Answers to Some Guestions in Exercises

UNIT 1

$1.11 \quad 106.57 \mathrm{u}$
$1.13 \quad 143.1 \mathrm{pm}$
$1.15 \quad 8.97 \mathrm{~g} \mathrm{~cm}^{-3}$
$1.16 \quad \mathrm{Ni}^{2+}=96 \%$ and $\mathrm{Ni}^{3+}=4 \%$
1.24 (i) $354 \mathrm{pm} \quad$ (ii) 2.26×10^{22} unit cells
$1.25 \quad 6.02 \times 10^{18}$ cation vacancies mol^{-1}

UNIT 2

$2.4 \quad 16.23 \mathrm{M}$
$2.6 \quad 157.8 \mathrm{~mL}$
$2.8 \quad 17.95 \mathrm{~m}$ and 9.10 M
$2.15 \quad 40.907 \mathrm{~g} \mathrm{~mol}^{-1}$
$2.17 \quad 12.08 \mathrm{kPa}$
$2.1923 \mathrm{~g} \mathrm{~mol}^{-1}, 3.53 \mathrm{kPa}$
$2.21 \mathrm{~A}=25.58 \mathrm{u}$ and $\mathrm{B}=42.64 \mathrm{u}$
$2.24 \mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CN}$, Cyclohexane
2.25 Toluene, chloroform; Phenol, Pentanol; Formic acid, ethylelne glycol
2.265 m
2.28 1.424\%
$2.30 \quad 4.575 \mathrm{~g}$
$2.33 \mathrm{i}=1.0753, \mathrm{~K}_{\mathrm{a}}=3.07 \times 10^{-3}$
2.35178×10^{-5}
$2.38 \quad 0.6$ and 0.4
$2.40 \quad 0.03 \mathrm{~mol}$ of CaCl_{2}
$2.5 \quad 0.617 \mathrm{~m}, 0.01$ and $0.99,0.67$
2.7 33.5\%
$2.9 \quad 1.5 \times 10^{-3} \%, 1.25 \times 10^{-4} \mathrm{~m}$
$2.16 \quad 73.58 \mathrm{kPa}$
2.1810 g
$2.20 \quad 269.07 \mathrm{~K}$
$2.22 \quad 0.061 \mathrm{M}$

2.27	$2.45 \times 10^{-8} \mathrm{M}$
2.29	3.2 g of water
2.32	0.65^{0}
2.34	17.44 mm Hg
2.36	280.7 torr, 32 torr
2.39	$x\left(\mathrm{O}_{2}\right) 4.6 \times 10^{-5}, x\left(\mathrm{~N}_{2}\right) 9.22 \times 10^{-5}$
2.41	$5.27 \times 10^{-3} \mathrm{~atm}$.

UNIT 3

3.4 (i) $E^{\ominus}=0.34 \mathrm{~V}, \Delta_{\mathrm{r}} G^{\ominus}=-196.86 \mathrm{~kJ} \mathrm{~mol}^{-1}, K=3.124 \times 10^{34}$
(ii) $E^{\ominus}=0.03 \mathrm{~V}, \Delta_{\mathrm{r}} G^{\ominus}=-2.895 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}, K=3.2$
3.5 (i) 2.68 V , (ii) 0.53 V , (iii) 0.08 V , (iv) -1.298 V
$3.6 \quad 1.56 \mathrm{~V}$
$3.8 \quad 124.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$3.9 \quad 0.219 \mathrm{~cm}^{-1}$
$3.11 \quad 1.85 \times 10^{-5}$
3.12 3F, 2F, 5F
3.13 1F, 4.44F
3.14 2F, 1F
$3.15 \quad 1.8258 \mathrm{~g}$
$3.16 \quad 14.40 \mathrm{~min}$, Copper 0.427 g , Zinc 0.437 g

UNIT 4

4.2 (i) $8.0 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} ; 3.89 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
$4.4 \mathrm{bar}^{-1 / 2} \mathrm{~s}^{-1}$
4.6 (i) 4 times
(ii) $1 / 4$ times
4.8 (i) $4.67 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(ii) $1.98 \times 10^{-2} \mathrm{~s}^{-1}$
4.9 (i) rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
(ii) 9 times
4.10 Orders with respect to A is 1.5 and order with respect to B is zero.
4.11 rate law $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$; rate constant $=6.0 \mathrm{M}^{-2} \mathrm{~min}^{-1}$
4.13 (i) 3.47×10^{-3} seconds (ii) 0.35 minutes (iii) 0.173 years
4.141845 years
$4.17 \quad 0.7814 \mu \mathrm{~g}$ and $0.227 \mu \mathrm{~g}$.
$4.164 .6 \times 10^{-2} \mathrm{~s}$
$4.20 \quad 2.20 \times 10^{-3} \mathrm{~s}^{-1}$
4.1977 .7 minutes
$4.23 \quad 3.9 \times 10^{12} \mathrm{~s}^{-1}$
$4.212 .23 \times 10^{-3} \mathrm{~s}^{-1}, 7.8 \times 10^{-4} \mathrm{~atm} \mathrm{~s}^{-1}$
$4.25 \quad 0.158 \mathrm{M}$
4.240 .135 M
$4.27 \quad 239.339 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$4.26232 .79 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$4.29 \quad \mathrm{E}_{\mathrm{a}}=76.750 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad k=0.9965 \times 10^{-2} \mathrm{~s}^{-1}$
$4.30 \quad 52.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

UNIT 6

6.1 Zinc is highly reactive metal, it may not be possible to replace it from a solution of ZnSO_{4} so easily.
6.2 It prevents one of the components from forming the froth by complexation.
6.3 The Gibbs energies of formation of most sulphides are greater than that for CS_{2}. In fact, CS_{2} is an endothermic compound. Hence it is common practice to roast sulphide ores to corresponding oxides prior to reduction.
6.5 CO
6.6 Selenium, tellurium, silver, gold are the metals present in anode mud. This is because these are less reactive than copper.
6.9 Silica removes $\mathrm{Fe}_{2} \mathrm{O}_{3}$ remaining in the matte by forming silicate, FeSiO_{3}.
6.15 Cast iron is made from pig iron by melting pig iron with scrap iron and coke. It has slightly lower carbon content (" 3%) than pig iron (" 4% C)
6.17 To remove basic impurities, like $\mathrm{Fe}_{2} \mathrm{O}_{3}$
6.18 To lower the melting point of the mixture.
6.20 The reduction may require very high temperature if CO is used as a reducing agent in this case.
6.21 Yes, $2 \mathrm{Al}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3} \quad \Delta_{\mathrm{r}} \mathrm{G}^{\ominus}=-827 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{Cr}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3} \quad \Delta_{\mathrm{r}} \mathrm{G}^{\ominus}=-540 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Hence $\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr} \quad-827-(-540)=-287 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6.22 Carbon is better reducing agent.
6.25 Graphite rods act as anode and get burnt away as CO and CO_{2} during the process of electrolysis.
6.28 Above 1600 K Al can reduce MgO .

UNIT 7

7.10 Because of inability of nitrogen to expand its covalency beyond 4.
7.20 Freons
7.22 It dissolves in rain water and produces acid rain.
7.23 Due to strong tendency to accept electrons, halogens act as strong oxidising agent.
7.24 Due to high electronegativity and small size, it cannot act as central atom in higher oxoacids.
7.25 Nitrogen has smaller size than chlorine. Smaller size favours hydrogen bonding.
7.30 Synthesis of $\mathrm{O}_{2} \mathrm{PtF}_{6}$ inspired Bartlett to prepare XePtF_{6} as Xe and oxygen have nearly same ionisation enthalpies.
7.31 (i) +3 (ii) +3 (iii) -3 (iv) +5 (v) +5
7.34 ClF , Yes.
7.36 (i) $\mathrm{I}_{2}<\mathrm{F}_{2}<\mathrm{Br}_{2}<\mathrm{Cl}_{2}$
(ii) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
(iii) $\mathrm{BiH}_{3} \leq \mathrm{SbH}_{3}<\mathrm{AsH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}$
7.37 (ii) NeF_{2}
7.38 (i) XeF_{4}
(ii) XeF_{2}
(iii) XeO_{3}

UNIT 8

8.2 It is because Mn^{2+} has $3 d^{5}$ configuration which has extra stability.
8.5 Stable oxidation states.
$3 d^{3}$ (Vanadium): $(+2),+3,+4$, and +5
$3 d^{5}$ (Chromium): $+3,+4,+6$
$3 d^{5}$ (Manganese): $+2,+4,+6,+7$
$3 d^{8}$ (Nickel): $+2,+3$ (in complexes)
$3 d^{4}$ There is no d^{4} configuration in the ground state.
8.6 Vanadate VO_{3}^{-}, chromate CrO_{4}^{2-}, permanganate MnO_{4}^{-}
$8.10+3$ is the common oxidation state of the lanthanoids
In addition to +3 , oxidation states +2 and +4 are also exhibited by some of the lanthanoids.
8.13 In transition elements the oxidation states vary from +1 to any highest oxidation state by one For example, for manganese it may vary as $+2,+3,+4,+5,+6,+7$. In the nontransition elements the variation is selective, always differing by 2 , e.g. $+2,+4$, or $+3,+5$ or $+4,+6$ etc.
8.18 Except Sc^{3+}, all others will be coloured in aqueous solution because of incompletely filled $3 d$-orbitals, will give rise to d - d transitions.
8.21 (i) Cr^{2+} is reducing as it involves change from d^{4} to d^{3}, the latter is more stable configuration $\left(\mathrm{t}_{2 \mathrm{~g}}^{3}\right) \mathrm{Mn}(\mathrm{III})$ to $\mathrm{Mn}(\mathrm{II})$ is from $3 d^{4}$ to $3 d^{5}$ again $3 d^{5}$ is an extra stable configuration.
(ii) Due to CFSE, which more than compensates the $3^{\text {rd }}$ IE.
(iii) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^{1}.
8.23 Copper, because with +1 oxidation state an extra stable configuration, $3 d^{10}$ results.
8.24 Unpaired electrons $\mathrm{Mn}^{3+}=4, \mathrm{Cr}^{3+}=3, \mathrm{~V}^{3+}=2, \mathrm{Ti}^{3+}=1$. Most stable Cr^{3+}
8.28 Second part 59, 95, 102.
8.30 Lawrencium, 103, +3
$8.36 \mathrm{Ti}^{2+}=2, \mathrm{~V}^{2+}=3, \mathrm{Cr}^{3+}=3, \mathrm{Mn}^{2+}=5, \mathrm{Fe}^{2+}=6, \mathrm{Fe}^{3+}=5, \mathrm{CO}^{2+}=7, \mathrm{Ni}^{2+}=8, \mathrm{Cu}^{2+}=9$
8.38 $\mathrm{M} \sqrt{\mathrm{n}(\mathrm{n}+2)}=2.2, \mathrm{n} \approx 1, d^{2} \mathrm{sp}^{3}, \mathrm{CN}^{-}$strong ligand

$$
=5.3, \mathrm{n} \approx 4, \mathrm{sp}^{3}, d^{2}, \mathrm{H}_{2} \mathrm{O} \text { weak ligand }
$$

$=5.9, \mathrm{n} \approx 5, \mathrm{sp}^{3}, \mathrm{Cl}^{-}$weak ligand.

UNIT 9

9.5
9.6
(i) +3
(ii) +3
(iii) +2
(iv) +3
(v) +3
(v) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}$
(ii) $\mathrm{K}_{2}\left[\mathrm{PdCl}_{4}\right]$
(iii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(iv) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
(ix) $\left[\mathrm{CuBr}_{4}\right]^{2-}$
(vi) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(vii) $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(viii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]^{4+}$
9.9 (i) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} 3^{3^{n-}-} \mathrm{Nil}\right.$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]^{-}$Two (fac- and mer-)
9.12 Three (two cis and one trans)
9.13 Aqueous CuSO_{4} solution exists as $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4}$ which has blue colour due to $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ ions.
(i) When KF is added, the weak $\mathrm{H}_{2} \mathrm{O}$ ligands are replaced by F^{-}ligands, forming $\left[\mathrm{CuF}_{4}\right]^{2^{1}}$ ions which is a green precipitate.
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{~F}^{-} \rightarrow\left[\mathrm{CuF}_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
(ii) When KCl is added, Cl^{-}ligands replace the weak $\mathrm{H}_{2} \mathrm{O}$ ligands forming $\left[\mathrm{CuCl}_{4}\right)^{2-}$ ions which has bright green colour.
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
$9.14 \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
As CN^{-}is a strong ligand, it forms a highly stable complex with Cu^{2+} ion. On passing $\mathrm{H}_{2} \mathrm{~S}$, free Cu^{2+} ions are not available to form the precipitate of CuS .
9.23 (i) $\mathrm{OS}=+3, \mathrm{CN}=6$, d-orbital occupation is $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{0}$,
(ii) $\mathrm{OS}=+3, \mathrm{CN}=6, \mathrm{~d}^{3}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{3}\right)$,
(iii) $\mathrm{OS}=+2, \mathrm{CN}=4, \mathrm{~d}^{7}\left(\mathrm{t}_{2 \mathrm{~g}}^{5} \mathrm{e}_{\mathrm{g}}^{2}\right)$,
(iv) $\mathrm{OS}=+2, \mathrm{CN}=6, \mathrm{~d}^{5}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{2}\right)$.
9.28 (iii)
9.29 (ii)
9.30 (iii)
9.31 (iii)
9.32 (i) The order of the ligand in the spectrochemical series :
$\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NO}_{2}^{-}$
Hence the energy of the observed light will be in the order :
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
Thus, wavelengths absorbed $(\mathrm{E}=\mathrm{hc} / \lambda)$ will be in the opposite order.

INDEX

Terms	Page No.		Terms	Page
			No.	
Absorption	124		Collision frequency	117
Actinoid contraction	238		Collision theory of chemical reactions	117
Actinoids	215,238		Column chromatography	166
Activated complex	114		Concentration of ores	158,154
Activators	134		Concentration of solutions	36
Activation energy	114		Conductivity	75,80
Adsorption	124		Conductors	26
Adsorption isotherm	127		Coordination compounds	244
Allotropic forms	180	192		Coordination entity

Terms \quad Page No.

Electron vacancy 28
Electronegativity 172,187,199
Electronic configuration 216
Electronic defect 28
Electroosmosis 144
Ellingham diagram 157, 158
Emulsions 137, 145
Enantiomers
End-centred unit
Enthalpy
Enzyme catalysis
Equilibrium constant
f.- block elements

Face centred unit
Facial isomer
Faraday's law
Ferrimagnetism
Ferromagnetism
First order reaction
Froth floatation
Fractional distillation
Frenkel defect
Frequency factor
Freundlich isotherm
Fuel cells
Galvanic cell
Gangue
Gels
Geometric isomerism
Giant molecules
Gibbs energy
Haber's process
Half-life
Hall heroult process
Halogens
Henry's law
Heterogeneous catalysis
Heteroleptic complex
Holme's signals
Homogeneous catalysis
Homoleptic complex
Hybridisation
Hydrate isomerism
Hydration enthalpy
Hydraulic washing
Hydro metallurgy
Hydrogen bonded molecular solids
Ideal solution
Impurity defect154
174
24, 25113
12790

Terms
Page No.
Inhibitors 134
Inner transition metals 234
Instability constant 263
Instantaneous rate of a reaction 98, 99
Insulators 27
Inter molecular forces 2
Interstitial compounds 230
Interstitial defect 25
Intrinsic semiconductors 27
Ionic conductance 77
Ionic radii 171, 186, 198
Ionic solids 5
Ionisation enthalpy 171, 187, 198, 209
Ionisation isomerism 253
Isolation of elements 149
Isomerism 251
Isotonic solution 56
Kinetic energy 115
30, 228 106, 111

Kohlrausch law 83, 84

Kraft temperature 138
Lanthanide contraction 219
Lanthanoids 215
Le Chateliers principle 40, 43
Leaching 154
Lewis acids 247
Ligand field theory 254
Ligands 247
Line defects 24
Linkage isomerism 253
Liquation 164
Long range order 2
Lyophilic colloids 137
Lyophobic colloids 137
Magnetic separation 153
Meridional isomer 252
Metal carbonyls 261
Metal excess defect 26
Metallic solids 5
Metallurgy 153, 156
Micelles 138
Minerals 152
Mischmetall 237
Molal elevation constant 51
Molality 39
Molar conductivity 81
Molarity 38,55
Mole fraction 37,50
Molecularity of a reaction 103
Mond process 165

Terms	Page No.	Terms	Page No.
Monoclinic sulphur	192	Secondary battery	89
Mononuclear coordination compounds	249	Secondary valence	244, 245
Nernst equation	72, 73	Semi conductors	27
Noble gases	208	Semipermeable membrane	55
Non-ideal solution	47	Shape-selective catalysis	132
Non-polar molecular solids	4	Short range order	2
Octahedral voids	17, 19	Smoke screens	182
Optical isomerism	252	Solid state	2
Order of a reaction	102	Sols	137
Ores	152	Solubility	39
Osmotic pressure	54	Solvate isomerism	254
Ostwald's process	131	Stereo isomerism	254
Oxidation number	248	Stoichiometric defect	24
Oxidation state	199	Strong field ligands	258
Oxides of nitrogen	177	Structural isomerism	251
Oxoacids of halogens	205	Super cooled liquids	3
Oxoacids of phosphorus	184, 185	Surface chemistry	123
Oxoacids of sulphur	194	Temperature dependence of rate	113
Ozone	191	Tetrahedral permanganate	226
Packing efficiency	20	Tetrahedral voids	16, 18
Paper chromatography	166	Thermodynamics	156
Paramagnetism	29, 227	Trans isomer	251
p-block elements	170	Transition metals	215
Peptization	140	Tyndall cone	141
Physisorption	125	Tyndall effect	141
Pig iron	161	Ultrafiltration	140
Point defects		Unidentate	247
Polar molecular solids	5	Unit cells	7, 9
Polydentate	247	Units of rate constant	103
Primary battery	88	Units of rate of a reaction	97
Primary valence	244	Vacancy defect	25
Pseudo first order reaction	112	Valence bond theory	254, 257
Pseudo solids	3	Van arkel method	165
Purification of metal	153	Vapour phase refining	165
Pyrometallurgy	162	Vapour pressure	43, 46
Raoult's law	43, 46	Voltaic cell	66
Rate law	100, 101	Weak field ligands	254
Reaction rate constant	101	Werner's theory	244
Redox couples	67	Wheatstone bridge	75, 78
Red phosphorus	181	White phosphorus	181
Reverberatory furnace	156	Wrought iron	161, 167
Reverse osmosis	57	Zeolites	132, 133
Rhombic sulphur	192	Zero order Reaction	105, 111
Roasting	155, 159	Zeta potential	143
Schottky defect	24, 25	Zone refining	165

