\therefore \quad \begin{aligned}
\text { Coefficient of } n \text { thterm } & ={ }^{2 n-1} C_{n-1} \\
\text { Coefficient of }(n+1) \text { thterm } & ={ }^{2 n-1} C_{n} \\
\text { Sum of coefficients } & ={ }^{2 n-1} C_{n-1}+{ }^{2 n-1} C_{n} \\
& ={ }^{2 n-1+1} C_{n}={ }^{2 n} C_{n} \quad\left[\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}\right]
\end{aligned}
$$

Q. 38 The last two digits of the numbers 3^{400} are 01 .

Sol. True

Given that, $\quad 3^{400}=9^{200}=(10-1)^{200}$

$$
\begin{array}{ll}
\Rightarrow & \left.(10-1)^{200}={ }^{200} \mathrm{C}_{0} 10^{200}-{ }^{200} \mathrm{C}_{1} 10^{199}+.\right)^{200} \mathrm{C}_{199} 10^{1}+{ }^{200} \mathrm{C}_{200}{ }^{1200} \\
\Rightarrow & (10-1)^{200}=10^{200}-200 \times 10^{199}+\ldots-10 \times 200+1
\end{array}
$$

So, it is clear that the last two digits are 01 .
Q. 39 If the expansion of $\left(x-\frac{1}{x^{2}}\right)^{2 n}$ contains a term independent of x, then n is a multiple of 2.

Sol. False

Given Binomial expansion is $\left(x-\frac{1}{x^{2}}\right)^{2 n}$.
Let T_{r+1} term is independent of x.
Then,

$$
\begin{aligned}
T_{r+1} & ={ }^{2 n} C_{r}(x)^{2 n-r}\left(-\frac{1}{x^{2}}\right)^{r} \\
& ={ }^{2 n} C_{r} x^{2 n-r}(-1)^{r} x^{-2 r}={ }^{2 n} C_{r} x^{2 n-3 r}(-1)^{r}
\end{aligned}
$$

For independent of x,

$$
\begin{aligned}
2 n-3 r & =0 \\
r & =\frac{2 n}{3},
\end{aligned}
$$

which is not a integer.
So, the given expansion is not possible.
Q. 40 The number of terms in the expansion of $(a+b)^{n}$, where $n \in N$, is one less than the power n.

Sol. False

We know that, the number of terms in the expansion of $(a+b)^{n}$, where $n \in N$, is one more than the power n.

