Chapter 8 Applications of Integrals

EXERCISE 8.1

Question 1:

Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x-axis in the first quadrant.

Solution:

$$
\begin{aligned}
\operatorname{ar}(A B C D) & =\int_{1}^{4} y d x \\
& =\int_{1}^{4} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} \\
& =\frac{2}{3}\left[(4)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right] \\
& =\frac{2}{3}[8-1] \\
& =\frac{14}{3}
\end{aligned}
$$

Question 2:

Find the area of the region bounded by $y^{2}-9 x, x=2, x=4$ and the x-axis in the first quadrant.

Solution:

$$
\begin{aligned}
\operatorname{ar}(A B C D) & =\int_{2}^{4} y d x \\
& =\int_{2}^{4} 3 \sqrt{x} d x \\
& \left.=3\left[\frac{x^{\frac{3}{2}}}{3}\right]^{4}\right]_{2}^{4} \\
& =2\left[x^{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right] \\
& =2[8-2 \sqrt{2}] \\
& =(16-4 \sqrt{2})
\end{aligned}
$$

Question 3:

Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant. Solution:

$$
\begin{aligned}
\operatorname{ar}(A B C D) & =\int_{2}^{4} x d y \\
& =\int_{2}^{4} 2 \sqrt{y} d y=2 \int_{2}^{4} \sqrt{y} d y \\
& =2\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =\frac{4}{3}\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right]=\frac{4}{3}[8-2 \sqrt{2}] \\
& =\left(\frac{32-8 \sqrt{2}}{3}\right)
\end{aligned}
$$

Question 4:
Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

Solution:

It is given that

$$
\begin{aligned}
& \Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \\
& \Rightarrow \frac{y^{2}}{9}=1-\frac{x^{2}}{16} \\
& \Rightarrow y=3 \sqrt{1-\frac{x^{2}}{16}}
\end{aligned}
$$

Area of ellipse $=4 \times \operatorname{ar}(O A B)$

$$
\begin{aligned}
\operatorname{ar}(O A B) & =\int_{0}^{4} y d x \\
& =\int_{0}^{4} 3 \sqrt{1-\frac{x^{2}}{16}} d x \\
& =\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x \\
& =\frac{3}{4}\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4} \\
& =\frac{3}{4}\left[2 \sqrt{16-16}+8 \sin ^{-1}(1)-0-8 \sin ^{-1}(0)\right] \\
& =\frac{3}{4}\left[\frac{8 \pi}{2}\right] \\
& =\frac{3}{4}[4 \pi] \\
& =3 \pi
\end{aligned}
$$

Area of ellipse $=4 \times 3 \pi=12 \pi$ units

Question 5:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

Solution:

It is given that

$$
\begin{aligned}
& \Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 \\
& \Rightarrow y=3 \sqrt{1-\frac{x^{2}}{4}}
\end{aligned}
$$

Area of ellipse $=4 \times \operatorname{ar}(O A B)$

$$
\begin{aligned}
\operatorname{ar}(O A B) & =\int_{0}^{2} y d x \\
& =\int_{0}^{2} 3 \sqrt{1-\frac{x^{2}}{4}} d x \\
& =\frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\frac{3}{2}\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& =\frac{3}{2}\left[\frac{2 \pi}{2}\right] \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

Area of ellipse $=4 \times \frac{3 \pi}{2}=6 \pi$ units.

Question 6:

Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$

Solution:

$$
\begin{aligned}
\operatorname{ar}(O A B)= & \operatorname{ar}(\triangle O A C)+\operatorname{ar}(A B C) \\
\operatorname{ar}(\triangle O A C) & =\frac{1}{2} \times O C \times A C \\
& =\frac{1}{2} \times \sqrt{3} \times 1 \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{ar}(A B C) & =\int_{\sqrt{3}}^{2} y d x \\
& =\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{\sqrt{3}}^{2} \\
& =\left[2 \times \frac{\pi}{2}-\frac{\sqrt{3}}{2} \sqrt{4-3}-2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right] \\
& =\left[\pi-\frac{\sqrt{3}}{2}-2\left(\frac{\pi}{3}\right)\right] \\
& =\left[\pi-\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right] \\
& =\left[\frac{3 \pi-2 \pi}{3}-\frac{\sqrt{3}}{2}\right] \\
& =\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right]
\end{aligned}
$$

Therefore, required area enclosed $=\frac{\sqrt{3}}{2}+\frac{\pi}{3}-\frac{\sqrt{3}}{2}=\frac{\pi}{3}$ square units.

Question 7:

Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

Solution:

The area of the smaller part of the circle, $x^{2}+y^{2}=a^{2}$ cut off by the line, $\quad x=\frac{a}{\sqrt{2}}$, is the area ABCD.

It can be observed that the area ABCD is symmetrical about x-axis.

$$
\left.\begin{array}{rl}
\operatorname{ar}(A B C D) & =2 \times \operatorname{ar}(A B C) \\
\left.\begin{array}{rl}
\operatorname{ar}(A B C) & =\int_{\frac{a}{\sqrt{2}}}^{a} y d x \\
& =\int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2}-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]_{\frac{a}{\sqrt{2}}}^{a} \\
& =\left[\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)-\frac{a}{2 \sqrt{2}} \sqrt{a^{2}-\frac{a^{2}}{2}}-\frac{a^{2}}{2} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right] \\
& =\frac{a^{2} \pi}{4}-\frac{a}{2 \sqrt{2}} \cdot \frac{a}{\sqrt{2}}-\frac{a^{2}}{2}\left(\frac{\pi}{4}\right) \\
& =\frac{a^{2} \pi}{4}-\frac{a^{2}}{4}-\frac{a^{2} \pi}{8} \\
& =\frac{a^{2}}{4}\left[\pi-1-\frac{\pi}{2}\right] \\
& =\frac{a^{2}}{4}\left[\frac{\pi}{2}-1\right] \\
& =\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right) \\
\operatorname{ar}(A B C D) & =2\left[\frac{a^{2}}{4}\left(\frac{\pi}{2}-1\right)\right] \\
& \\
2
\end{array}\right] \\
& \\
2
\end{array}\right]
$$

Therefore, the required area is $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ square units.
Question 8:

The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.

Solution:

The line $x=a$ divides the area bounded by the parabola and $x=4$ into two equal parts.
Therefore, $\operatorname{ar}(O A D)=\operatorname{ar}(A B C D)$

It can be observed that the given area is symmetrical about x-axis.
Hence, $\operatorname{ar}(O E D)=\operatorname{ar}(E F C D)$

$$
\begin{align*}
\operatorname{ar}(O E D) & =\int_{0}^{a} y d x \\
& =\int_{0}^{a} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a} \\
& =\frac{2}{3} a^{\frac{3}{2}} \tag{1}
\end{align*}
$$

$$
\operatorname{ar}(E F C D)=\int_{a}^{4} \sqrt{x} d x
$$

$$
=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{a}^{4}
$$

$$
\begin{equation*}
=\frac{2}{3}\left[8-a^{\frac{3}{2}}\right] \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain

$$
\begin{aligned}
& \Rightarrow \frac{2}{3}(a)^{\frac{3}{2}}=\frac{2}{3}\left[8-(a)^{\frac{3}{2}}\right] \\
& \Rightarrow 2(a)^{\frac{3}{2}}=8 \\
& \Rightarrow(a)^{\frac{3}{2}}=4 \\
& \Rightarrow a=(4)^{\frac{2}{3}}
\end{aligned}
$$

Therefore, the value of $a=(4)^{\frac{2}{3}}$.

Question 9:

Find the area of the region bounded by the parabola $y=x^{2}$ and the line $y=|x|$.

Solution:

The area bounded by the parabola $y=x^{2}$ and the line $y=|x|$, can be represented as

The given area is symmetrical about y-axis.
Therefore, $\operatorname{ar}(O A C O)=\operatorname{ar}(O D B O)$

The point of intersection of parabola $y=x^{2}$ and the line $y=|x|$, is $A(1,1)$.

$$
\begin{aligned}
\operatorname{ar}(O A C O) & =\operatorname{ar}(\triangle O A M)-\operatorname{ar}(O M A C O) \\
\operatorname{ar}(\triangle O A M) & =\frac{1}{2} \times O M \times A M \\
& =\frac{1}{2} \times 1 \times 1 \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{ar}(O M A C O) & =\int_{0}^{1} y d x \\
& =\int_{0}^{1} x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{1}{3} \\
\operatorname{ar}(O A C O)= & \operatorname{ar}(\triangle O A M)-\operatorname{ar}(O M A C O) \\
& =\frac{1}{2}-\frac{1}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

Therefore, the required area $=2\left[\frac{1}{6}\right]=\frac{1}{3}$ units.

Question 10:

Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.

Solution:

Coordinates of point $A\left(-1, \frac{1}{4}\right)$.

Coordinates of point $B(2,1)$.

Draw AL and BM perpendicular to x-axis.

$$
\begin{aligned}
\operatorname{ar}(O B A O) & =\operatorname{ar}(O B C O)+\operatorname{ar}(O A C O) \\
\operatorname{ar}(O B C O) & =\operatorname{ar}(O M B C)-\operatorname{ar}(O M B O) \\
& =\int_{0}^{2} \frac{x+2}{4} d x-\int_{0}^{2} \frac{x^{2}}{4} d x \\
& =\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{0}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{2} \\
& =\frac{1}{4}[2+4]-\frac{1}{4}\left[\frac{8}{3}\right] \\
& =\frac{3}{2}-\frac{2}{3} \\
& =\frac{5}{6} \\
\operatorname{ar}(O A C O) & =a r(O L A C)-a r(O L A O) \\
& =\int_{-1}^{0} \frac{x+2}{4} d x-\int_{-1}^{0} \frac{x^{2}}{4} d x \\
& =\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{0}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{0} \\
& =-\frac{1}{4}\left[\frac{(-1)^{2}}{2}+2(-1)\right]-\left[-\frac{1}{4}\left(\frac{(-1)^{3}}{3}\right)\right] \\
& =-\frac{1}{4}\left[\frac{1}{2}-2\right]-\frac{1}{12} \\
& =-\frac{1}{8}+\frac{1}{2}-\frac{1}{12} \\
& =\frac{7}{24} \\
\text { Required area } & =\left(\frac{5}{6}+\frac{7}{24}\right)=\frac{9}{8} \text { units. }
\end{aligned}
$$

Question 11:

Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

Solution:

OACO is symmetrical about x-axis.
Therefore, $\operatorname{ar}(O A C O)=2 \times \operatorname{ar}(A O B)$
$\operatorname{ar}(O A C O)=2\left[\int_{0}^{3} y d x\right]$

$$
=2\left[\int_{0}^{3} 2 \sqrt{x} d x\right]
$$

$$
=4\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{3}
$$

$$
=\frac{8}{3}\left[(3)^{\frac{3}{2}}\right]
$$

$$
=8 \sqrt{3}
$$

Required area is $8 \sqrt{3}$ units.

Question 12:

Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{4}$

Solution:

$$
\begin{aligned}
\operatorname{ar}(O A B) & =\int_{0}^{2} y d x \\
& =\int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& =2\left(\frac{\pi}{2}\right) \\
& =\pi
\end{aligned}
$$

Correct answer is A.

Question 13:

Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
(A) 2
(B) $\frac{9}{4}$
(C) $\frac{9}{3}$
(D) $\frac{9}{2}$

Solution:

$$
\begin{aligned}
\operatorname{ar}(O A B) & =\int_{0}^{3} x d y \\
& =\int_{0}^{3} \frac{y^{2}}{4} d y \\
& =\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{0}^{3} \\
& =\frac{1}{12}(27) \\
& =\frac{9}{4}
\end{aligned}
$$

Correct answer is B.

EXERCISE 8.2

Question 1:

Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.

Solution:

Solving $4 x^{2}+4 y^{2}=9$ and $x^{2}=4 y$, point of intersection $B\left(\sqrt{2}, \frac{1}{2}\right)$ and $D\left(-\sqrt{2}, \frac{1}{2}\right)$. Required area is symmetrical about y-axis.
$\operatorname{ar}(O B C D O)=2 \times \operatorname{ar}(O B C O)$
Draw BM perpendicular to OA
Coordinates of M are $(\sqrt{2}, 0)$

$$
\begin{aligned}
\operatorname{ar}(O B C O) & =\operatorname{ar}(O M B C O)-\operatorname{ar}(O M B O) \\
& =\int_{0}^{\sqrt{2}} \sqrt{\frac{\left(9-4 x^{2}\right)}{4}} d x-\int_{0}^{\sqrt{2}} \frac{x^{2}}{4} d x \\
& =\frac{1}{2} \int_{0}^{\sqrt{2}} \sqrt{9-4 x^{2}} d x-\frac{1}{4} \int_{0}^{\sqrt{2}} x^{2} d x \\
& =\frac{1}{4}\left[x \sqrt{9-4 x^{2}}+\frac{9}{2} \sin ^{-1} \frac{2 x}{3}\right]_{0}^{\sqrt{2}}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}} \\
& =\frac{1}{4}\left[\sqrt{2} \sqrt{9-8}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]-\frac{1}{12}(\sqrt{2})^{3} \\
& =\frac{\sqrt{2}}{4}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}-\frac{\sqrt{2}}{6} \\
& =\frac{\sqrt{2}}{12}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3} \\
& =\frac{1}{4}\left(\frac{\sqrt{2}}{3}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right)
\end{aligned}
$$

Required area OBCDO
$=\left(2 \times \frac{1}{4}\left[\frac{\sqrt{2}}{3}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]\right)=\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]$ units.

Question 2:

Find the area bounded by curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

Solution:

Solving $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$, point of intersection $A\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $B\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ Required area is symmetrical about x-axis.
$\operatorname{ar}(O B C A O)=2 \times \operatorname{ar}(O C A O)$
Join AB , intersects OC at M
AM is perpendicular to OC
Coordinates of $M\left(\frac{1}{2}, 0\right)$

$$
\begin{aligned}
\operatorname{ar}(O C A O) & =\operatorname{ar}(O M A O)+\operatorname{ar}(M C A M) \\
& =\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right] \\
& =\left[\frac{x-1}{2} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1}(x-1)\right]_{0}^{\frac{1}{2}}+\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{\frac{1}{2}}^{1} \\
& =\left[-\frac{1}{4} \sqrt{1-\left(\frac{1}{2}\right)^{2}}+\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}-1\right)-\frac{1}{2} \sin ^{-1}(-1)\right]+\left[+\frac{1}{2} \sin ^{-1}(-1)-\frac{1}{4} \sqrt{1-\left(\frac{1}{2}\right)^{2}}-\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)\right] \\
& =\left[-\frac{\sqrt{3}}{8}+\frac{1}{2}\left(-\frac{\pi}{6}\right)-\frac{1}{2}\left(-\frac{\pi}{2}\right)\right]+\left[\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{\sqrt{3}}{8}-\frac{1}{2}\left(\frac{\pi}{6}\right)\right] \\
& =\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{12}+\frac{\pi}{4}+\frac{\pi}{4}-\frac{\pi}{12}\right] \\
& =\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{6}+\frac{\pi}{2}\right] \\
& =\left[\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

Required Area OBCAO is

$$
\left(2 \times\left[\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right]\right)=\left[\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right]_{\text {units. }}
$$

Question 3:

Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $x=3$
Solution:

$$
\begin{aligned}
\operatorname{ar}(O C B A O) & =\operatorname{ar}(O D B A O)-\operatorname{ar}(O D C O) \\
& =\int_{0}^{3}\left(x^{2}+2\right) d x-\int_{0}^{3} x d x \\
& =\left[\frac{x^{3}}{3}+2 x\right]_{0}^{3}-\left[\frac{x^{2}}{2}\right]_{0}^{3} \\
& =[9+6]-\left[\frac{9}{2}\right] \\
& =15-\frac{9}{2} \\
& =\frac{21}{2}
\end{aligned}
$$

Question 4:

Using integration finds the area of the region bounded by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$.

Solution:

BL and CM are perpendicular to x-axis.
$\operatorname{ar}(\triangle A C B)=\operatorname{ar}(A L B A)+\operatorname{ar}(B L M C B)-\operatorname{ar}(A M C A)$
Equation of $A B$ is

$$
\begin{aligned}
y-0 & =\frac{3-0}{1+1}(x+1) \\
y & =\frac{3}{2}(x+1)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{ar}(A L B A) & =\int_{-1}^{1} \frac{3}{2}(x+1) d x \\
& =\frac{3}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{1} \\
& =\frac{3}{2}\left[\frac{1}{2}+1-\frac{1}{2}+1\right] \\
& =3
\end{aligned}
$$

Equation of BC is

$$
\begin{aligned}
& y-3=\frac{2-3}{3-1}(x-1) \\
& y=\frac{1}{2}(-x+7) \\
& \operatorname{ar}(B L M C B)= \int_{1}^{3} \frac{1}{2}(-x+7) d x \\
&= \frac{1}{2}\left[-\frac{x^{2}}{2}+7 x\right]_{1}^{3} \\
&= \frac{1}{2}\left[-\frac{9}{2}+21+\frac{1}{2}-7\right] \\
&= 5
\end{aligned}
$$

Equation of AC is

$$
\begin{aligned}
& y-0=\frac{2-0}{3+1}(x+1) \\
& y=\frac{1}{2}(x+1) \\
& \begin{aligned}
\operatorname{ar}(A M C A) & =\frac{1}{2} \int_{-1}^{3}(x+1) d x \\
& =\frac{1}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{3} \\
& =\frac{1}{2}\left[\frac{9}{2}+3-\frac{1}{2}+1\right] \\
& =4
\end{aligned}
\end{aligned}
$$

Therefore, $\operatorname{ar}(\triangle A B C)=(3+5-4)=4$ units
Question 5:
Using integration find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x+1$ and $x=4$.

Solution:

Vertices of triangle are $A(0,1), B(4,13)$ and $C(4,9)$.

$$
\begin{aligned}
\operatorname{ar}(\triangle A C B) & =\operatorname{ar}(\text { OLBAO })-\operatorname{ar}(\text { OLCAO }) \\
& =\int_{0}^{4}(3 x+1) d x-\int_{0}^{4}(2 x+1) d x \\
& =\left[\frac{3 x^{2}}{2}+x\right]_{0}^{4}-\left[\frac{2 x^{2}}{2}+x\right]_{0}^{4} \\
& =(24+4)-(16+4) \\
& =28-20 \\
& =8
\end{aligned}
$$

Question 6:

Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is
(A) $2(\pi-2)$
(B) $\pi-2$
(C) $2 \pi-1$
(D) $2(\pi+2)$

Solution:

$$
\begin{aligned}
\operatorname{ar}(A C B A) & =\operatorname{ar}(O A C B O)-\operatorname{ar}(\triangle O A B) \\
& =\int_{0}^{2} \sqrt{4-x^{2}} d x-\int_{0}^{2}(2-x) d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}-\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2} \\
& =\left[2 \times \frac{\pi}{2}\right]-[4-2] \\
& =(\pi-2)
\end{aligned}
$$

Correct answer is B.

Question 7:

Area lying between the curve $y^{2}=4 x$ and $y=2 x$ is
(A) $\frac{2}{3}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$

Solution:

Points of intersection of curve $y^{2}=4 x$ and $y=2 x$ are $\mathrm{O}(0,0)$ and $A(1,2)$.
Draw AC perpendicular to x-axis.
Coordinates of C are $(1,0)$

$$
\begin{aligned}
\operatorname{ar}(O B A O) & =\operatorname{ar}(\triangle O C A)-\operatorname{ar}(O C A B O) \\
& =\int_{0}^{1} 2 x d x-\int_{0}^{1} 2 \sqrt{x} d x \\
& =2\left[\frac{x^{2}}{2}\right]_{0}^{1}-2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1} \\
& =\left|1-\frac{4}{3}\right| \\
& =\left|-\frac{1}{3}\right| \\
& =\frac{1}{3}
\end{aligned}
$$

Correct answer is B.

MISCELLANEOUS EXERCISE

Question 1:

Find the area under the given curves and given lines:
(i) $y=x^{2}, x=1, x=2$ and x-axis
(ii) $y=x^{4}, x=1, x=5$ and x-axis

Solution:

(i) $y=x^{2}, x=1, x=2$ and x-axis

$$
\begin{aligned}
\operatorname{ar}(A D C B A) & =\int_{1}^{2} y d x \\
& =\int_{1}^{2} x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{1}^{2} \\
& =\frac{8}{3}-\frac{1}{3} \\
& =\frac{7}{3}
\end{aligned}
$$

(ii) $y=x^{4}, x=1, x=5$ and x-axis

$$
\begin{aligned}
\operatorname{ar}(A D C B A) & =\int_{1}^{5} y d x \\
& =\int_{1}^{5} x^{4} d x \\
& =\left[\frac{x^{5}}{5}\right]_{1}^{5} \\
& =\frac{(5)^{5}}{5}-\frac{1}{5} \\
& =(5)^{4}-\frac{1}{5} \\
& =625-\frac{1}{5} \\
& =624.8
\end{aligned}
$$

Question 2:

Find the area between the curves $y=x$ and $y=x^{2}$.

Solution:

Point of intersection of $y=x$ and $y=x^{2}$ is $\mathrm{A}(1,1)$.
Draw AC perpendicular to x-axis.

$$
\begin{aligned}
\operatorname{ar}(O B A O) & =\operatorname{ar}(\triangle O C A)-\operatorname{ar}(O C A B O) \\
& =\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

Question 3:

Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, x=0, y=1$ and $y=4$.

Solution:

$$
\begin{aligned}
\operatorname{ar}(A B C D) & =\int_{1}^{4} x d y \\
& =\int_{1}^{4} \frac{\sqrt{y}}{2} d y \\
& =\frac{1}{2}\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} \\
& =\frac{1}{3}\left[(4)^{\frac{3}{2}}-1\right] \\
& =\frac{1}{3}[8-1] \\
& =\frac{7}{3}
\end{aligned}
$$

Question 4:

Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$.

Solution:

X	-6	-5	-4	-3	-2	-1	0
Y	3	2	1	0	1	2	3

$$
\begin{aligned}
(x+3) \leq 0 & \text { for }-6 \leq x \leq-3 \text { and }(x+3) \geq 0 \text { for }-3 \leq x \leq 0 \\
\int_{-6}^{0}|(x+3)| d x & =-\int_{-6}^{-3}(x+3) d x+\int_{-3}^{0}(x+3) d x \\
& =-\left[\frac{x^{2}}{2}+3 x\right]_{-6}^{-3}+\left[\frac{x^{2}}{2}+3 x\right]_{-3}^{0} \\
& =-\left[\left(\frac{(-3)^{2}}{2}+3(-3)\right)-\left(\frac{(-6)^{2}}{2}+3(-6)\right)\right]+\left[0-\left(\frac{(-3)^{2}}{2}+3(-3)\right)\right] \\
& =-\left[-\frac{9}{2}\right]-\left[-\frac{9}{2}\right] \\
& =9
\end{aligned}
$$

Question 5:

Find the area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$.

Solution:

Area bounded by the curve $=$ Area $\mathrm{OABO}+$ Area BCDB

$$
\begin{aligned}
\operatorname{ar}(O A B O)+\operatorname{ar}(B C D B) & =\int_{0}^{\pi} \sin x d x+\left|\int_{\pi}^{2 \pi} \sin x d x\right| \\
& =[-\cos x]_{0}^{\pi}+\left|[-\cos x]_{\pi}^{2 \pi}\right| \\
& =[-\cos \pi+\cos 0]+|-\cos 2 \pi+\cos \pi| \\
& =1+1+|(-1-1)| \\
& =2+|-2| \\
& =2+2 \\
& =4
\end{aligned}
$$

Question 6:

Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$.

Solution:

Points of intersection of curves are $(0,0)$ and $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$
Draw AC perpendicular to x-axis.

$$
\begin{aligned}
\operatorname{ar}(O A B O) & =\operatorname{ar}(O C A B O)-a r(\triangle O C A) \\
& =\int_{0}^{\frac{4 a}{m^{2}}} 2 \sqrt{a x} d x-\int_{0}^{\frac{4 a}{m^{2}}} m x d x \\
& =2 \sqrt{a}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{4 a}{m^{2}}}-m\left[\frac{x^{2}}{2}\right]_{0}^{\frac{4 a}{m^{2}}} \\
& =\frac{4}{3} \sqrt{a}\left(\frac{4 a}{m^{2}}\right)^{\frac{3}{2}}-\frac{m}{2}\left[\left(\frac{4 a}{m^{2}}\right)^{2}\right] \\
& =\frac{32 a^{2}}{3 m^{3}}-\frac{m}{2}\left(\frac{16 a^{2}}{m^{4}}\right) \\
& =\frac{32 a^{2}}{3 m^{3}}-\frac{8 a^{2}}{m^{3}} \\
& =\frac{8 a^{2}}{3 m^{3}}
\end{aligned}
$$

Question 7:

Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

Solution:

Points of intersection of curves are $A(-2,3)$ and $B(4,12)$. Draw AC and BD perpendicular to x-axis.

$$
\begin{aligned}
\operatorname{ar}(O B A O) & =\operatorname{ar}(C D B A)-\operatorname{ar}(O D B O+O A C O) \\
& =\int_{-2}^{4} \frac{1}{2}(3 x+12) d x-\int_{-2}^{4} \frac{3 x^{2}}{4} d x \\
& =\frac{1}{2}\left[\frac{3 x^{2}}{2}+12 x\right]_{-2}^{4}-\frac{3}{4}\left[\frac{x^{3}}{3}\right]_{-2}^{4} \\
& =\frac{1}{2}[24+48-6+24]-\frac{1}{4}[64+8] \\
& =\frac{1}{2}[90]-\frac{1}{4}[72] \\
& =45-18 \\
& =27
\end{aligned}
$$

Question 8:
Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$. Solution:

$$
\begin{aligned}
\operatorname{ar}(B C A B) & =\operatorname{ar}(O B C A O)-\operatorname{ar}(O B A O) \\
& =\int_{0}^{3} 2 \sqrt{1-\frac{x^{2}}{9}} d x-\int_{0}^{3} 2\left(1-\frac{x}{3}\right) d x \\
& =\frac{2}{3}\left[\int_{0}^{3} \sqrt{9-x^{2}} d x\right]-\frac{2}{3} \int_{0}^{3}(3-x) d x \\
& =\frac{2}{3}\left[\frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1} \frac{x}{3}\right]_{0}^{3}-\frac{2}{3}\left[3 x-\frac{x^{2}}{2}\right]_{0}^{3} \\
& =\frac{2}{3}\left[\frac{9}{2}\left(\frac{\pi}{2}\right)\right]-\frac{2}{3}\left[9-\frac{9}{2}\right] \\
& =\frac{2}{3}\left[\frac{9 \pi}{4}-\frac{9}{2}\right] \\
& =\frac{2}{3} \times \frac{9}{4}(\pi-2) \\
& =\frac{3}{2}(\pi-2)
\end{aligned}
$$

Question 9:

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$.
Solution:

$$
\begin{aligned}
\operatorname{ar}(C B A) & =\operatorname{ar}(O B C A O)-\operatorname{ar}(O B A O) \\
& =\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x-\int_{0}^{a} b\left(1-\frac{x}{a}\right) d x \\
& =\frac{b}{a}\left[\left\{\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right\}_{0}^{a}-\left\{a x-\frac{x^{2}}{2}\right\}_{0}^{a}\right] \\
& =\frac{b}{a}\left[\left\{\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)\right\}-\left\{a^{2}-\frac{a^{2}}{2}\right\}\right] \\
& =\frac{b}{a}\left[\frac{a^{2} \pi}{4}-\frac{a^{2}}{2}\right] \\
& =\frac{b a^{2}}{2 a}\left[\frac{\pi}{2}-1\right] \\
& =\frac{a b}{2}\left[\frac{\pi}{2}-1\right] \\
& =\frac{a b}{4}(\pi-2)
\end{aligned}
$$

Question 10:

Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and x-axis.

Solution:

Point of intersection of $x^{2}=y$ and $y=x+2$, is $A(-1,1)$ and $C(2,4)$.

Now required Area $=$ Area of trapezium ALMB- Area of ALODBM

$$
\begin{aligned}
\operatorname{ar}(\operatorname{trap} . A L M B)-\operatorname{ar}(A L O D B M) & =\int_{-1}^{2}(x+2) d x-\int_{-1}^{2} x^{2} d x \\
& =\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}-\left[\frac{x^{3}}{3}\right]_{-1}^{2} \\
& =\left[2+4-\frac{1}{2}+2\right]-\left[\frac{8}{3}+\frac{1}{3}\right] \\
& =\frac{15}{2}-3 \\
& =\frac{9}{2}
\end{aligned}
$$

Question 11:

Using the method of integration find the area bounded by the curve $|x|+|y|=1$
[Hint: The required region is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x-y=1$]

Solution:

Curve intersects axis at points $A(0,1), B(1,0), C(0,-1)$ and $D(-1,0)$.
Curve is symmetrical about x-axis and y-axis.

$$
\begin{aligned}
\operatorname{ar}(A D C B) & =4 \times \operatorname{ar}(O B A O) \\
& =4 \int_{0}^{1}(1-x) d x \\
& =4\left(x-\frac{x^{2}}{2}\right)_{0}^{1} \\
& =4\left[1-\frac{1}{2}\right] \\
& =2
\end{aligned}
$$

Question 12:

Find the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

Solution:

Required area is symmetrical about y-axis.
Required area $=2[$ Area $(\mathrm{OCAO})-$ Area $(\mathrm{OCADO})]$

$$
\begin{aligned}
2[\operatorname{ar}(O C A O)-\operatorname{ar}(O C A D O)] & =2\left[\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x\right] \\
& =2\left[\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}\right] \\
& =2\left[\frac{1}{2}-\frac{1}{3}\right] \\
& =2\left[\frac{1}{6}\right] \\
& =\frac{1}{3}
\end{aligned}
$$

Question 13:
Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.

Solution:

Equation of $A B$ is

$$
\begin{aligned}
y-0 & =\frac{5-0}{4-2}(x-2) \\
2 y & =5 x-10 \\
y & =\frac{5}{2}(x-2)
\end{aligned}
$$

Equation of BC is

$$
\begin{aligned}
y-5 & =\frac{3-5}{6-4}(x-4) \\
2 y-10 & =-2 x+8 \\
2 y & =-2 x+18 \\
y & =-x+9
\end{aligned}
$$

Equation of CA is

$$
\begin{aligned}
y-3 & =\frac{0-3}{2-6}(x-6) \\
-4 y+12 & =-3 x+18 \\
4 y & =3 x-6 \\
y & =\frac{3}{4}(x-2)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{ar}(\triangle A B C) & =\operatorname{ar}(A B L A)+\operatorname{ar}(B L M C B)-\operatorname{ar}(A C M A) \\
& =\int_{2}^{4} \frac{5}{2}(x-2) d x+\int_{4}^{6}(-x+9) d x-\int_{2}^{6} \frac{3}{4}(x-2) d x \\
& =\frac{5}{2}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}+\left[\frac{-x^{2}}{2}+9 x\right]_{4}^{6}-\frac{3}{4}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{6} \\
& =\frac{5}{2}[8-8-2+4]+[-18+54+8-36]-\frac{3}{4}[18-12-2+4] \\
& =5+8-\frac{3}{4}(8) \\
& =13-6 \\
& =7 \text { units. }
\end{aligned}
$$

Question 14:

Using the method of integration find the area of the region bounded by lines:
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$.

Solution:

AL and CM are perpendicular on x-axis.

$$
\begin{aligned}
\operatorname{ar}(\triangle A B C) & =\operatorname{ar}(A L M C A)-\operatorname{ar}(A L B)-\operatorname{ar}(C M B) \\
& =\int_{1}^{4}\left(\frac{x+5}{3} d x\right)-\int_{1}^{2}(4-2 x) d x-\int_{2}^{4}\left(\frac{3 x-6}{2}\right) d x \\
& =\frac{1}{3}\left[\frac{x^{2}}{2}+5 x\right]_{1}^{4}-\left[4 x-x^{2}\right]_{1}^{2}-\frac{1}{2}\left[\frac{3 x^{2}}{2}-6 x\right]_{2}^{4} \\
& =\frac{1}{3}\left[8+20-\frac{1}{2}-5\right]-[8-4-4+1]-\frac{1}{2}[24-24-6+12] \\
& =\left(\frac{1}{3} \times \frac{45}{2}\right)-(1)-\frac{1}{2}(6) \\
& =\frac{15}{2}-1-3 \\
& =\frac{15}{2}-4 \\
& =\frac{15-8}{2} \\
& =\frac{7}{2}
\end{aligned}
$$

Question 15:

Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

Solution:

Points of intersection of curves are $\left(\frac{1}{2}, \sqrt{2}\right)$ and $\left(\frac{1}{2},-\sqrt{2}\right)$.
Required area is OABCO.
Area OABCO is symmetrical about x-axis.
Area $O A B C O=2 \times$ Area $O B C$

$$
\begin{aligned}
\operatorname{ar}(O B C O) & =\operatorname{ar}(O M C)+\operatorname{ar}(M B C) \\
& =\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9-4 x^{2}} d x \\
& =\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{(3)^{2}-(2 x)^{2}} d x
\end{aligned}
$$

put $2 x=t \Rightarrow d x=\frac{d t}{2}$
When $x=\frac{3}{2}, t=3$ and when $x=\frac{1}{2}, t=1$
$\operatorname{ar}(O B C O)=\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\frac{1}{4} \int_{1}^{3} \sqrt{(3)^{2}-(t)^{2}} d t$

$$
\begin{aligned}
& =2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{1}{2}}+\frac{1}{4}\left[\frac{t}{2} \sqrt{9-t^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{t}{3}\right)\right]_{1}^{3} \\
& =2\left[\frac{2}{3}\left(\frac{1}{2}\right)^{\frac{3}{2}}\right]+\frac{1}{4}\left[\left\{\frac{3}{2} \sqrt{9-(3)^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{3}{3}\right)\right\}-\left\{\frac{1}{2} \sqrt{9-(1)^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right\}\right] \\
& =\frac{2}{3 \sqrt{2}}+\frac{1}{4}\left[\left\{0+\frac{9}{2} \sin ^{-1}(1)\right\}-\left\{\frac{1}{2} \sqrt{8}+\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right\}\right] \\
& =\frac{\sqrt{2}}{3}+\frac{1}{4}\left[\frac{9 \pi}{4}-\sqrt{2}-\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right] \\
& =\frac{\sqrt{2}}{3}+\frac{9 \pi}{16}-\sqrt{2}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right) \\
& =\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{\sqrt{2}}{12}
\end{aligned}
$$

$$
\operatorname{ar}(O A B C O)=2 \times \operatorname{ar}(O B C)
$$

$$
=2 \times \frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{\sqrt{2}}{12}
$$

$$
=\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{\sqrt{2}}{6}
$$

$$
=\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{1}{3 \sqrt{2}}
$$

Question 16:

Area bounded by the curve $y=x^{3}$, the x-axis and the coordinates $x=-2$ and $x=1$ is
(A) -9
(B) $-\frac{15}{4}$
(C) $\frac{15}{4}$
(D) $\frac{17}{4}$

Solution:

$$
\begin{aligned}
\text { required area } & =\int_{-2}^{0} y d x+\int_{0}^{1} y d x \\
& =\int_{-2}^{0} x^{3} d x+\int_{0}^{1} x^{3} d x \\
& =\left[\frac{x^{4}}{4}\right]_{-2}^{0}+\left[\frac{x^{4}}{4}\right]_{0}^{1} \\
& =\left[\frac{(-2)^{4}}{4}+\frac{1}{4}\right] \\
& =\left(4+\frac{1}{4}\right)=\frac{17}{4}
\end{aligned}
$$

Correct answer is D

Question17:

The area bounded by the curve $y=x|x|, x$-axis and the coordinates $x=-1$ and $x=1$ is given by
[Hint: $y=x^{2}$ if $x>0$ and $y=-x^{2}$ if $x<0$]
(A) 0
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{4}{3}$

Solution:

$$
\begin{aligned}
\text { required area } & =\int_{-1}^{1} y d x \\
& =\int_{-1}^{1} x|x| d x \\
& =\int_{-1}^{0} x^{2} d x+\int_{0}^{1} x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}\right]_{0}^{1} \\
& =-\left(-\frac{1}{3}\right)+\frac{1}{3} \\
& =\frac{2}{3}
\end{aligned}
$$

Correct answer is C.

Question 18:

The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$.
(A) $\frac{4}{3}(4 \pi-\sqrt{3})$
(B) $\frac{4}{3}(4 \pi+\sqrt{3})$
(C) $\frac{4}{3}(8 \pi-\sqrt{3})$
(D) $\frac{4}{3}(8 \pi+\sqrt{3})$

Solution:

Required area $=2[$ Area $(\mathrm{OADO})+$ Area $(\mathrm{ADBA})]$

$$
\begin{aligned}
2[\operatorname{ar}(O A D O)+\operatorname{ar}(A D B A)] & =2\left[\int_{0}^{2} \sqrt{6 x} d x+\int_{2}^{4} \sqrt{16-x^{2}} d x\right] \\
& =2 \int_{0}^{2} \sqrt{6 x} d x+2 \int_{2}^{4} \sqrt{16-x^{2}} d x \\
& =2 \sqrt{6} \int_{0}^{2} \sqrt{x} d x+2 \int_{2}^{4} \sqrt{16-x^{2}} d x \\
& =2 \sqrt{6} \times \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{2}+2\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1}\left(\frac{x}{4}\right)\right]_{2}^{4} \\
& =\frac{4 \sqrt{6}}{3}(2 \sqrt{2}-0)+2\left[\left\{0+8 \sin ^{-1}(1)\right\}-\left\{2 \sqrt{3}+8 \sin ^{-1}\left(\frac{1}{2}\right)\right\}\right] \\
& =\frac{16 \sqrt{3}}{3}+2\left[8 \times \frac{\pi}{2}-2 \sqrt{3}-8 \times \frac{\pi}{6}\right] \\
& =\frac{16 \sqrt{3}}{3}+8 \pi-4 \sqrt{3}-\frac{8 \pi}{3} \\
& =\frac{16 \sqrt{3}+24 \pi-12 \sqrt{3}-8 \pi}{3} \\
& =\frac{4 \sqrt{3}+16 \pi}{3} \\
& =\frac{4}{3}[4 \pi+\sqrt{3}] \text { units }
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of circle } & =\pi(r)^{2} \\
& =\pi(4)^{2} \\
& =16 \pi
\end{aligned}
$$

required area $=16 \pi-\frac{4}{3}[4 \pi+\sqrt{3}]$

$$
\begin{aligned}
& =\frac{4}{3}[4 \times 3 \pi-4 \pi-\sqrt{3}] \\
& =\frac{4}{3}(8 \pi-\sqrt{3})
\end{aligned}
$$

Correct answer is C.

Question 19:

The area bounded by the y-axis, $y=\cos x$ and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$.
(A) $2(\sqrt{2}-1)$
(B) $\sqrt{2}-1$
(C) $\sqrt{2}+1$
(D) $\sqrt{2}$

Solution:

Required area $=$ Area $(\mathrm{ABLA})+$ Area (OBLO)

$$
\begin{aligned}
\operatorname{ar}(A B L A)+\operatorname{ar}(O B L O) & =\int_{\frac{1}{\sqrt{2}}}^{1} x d y+\int_{0}^{\frac{1}{\sqrt{2}}} x d y \\
& =\int_{\frac{1}{\sqrt{2}}}^{1} \cos ^{-1} y d y+\int_{0}^{\frac{1}{\sqrt{2}}} \sin ^{-1} x d y \\
& =\left[y \cos ^{-1} y-\sqrt{1-y^{2}}\right]_{\frac{1}{\sqrt{2}}}^{1}+\left[x \sin ^{-1} x+\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{\sqrt{2}}} \\
& =\left[\cos ^{-1}(1)-\frac{1}{\sqrt{2}} \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}\right]+\left[\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}-1}\right] \\
& =\frac{-\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1 \\
& =\frac{2}{\sqrt{2}}-1 \\
& =\sqrt{2}-1
\end{aligned}
$$

Correct answer is B.

